Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(2): e23642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348710

RESUMO

Breast cancer is the leading cause of cancer deaths in women worldwide. EF-24, an analog of curcumin, has been shown to possess promising anticancer effects. However, the underlying mechanism remains elusive. In the present study, the inhibitory effect of EF-24 against one breast cancer cell line, MDA-MB-231, and its anti-migration ability were assessed by MTT, wound healing, and Transwell assay. Furthermore, we found that EF-24 could induce initiation of autophagy as evidenced by fluorescence and electron microscope observation. EF-24 also induced mitochondrial apoptosis in MDA-MB-231 cells as detected by Hoechst 33342 staining, flow cytometry analysis, and western blot analysis. In addition, the early autophagy inhibitor 3-MA could reduce the cleavage of PARP protein and protect cells from EF-24-induced apoptosis, while the autophagy inducer (rapamycin) could enhance the anticancer effect of EF-24 in MDA-MB-231 cells, which suggest that EF-24 induces crosstalk between autophagy and apoptosis, which herein participate in the antiproliferative effect of EF-24 in breast cancer cells. Moreover, removal of EF-24-activated ROS with NAC significantly reversed migration ability of MDA-MB-231 cells, indicating that EF-24 exerted an inhibitory effect through a ROS-mediating pathway. These results will help to elucidate the antitumor mechanism of curcumin analogs and to explore future potential clinical applications.


Assuntos
Antineoplásicos , Neoplasias da Mama , Curcumina , Feminino , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Células MDA-MB-231 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Neoplasias da Mama/patologia , Autofagia , Apoptose , Linhagem Celular Tumoral
2.
Bioorg Chem ; 151: 107661, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067422

RESUMO

SHP2 (Src homology-2-containing protein tyrosine phosphatase 2) plays an important role in cell proliferation, survival, migration by affecting RAS-ERK, PI3K-AKT, JAK-STAT signaling pathways and so on. Overexpression or gene mutation of SHP2 is closely linked with a variety of cancers, making it a potential therapeutic target for cancer disease. In this paper, 30 target compounds bearing pyrido[1,2-a]pyrimidin-4-one core were synthesized via two-round design strategy by means of scaffold hopping protocol. It was evaluated the in vitro enzymatic inhibition and cell antiproliferation assay of these targets. 13a, designed in the first round, presented relatively good inhibitory activity, but its molecular rigidity might limit further improvement by hindering the formation of the desired "bidentate ligand", as revealed by molecular docking studies. In our second-round design, S atom as a linker was inserted into the core and the 7-aryl group to enhance the flexibility of the structure. The screening result revealed that 14i could exhibit high enzymatic activity against full-length SHP2 (IC50 = 0.104 µM), while showing low inhibitory effect on SHP2-PTP (IC50 > 50 µM). 14i also demonstrated high antiproliferative activity against the Kyse-520 cells (IC50 = 1.06 µM) with low toxicity against the human brain microvascular endothelial cells HBMEC (IC50 = 30.75 µM). 14i also displayed stronger inhibitory activities on NCI-H358 and MIA-PaCa2 cells compared to that of SHP099. Mechanistic studies revealed that 14i could induce cell apoptosis, arrest the cell cycle at the G0/G1 phase and downregulate the phosphorylation levels of Akt and Erk1/2 in Kyse-520 cells. Molecular docking and molecular dynamics studies displayed more detailed information on the binding mode and binding mechanism of 14i and SHP2. These data suggest that 14i has the potential to be a promising lead compound for our further investigation of SHP2 inhibitors.


Assuntos
Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Alostérica/efeitos dos fármacos , Pirimidinonas/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química
3.
Mar Drugs ; 22(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921588

RESUMO

Two new meroterpenoids, aspergienynes O and P (1 and 2), one new natural compound, aspergienyne Q (3), and a new α-pyrone derivative named 3-(4-methoxy-2-oxo-2H-pyran-6-yl)butanoic acid (4) were isolated from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y85, along with five known compounds (5-9). The absolute configurations of those new isolates were confirmed through extensive analysis using spectroscopic data (HRESIMS, NMR, and ECD). The pharmacological study of the anti-proliferation activity indicated that isolates 5 and 9 displayed moderate inhibitory effects against HeLa and A549 cells, with the IC50 values ranging from 16.6 to 45.4 µM.


Assuntos
Aspergillus , Pironas , Terpenos , Aspergillus/química , Humanos , Pironas/farmacologia , Pironas/química , Pironas/isolamento & purificação , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Células A549 , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Estrutura Molecular , Endófitos/química , Concentração Inibidora 50 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Espectroscopia de Ressonância Magnética
4.
Luminescence ; 39(7): e4831, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39051545

RESUMO

For the first time, we suggest using leaf extract from Ocimum americanum as the economically viable bio-fabrication of copper nanomaterials. The residuals of leaf extract bio-capping provide the stability of the nanomaterials in-situ. UV-Vis and XRD confirmed the formation, with the UV-Vis spectrum of Cu-NMs revealing a surface plasmon resonance characteristic peak at 350 nm. FT-IR analysis was employed to examine the functional groups. FE-SEM with EDX was used to assess the morphology and carry out an elemental analysis of the nanomaterials. Diffusion and MTT assays were used to study the antimicrobial and anticancer activities. The synthesized copper nanomaterials exhibited in-vitro cytotoxicity against human skin cancer (A431) cell lines. Green nanomaterial was examined against the methylene blue dye, photodegradation was reduced by up to 90.6% within 50 minutes. The copper nanomaterials synthesized in our study exhibit promising applications in biomedicine and environmental pollution research.


Assuntos
Proliferação de Células , Cobre , Cobre/química , Cobre/farmacologia , Humanos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Nanoestruturas/química , Química Verde , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas Metálicas/química , Luminescência , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Folhas de Planta/química , Antibacterianos/farmacologia , Antibacterianos/química , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Substâncias Luminescentes/química , Substâncias Luminescentes/farmacologia , Substâncias Luminescentes/síntese química
5.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542474

RESUMO

Diarylpentanoids are synthesized to overcome curcumin's poor bioavailability and low stability to show enhanced anti-cancer effects. Little is known about the anti-cancer effects of diarylpentanoid MS17 (1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one) in colon cancer cells. This study aimed to elucidate molecular mechanisms and pathways modulated by MS17 in colon cancer based on proteomic profiling of primary SW480 and metastatic SW620 colon cancer cells. Cytotoxicity and apoptotic effects of MS17 were investigated using MTT assay, morphological studies, and Simple Western analysis. Proteomic profiling using LC/MS analysis identified differentially expressed proteins (DEPs) in MS17-treated cells, with further analysis in protein classification, gene ontology enrichment, protein-protein interaction network and Reactome pathway analysis. MS17 had lower EC50 values (SW480: 4.10 µM; SW620: 2.50 µM) than curcumin (SW480: 17.50 µM; SW620: 13.10 µM) with a greater anti-proliferative effect. MS17 treatment of 1× EC50 induced apoptotic changes in the morphology of SW480 and SW620 cells upon 24 h treatment. A total of 24 and 92 DEPs (fold change ≥ 1.50) were identified in SW480 and SW620 cells, respectively, upon MS17 treatment of 2× EC50 for 24 h. Pathway analysis showed that MS17 may induce its anti-cancer effects in both cells via selected DEPs associated with the top enriched molecular pathways. RPL and RPS ribosomal proteins, heat shock proteins (HSPs) and ubiquitin-protein ligases (UBB and UBC) were significantly associated with cellular responses to stress in SW480 and SW620 cells. Our findings suggest that MS17 may facilitate the anti-proliferative and apoptotic activities in primary (SW480) and metastatic (SW620) human colon cancer cells via the cellular responses to stress pathway. Further investigation is essential to determine the alternative apoptotic mechanisms of MS17 that are independent of caspase-3 activity and Bcl-2 protein expression in these cells. MS17 could be a potential anti-cancer agent in primary and metastatic colon cancer cells.


Assuntos
Alcadienos , Neoplasias do Colo , Curcumina , Humanos , Curcumina/farmacologia , Proteômica , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo
6.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337608

RESUMO

Euphorbia kansui, a toxic Chinese medicine used for more than 2000 years, has the effect of "purging water to promote drinking" and "reducing swelling and dispersing modules". Diterpenes and triterpenes are the main bioactive components of E. kansui. Among them, ingenane-type diterpenes have multiple biological activities as a protein kinase C δ (PKC-δ) activator, which have previously been shown to promote anti-proliferative and pro-apoptotic effects in several human cancer cell lines. However, the activation of PKC subsequently promoted the survival of macrophages. Recently, we found that 13-hydroxyingenol-3-(2,3-dimethylbutanoate)-13-dodecanoate (compound A) from E. kansui showed dual bioactivity, including the inhibition of tumor-cell-line proliferation and regulation of macrophage polarization. This study identifies the possible mechanism of compound A in regulating the polarization state of macrophages, by regulating PKC-δ-extracellular signal regulated kinases (ERK) signaling pathways to exert anti-tumor immunity effects in vitro, which might provide a new treatment method from the perspective of immune cell regulation.


Assuntos
Apoptose , Diterpenos , Euphorbia , Macrófagos , Transdução de Sinais , Euphorbia/química , Diterpenos/farmacologia , Diterpenos/química , Apoptose/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Humanos , Proteína Quinase C/metabolismo , Células RAW 264.7 , Proliferação de Células/efeitos dos fármacos , Proteína Quinase C-delta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
7.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611855

RESUMO

Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.


Assuntos
Chenopodium quinoa , Ácidos Hexurônicos , Staphylococcus aureus Resistente à Meticilina , Arabinose , Escherichia coli , Grão Comestível
8.
Toxicol Appl Pharmacol ; 473: 116596, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328117

RESUMO

The hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) plays a pivotal role in pulmonary arterial remodeling (PAR) of hypoxia-induced pulmonary hypertension (HPH). 4-Terpineol is a constituent of Myristic fragrant volatile oil in Santan Sumtang. Our previous study found that Myristic fragrant volatile oil alleviated PAR in HPH rats. However, the effect and pharmacological mechanism of 4-terpineol in HPH rats remain unexplored. Male Sprague-Dawley rats were exposed to hypobaric hypoxia chamber (simulated altitudes of 4500 m) for 4 weeks to establish an HPH model in this study. During this period, rats were intragastrically administrated with 4-terpineol or sildenafil. After that, hemodynamic indexes and histopathological changes were assessed. Moreover, a hypoxia-induced cellular proliferative model was established by exposing PASMCs to 3% O2. PASMCs were pretreated with 4-terpineol or LY294002 to explore whether 4-terpineol targeted PI3K/Akt signaling pathway. The PI3K/Akt-related proteins expression was also accessed in lung tissues of HPH rats. We found that 4-terpineol attenuated mPAP and PAR in HPH rats. Then, cellular experiments showed 4-terpineol inhibited hypoxia-induced PASMCs proliferation via down-regulating PI3K/Akt expression. Furthermore, 4-terpineol decreased the p-Akt, p-p38, and p-GSK-3ß protein expression, as well as reduced the PCNA, CDK4, Bcl-2 and Cyclin D1 protein levels, while increasing levels of cleaved caspase 3, Bax, and p27kip1in lung tissues of HPH rats. Our results suggested that 4-terpineol mitigated PAR in HPH rats by inhibiting the proliferation and inducing apoptosis of PASMCs through suppression of the PI3K/Akt-related signaling pathway.


Assuntos
Hipertensão Pulmonar , Óleos Voláteis , Ratos , Masculino , Animais , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Remodelação Vascular , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Artéria Pulmonar , Proliferação de Células , Óleos Voláteis/farmacologia , Miócitos de Músculo Liso
9.
J Biochem Mol Toxicol ; 37(4): e23307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36633067

RESUMO

5-Bis[(2-fluorophenyl)methylene]-4-piperidinone (EF-24) is a curcumin analog, which was identified for its physiochemical stability and diverse pharmacological functions. In the present study, EF-24 was added to the breast cancer cell line MCF-7 and its cellular effects were characterized. The results indicated that EF-24 possessed antiproliferative and antimigratory activities on MCF-7 cells as determined by MTT assay, wound healing, and transwell assay, respectively. In addition, the autophagosomal vesicles could be detected by acridine orange staining and electron microscope analysis in EF-24-treated cells. Conversion of LC3-I to LC3-II was also investigated following EF-24 treatment of the cells. However, the expression analysis of p62 and LC3 revealed that EF-24 could inhibit autophagic flux in MCF-7 cells. Confocal microscopy suggested that EF-24 could inhibit the degradation of autophagic vesicles by blocking the fusion of autophagosomes with lysosomes. EF-24 could also induce apoptosis of MCF-7 cells as determined by Hoechst 33342 staining, flow cytometry analysis, and western blot analysis. Moreover, treatment of the cells with the autophagy inhibitor 3-MA enhanced the PARP1 cleavage of EF-24-treated MCF-7 cells, which indicated the crosstalk between autophagy and apoptosis in breast cancer cells. Additional investigation of EF-24 should be performed in future studies to assess its antiproliferation and antimigratory effects on MCF-7 cells. However, the current results provide a solid foundation for the potential in vivo anticancer activity of this compound.


Assuntos
Neoplasias da Mama , Curcumina , Humanos , Feminino , Células MCF-7 , Curcumina/farmacologia , Proliferação de Células , Autofagia , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Apoptose
10.
Environ Res ; 222: 115395, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731601

RESUMO

Breast and cervical cancer account for the majority of cancer-narrated fatalities among women worldwide, necessitating the development of novel, effective therapeutic ways to combat the disease. In this study, we synthesized 6-methoxy naphthalene and anthracene-based acrylamide chalcone (NBA and ABA) and evaluated its activity for cell multiplication inhibition against two cancer cell lines from humans such as MCF-7 (Human Breast) and HeLa (Cervical) by MTT assay. Physiochemical characterization, such as FT-IR and NMR analyses, validated the synthesized NBA and ABA. Both NBA and ABA have shown antiproliferative action against two cancer cell lines, each with IC50 values of 38.46 and 48.25 µg/mL for HeLa cells and 38.02 and 36.35 µg/mL for MCF-7 cell lines. The results suggest that these acrylamide chalcones for cancer therapy at the lowest concentration. NBA and ABA could prevent cervical and breast cancer in-vitro, and their anti-cancer activity was closely related to methoxy-substituted naphthalene, anthracene ring, α, ß-unsaturated carbonyl and amide group. According to docking data, the NBA and ABA have dock scores ranging from -8.7 to -11.44 kcal/mol. The highest dock score for compound ABA was -11.58 kcal/mol and compound NBA was -10.77 kcal/mol with Braf (5VAM) binding site.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Neoplasias , Humanos , Feminino , Chalcona/química , Chalcona/farmacologia , Estrutura Molecular , Chalconas/química , Chalconas/farmacologia , Relação Estrutura-Atividade , Células MCF-7 , Células HeLa , Acrilamidas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Naftalenos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
11.
Mol Divers ; 27(1): 323-340, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35467269

RESUMO

Cervical cancer is a major cause of gynecological related mortalities in developing countries. Cisplatin, a potent chemotherapeutic agent used for treating advanced cervical cancer exhibits side effects and resistance development. The current study was aimed to investigate the repurposing of l-menthol as a potential therapeutic drug against cervical cancer. L-menthol was predicted to be non-toxic with good pharmacokinetic properties based on SwissADME and pkCSM analysis. Subsequently, 543 and 1664 targets of l-menthol and cervical cancer were identified using STITCH, BATMAN-TCM, PharmMapper and CTD databases. STRING and Cytoscape analysis of the merged protein-protein interaction network revealed 107 core targets of l- menthol against cervical cancer. M-CODE identified highly connected clusters between the core targets which through KEGG analysis were found to be enriched in pathways related to apoptosis and adherence junctions. Molecular docking showed that l- menthol targeted E6, E6AP and E7 onco-proteins of HPV that interact and inactivate TP53 and Rb1 in cervical cancer, respectively. Molecular docking also showed good binding affinity of l-menthol toward proteins associated with apoptosis and migration. Molecular dynamics simulation confirmed stability of the docked complexes. In vitro analysis confirmed that l-menthol was cytotoxic towards cervical cancer CaSki cells and altered expression of TP53, Rb1, CDKN1A, E2F1, NFKB1, Akt-1, caspase-3, CDH1 and MMP-2 genes identified through network pharmacology approach. Schematic representation of the work flow depicting the potential of l-menthol to target cervical cancer.


Assuntos
Mentol , Neoplasias do Colo do Útero , Feminino , Humanos , Mentol/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias do Colo do Útero/tratamento farmacológico
12.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513324

RESUMO

The growing worldwide cancer incidence, coupled to the increasing occurrence of multidrug cancer resistance, requires a continuous effort towards the identification of new leads for cancer management. In this work, two C-scorpionate complexes, [FeCl2(κ3-Tpm)] (1) and [Co(κ3-TpmOH)2](NO3)2 (2), (Tpm = hydrotris(pyrazol-1-yl)methane and TpmOH = 2,2,2-tris(pyrazol-1-yl)ethanol), were studied as potential scaffolds for future anticancer drug development. Their cytotoxicity and cell migration inhibitory activity were analyzed, and an untargeted metabolomics approach was employed to elucidate the biological processes significantly affected by these two complexes, using two tumoral cell lines (B16 and HCT116) and a non-tumoral cell line (HaCaT). While [FeCl2(κ3-Tpm)] did not display a significant cytotoxicity, [Co(κ3-TpmOH)2](NO3)2 was particularly cytotoxic against the HCT116 cell line. While [Co(κ3-TpmOH)2](NO3)2 significantly inhibited cell migration in all tested cell lines, [FeCl2(κ3-Tpm)] displayed a mixed activity. From a metabolomics perspective, exposure to [FeCl2(κ3-Tpm)] was associated with changes in various metabolic pathways involving tyrosine, where iron-dependent enzymes are particularly relevant. On the other hand, [Co(κ3-TpmOH)2](NO3)2 was associated with dysregulation of cell adhesion and membrane structural pathways, suggesting that its antiproliferative and anti-migration properties could be due to changes in the overall cellular adhesion mechanisms.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Antineoplásicos/farmacologia , Linhagem Celular , Complexos de Coordenação/química
13.
J Cell Mol Med ; 26(2): 422-435, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913237

RESUMO

Chemoresistance and migration represent major obstacles in the therapy of non-small-cell lung cancer (NSCLC), which accounts for approximately 85% of lung cancer patients in clinic. In the present study, we report that the compound C1632 is preferentially distributed in the lung after oral administration in vivo with high bioavailability and limited inhibitory effects on CYP450 isoenzymes. We found that C1632 could simultaneously inhibit the expression of LIN28 and block FGFR1 signalling transduction in NSCLC A549 and A549R cells, resulting in significant decreases in the phosphorylation of focal adhesion kinase and the expression of matrix metalloproteinase-9. Consequently, C1632 effectively inhibited the migration and invasion of A549 and A549R cells. Meanwhile, C1632 significantly suppressed the cell viability and the colony formation of A549 and A549R cells by inhibiting DNA replication and inducing G0/G1 cell cycle arrest. Interestingly, compared with A549 cells, C1632 possesses the same or even better anti-migration and anti-proliferation effects on A549R cells, regardless of drug resistance. In addition, C1632 also displayed the capacity to inhibit the growth of A549R xenograft tumours in mice. Altogether, these findings reveal the potential of C1632 as a promising anti-NSCLC agent, especially for chemotherapy-resistant NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas de Ligação a RNA/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
14.
Bioorg Med Chem ; 60: 116626, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35255412

RESUMO

Based on the promising results of benzenesulfonamide spirodienones as antineoplastic agents, we have designed and synthesized a series of novel acyl sulfonamides spirodienone for antineoplastic evaluation. Of these, compound 4a exhibited remarkable in vitro antiproliferative activity by arresting the cell cycle and inducing apoptosis of MDA-MB-231 cells. Acute toxicity study has demonstrated 4a at 100 mg/kg dose caused no obvious toxicity to the major organs of mice. Moreover, compound 4a suppressed the growth of murine 4T1 tumor in vivo. Preliminary enzyme assay showed that 4a was a potential MMP2 inhibitor for cancer therapy. In all, these results indicate that compound 4a may be a lead compound for the development of anticancer agents.


Assuntos
Antineoplásicos , Sulfonamidas , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
15.
Bioorg Chem ; 125: 105874, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636097

RESUMO

The abnormal biological functions of HDAC6 were closely related to the occurrence and development of various tumors, making HDAC6 gradually become promising therapeutic target for cancer treatment and inspiring researchers to explore and develop selective HDAC inhibitors. In this study, based on the classical pharmacophore model of HDAC inhibitors, 20 compounds were designed and synthesized by modifying the Cap group, and the biological activities of the target compounds were assessed through anti-proliferation and enzyme inhibition experiments. The title compounds exhibited varying degrees of inhibitory activities against the selected tumor cell lines, especially the compounds 9m, 9q, and 12c, which were further evaluated at the enzymatic level. The enzyme inhibition assay showed that compound 12c exerted broad-spectrum enzyme inhibitory activities and compounds 9m and 9q were more inclined to inhibit HDAC6, exhibiting certain selective inhibitory activities among the representative subtypes. Moreover, the binding modes of compounds 9q and 12c in HDAC1&6 were further explored via computational approaches to elucidate the molecular mechanisms underlying selective inhibitory activities, providing valuable hints for the discovery of novel HDAC6 inhibitors.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
16.
BMC Ophthalmol ; 22(1): 450, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418980

RESUMO

BACKGROUND: This study was to assess the diagnostic value of PCED1B-AS1 for proliferative diabetic retinopathy (PDR) and investigate the involvement of PCED1B-AS1 in PDR. METHODS: The vitreous and blood specimens from 37 subjects with PDR and 21 non-diabetics were examined by reverse transcription quantitative PCR to determine the PCED1B-AS1 level. The two groups were age- and gender-matched. Receiver operating characteristic (ROC) curves were plotted to visually illustrate the diagnostic ability of PCED1B-AS1. Human retinal Müller glial cells were studied by ELISA. Proliferation and migration of human retinal microvascular endothelial cells (HRMECs) were assessed in vitro. RESULTS: Significant increases of PCED1B-AS1 levels were observed in the vitreous samples and CD34 + VEGFR-2 + cells from blood samples of diabetic subjects with PDR, compared with those of non-diabetics. The ROC curve based on the vitreous PCED1B-AS1 levels revealed an AUC of 0.812, while the ROC curve based on the PCED1B-AS1 levels in CD34 + VEGFR-2 + cells from blood samples revealed an AUC of 0.870. In Müller cell cultures, PCED1B-AS1 siRNA significantly attenuated VEGF and MCP-1 upregulation which were induced by CoCl2 and TNF-α. Additionally, PCED1B-AS1 siRNA attenuated VEGF-induced proliferation and migration in HRMECs. CONCLUSION: This study revealed the potential of PCED1B-AS1 as a diagnostic biomarker for PDR. In vitro data point to the anti-angiogenic and anti-proliferation effects of PCED1B-AS1.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Corpo Vítreo/metabolismo , Células Endoteliais/metabolismo , RNA Interferente Pequeno
17.
Chem Biodivers ; 19(11): e202200459, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36328758

RESUMO

Turpiniae Folium, the dried leaves of Turpinia arguta Seem., is a kind of historic traditional Chinese medicine. Here, based on our previous study, we extracted the Turpiniae Folium polysaccharides (TFP) and isolated three polysaccharide fractions from TFP. Then, TFP and one of the major polysaccharide fractions (TFP-1a) were identified through HPLC, HPGPC, and ATR-FTIR. Furthermore, the evaluations of their antioxidative, anti-inflammatory activities and inhibitory effect on angiotensin II-induced vascular smooth muscle cells (VSCMs) proliferation in vitro were conducted. Both TFP and TFP-1a showed strong hydroxyl radical scavenging, DPPH radical scavenging, and Fe2+ chelating activities, and exerted strong anti-inflammatory activity. Moreover, TFP and TFP-1a also possessed a strong inhibitory effect on Ang II-induced VSCMs proliferation. On these premises, we inferred that TFP and TFP-1a could be potential and promising natural antioxidants, anti-inflammatory agents, and implicated to treat cardiovascular disease.


Assuntos
Antioxidantes , Músculo Liso Vascular , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Folhas de Planta
18.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887375

RESUMO

Isaindigotone is an alkaloid containing a pyrrolo-[2,1-b]quinazoline moiety conjugated with a benzylidene group and isolated from the root of Isatis indigotca Fort. However, further anticancer activities of this alkaloid and its derivatives have not been fully explored. In this work, a novel isaindigotone derivative was synthesized and three different gastric cell lines and one human epithelial gastric cell line were used to study the anti-proliferation effects of the novel isaindigotone derivative BLG26. HGC27 cells and AGS cells were used to further explore the potential mechanisms. BLG26 exhibited better anti-proliferation activities in AGS cells with a half-maximal inhibitory concentration (IC50) of 1.45 µM. BLG26 caused mitochondrial membrane potential loss and induced apoptosis in both HGC27 cells and AGS cells by suppressing mitochondrial apoptotic pathway and PI3K/AKT/mTOR axis. Acute toxicity experiment showed that LD50 (median lethal dose) of BLG26 was above 1000.0 mg/kg. This research suggested that BLG26 can be a potential candidate for the treatment of gastric cancer.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias Gástricas , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
19.
Molecules ; 27(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431952

RESUMO

Green synthesis of silver nanoparticles (AgNPs) has gained greater interest among chemists and researchers in this current scenario. The present research investigates the larvicidal and anti-proliferation activity of AgNPs derived from Knoxia sumatrensis aqueous leaf extract (K. sumatrensis-ALE) as a potential capping and reducing candidate. The synthesized AgNPs were characterized through-UV-spectra absorption peak at 425 nm. The XRD and FT-IR studied displayed the crystalline nature and presence of functional groups in prepared samples. FE-SEM showed the hexagonal shape of NPs with the size of 7.73 to 32.84 nm. The synthesized AgNPs displayed superior antioxidant and anti-proliferative activity (IC50 53.29 µg/mL) of breast cancer cell line (MCF-7). Additionally, larvicidal activity against mosquito vector Culex quinquefasciatus larvae delivered (LC50-0.40, mg/L, and LC90-15.83) significant mortality rate post treatment with synthesized AgNPs. Overall, the present research illustrates that the synthesized AgNPs have high biological potential and present a perfect contender in the pharmacological and mosquitocidal arena.


Assuntos
Inseticidas , Nanopartículas Metálicas , Rubiaceae , Animais , Prata/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Inseticidas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rubiaceae/metabolismo
20.
Bioorg Med Chem ; 39: 116166, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33910157

RESUMO

Constitutive activation of Hedgehog (Hh) pathway is intimately related with the occurrence and development of several malignancies, such as medulloblastoma (MB) and other tumors. Therefore, small molecular inhibitors of Hh pathway are urgently needed. In this study, three new steroidal alkaloids, ⊿5 (20R, 24R) 23-oxo-24-methylsolacongetidine, ⊿5 (20S, 24R) 23-oxo-24-methylsolacongetidine and veralinine 3-O-α-l-rhamnopyranosyl-(1 â†’ 2)-ß-D-glucopyranoside, together with six known alkaloids, 20-epi-verazine, verazine, protoverine 15-(l)-2'-methylbutyrate, jervine, veramarine and ß1-chaconine, were isolated and determined from Veratrum grandiflorum Loes. The dual-luciferase bioassay indicated that all compounds exhibited significant inhibitions of Hh pathway with IC50 values of 0.72-14.31 µM against Shh-LIGHT 2 cells. To determine whether these Hh pathway inhibitors act with the Smoothened (Smo) protein, which is an important oncoprotein and target for this pathway, BODIPY-cyclopamine (BC) competitive binding assay was preferentially performed. Compared with BC alone, all compounds obviously reduced the fluorescence intensities of BC binding with Smo in Smo-overexpression HEK293T cells through fluorescence microscope and flow cytometer. By directly interacting with Smo, it revealed that they were actually novel natural Smo inhibitors. Then, their anti-tumor effects were investigated against the human MB cell line DAOY, which is a typical pediatric brain tumor cells line with highly expressed Hh pathway. Interestingly, most of compounds had slight proliferation inhibitions on DAOY cells after treatment for 24 h same as vismodegib, while ß1-chaconine showed the strongest inhibitory effect on the growth of DAOY with IC50 value of 5.35 µM. In conclusion, our studies valuably provide several novel natural Smo inhibitors for potential targeting treatment of Hh-dependent tumors.


Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Proliferação de Células/efeitos dos fármacos , Meduloblastoma/patologia , Receptor Smoothened/antagonistas & inibidores , Esteroides/química , Veratrum/química , Alcaloides/química , Linhagem Celular Tumoral , Células HEK293 , Humanos , Estrutura Molecular , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA