Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nano Lett ; 23(6): 2087-2093, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36893363

RESUMO

Time-resolved analysis of photon cross-correlation function g(2)(τ) is applied to photoluminescence (PL) of individual submicrometer size MAPbI3 perovskite crystals. Surprisingly, an antibunching effect in the long-living tail of PL is observed, while the prompt PL obeys the photon statistics typical for a classical emitter. We propose that antibunched photons from the PL decay tail originate from radiative recombination of detrapped charge carriers which were initially captured by a very limited number (down to one) of shallow defect states. The concentration of these trapping sites is estimated to be in the range 1013-1016 cm-3. In principle, photon correlations can be also caused by highly nonlinear Auger recombination processes; however, in our case it requires unrealistically large Auger recombination coefficients. The potential of the time-resolved g(2)(0) for unambiguous identification of charge rerecombination processes in semiconductors considering the actual number of charge carries and defects states per particle is demonstrated.

2.
Nano Lett ; 23(24): 11548-11554, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38063468

RESUMO

Single-photon emissions from individual emitters are crucial in fundamental science and quantum information technologies. Multichromophoric systems, comprising multiple dyes, can exhibit single-photon emissions through efficient annihilation between the excited states; however, exploring this phenomenon in complex systems remains a challenge. In this study, we investigated the photon statistics of emissions from multiple perylene bisimide (PBI) dyes adsorbed onto the surface of CdSe/ZnS quantum dots (QDs). When multiple PBIs were simultaneously excited by both direct excitation and energy transfer from the QD, multiphoton emissions from the PBIs were observed. Conversely, when the QDs were selectively excited, multiple PBIs exhibiting single-photon emission through energy transfer from the QDs to the PBIs were found. These results highlight the intriguing interplay between multichromophoric systems and QDs, offering valuable insights into the development of efficient single-photon sources in quantum information technologies.

3.
Nano Lett ; 22(6): 2365-2373, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285655

RESUMO

We investigate the quantum-optical properties of the light emitted by a nanoparticle-on-mirror cavity filled with a single quantum emitter. Inspired by recent experiments, we model a dark-field setup and explore the photon statistics of the scattered light under grazing laser illumination. Exploiting analytical solutions to Maxwell's equations, we quantize the nanophotonic cavity fields and describe the formation of plasmon-exciton polaritons (or plexcitons) in the system. This way, we reveal that the rich plasmonic spectrum of the nanocavity offers unexplored mechanisms for nonclassical light generation that are more efficient than the resonant interaction between the emitter natural transition and the brightest optical mode. Specifically, we find three different sample configurations in which strongly antibunched light is produced. Finally, we illustrate the power of our approach by showing that the introduction of a second emitter in the platform can enhance photon correlations further.

4.
Nano Lett ; 21(16): 7030-7036, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34398613

RESUMO

Single photon sources with high brightness and subnanosecond lifetimes are key components for quantum technologies. Optical nanoantennas can enhance the emission properties of single quantum emitters, but this approach requires accurate nanoscale positioning of the source at the plasmonic hotspot. Here, we use plasmonic nanoantennas to simultaneously trap single colloidal quantum dots and enhance their photoluminescence. The nano-optical trapping automatically locates the quantum emitter at the nanoantenna hotspot without further processing. Our dedicated nanoantenna design achieves a high trap stiffness of 0.6 (fN/nm)/mW for quantum dot trapping, together with a relatively low trapping power of 2 mW/µm2. The emission from the nanoantenna-trapped single quantum dot shows 7× increased brightness, 50× reduced blinking, 2× shortened lifetime, and a clear antibunching below 0.5 demonstrating true single photon emission. Combining nano-optical tweezers with plasmonic enhancement is a promising route for quantum technologies and spectroscopy of single nano-objects.

5.
Nano Lett ; 20(2): 1074-1079, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869232

RESUMO

Most measurements of fluorescence lifetimes on the single-molecule level are carried out using avalanche photon diodes (APDs). These single-photon counters are inherently slow, and their response shows a strong dependence on photon energy, which can make reconvolution of the instrument response function (IRF) challenging. An ultrafast time resolution in single-molecule fluorescence is crucial, e.g., in determining donor lifetimes in donor-acceptor couples which undergo energy transfer, or in plasmonic antenna structures, where the radiative rate and non-radiative rates are enhanced. We introduce a femtosecond double-excitation (FeDEx) photon correlation technique, which measures the degree of photon antibunching as a function of time delay between two excitation pulses. In this boxcar integration, the time resolution of fluorescence transients is limited solely by the laser pulse length and is independent of the detector IRF. The versatility of the technique is demonstrated with a custom-made donor-acceptor complex with one donor and two acceptors and with single dye molecules positioned accurately between two gold nanoparticles using DNA origami. The latter structures show ∼75-fold radiative-rate enhancement and fluorescence lifetimes down to 19 ps, which is measured without the need for any reconvolution. With the potential of measuring subpicosecond fluorescence lifetimes, plasmonic antenna structures can now be optimized further.


Assuntos
Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Imagem Individual de Molécula/métodos , Transferência de Energia , Fluorescência , Ouro/química , Lasers , Nanotecnologia , Fótons
6.
Nano Lett ; 20(6): 4645-4652, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32364394

RESUMO

A single photon in a strongly nonlinear cavity is able to block the transmission of a second photon, thereby converting incident coherent light into antibunched light, which is known as the photon blockade effect. Photon antipairing, where only the entry of two photons is blocked and the emission of bunches of three or more photons is allowed, is based on an unconventional photon blockade mechanism due to destructive interference of two distinct excitation pathways. We propose quantum plexcitonic systems with moderate nonlinearity to generate both antibunched and antipaired photons. The proposed plexcitonic systems benefit from subwavelength field localizations that make quantum emitters spatially distinguishable, thus enabling a reconfigurable photon source between antibunched and antipaired states via tailoring the energy bands. For a realistic nanoprism plexcitonic system, chemical and optical schemes of reconfiguration are demonstrated. These results pave the way to realize reconfigurable nonclassical photon sources in a simple quantum plexcitonic platform.

7.
Nano Lett ; 19(10): 7078-7084, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31478677

RESUMO

Defect-decorated single-wall carbon nanotubes have shown rapid growing potential for imaging, sensing, and the development of room-temperature single-photon sources. The key to the highly nonclassical emission statistics is the discrete energy spectrum of defect-localized excitons. However, variations in defect configurations give rise to distinct spectral bands that may compromise single-photon efficiency and purity in practical devices, and experimentally it has been challenging to study the exciton population distribution among the various defect-specific states. Here, we performed photon correlation spectroscopy on hexyl-decorated single-wall carbon nanotubes to unravel the dynamics and competition between neutral and charged exciton populations. With autocorrelation measurements at the single-tube level, we prove the nonclassical photon emission statistics of defect-specific exciton and trion photoluminescence and identify their mutual exclusiveness in photoemissive events with cross-correlation spectroscopy. Moreover, our study reveals the presence of a dark state with population-shelving time scales between 10 and 100 ns. These new insights will guide further development of chemically tailored carbon nanotube states for quantum photonics applications.

8.
Annu Rev Phys Chem ; 69: 81-99, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29401037

RESUMO

Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.

9.
Nano Lett ; 16(2): 960-6, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26785291

RESUMO

We report on the structural and optical properties of AlxGa(1-x)N nanowire sections grown by plasma-assisted molecular beam epitaxy on GaN nanowire bases used as a template. Based on a combination of scanning electron microscopy, microphotoluminescence, time-resolved microphotoluminescence, and photon correlation experiments, it is shown that compositional fluctuations in AlxGa(1-x)N sections associated with carrier localization optically behave as quantum dots. Moreover, most of the micro-optical properties of such fluctuations are demonstrated to be very little dependent on kinetic growth parameters such as AlxGa(1-x)N growth temperature and AlN molar fraction in the alloy, which govern the macrostructural properties of AlxGa(1-x)N sections.


Assuntos
Compostos de Alumínio/química , Gálio/química , Nanofios/química , Pontos Quânticos/química , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanofios/ultraestrutura , Óptica e Fotônica , Pontos Quânticos/ultraestrutura
10.
Biochim Biophys Acta ; 1853(4): 850-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25101973

RESUMO

Gangliosides located at the outer leaflet of plasma membrane are molecules that either participate in recognizing of exogenous ligand molecules or exhibit their own receptor activity, which are both essential phenomena for cell communication and signaling as well as for virus and toxin entry. Regulatory mechanisms of lipid-mediated recognition are primarily subjected to the physical status of the membrane in close vicinity of the receptor. Concerning the multivalent receptor activity of the ganglioside GM1, several regulatory strategies dealing with GM1 clustering and cholesterol involvement have been proposed. So far however, merely the isolated issues were addressed and no interplay between them investigated. In this work, several advanced fluorescence techniques such as Z-scan fluorescence correlation spectroscopy, Förster resonance energy transfer combined with Monte Carlo simulations, and a newly developed fluorescence antibunching assay were employed to give a more complex portrait of clustering and cholesterol involvement in multivalent ligand recognition of GM1. Our results indicate that membrane properties have an impact on a fraction of GM1 molecules that is not available for the ligand binding. While at low GM1 densities (~1 %) it is the cholesterol that turns GM1 headgroups invisible, at higher GM1 level (~4 %) it is purely the local density of GM1 molecules that inhibits the recognition. At medium GM1 content, cooperation of the two phenomena occurs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.


Assuntos
Membrana Celular/metabolismo , Gangliosídeo G(M1)/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Colesterol , Análise por Conglomerados , Simulação por Computador , Difusão , Transferência Ressonante de Energia de Fluorescência , Gangliosídeo G(M1)/química , Hidrazinas/metabolismo , Ligantes , Método de Monte Carlo , Ovinos , Titulometria
11.
Small ; 9(23): 4061-8, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-23794455

RESUMO

Obtaining quantitative information about molecular assemblies with high spatial and temporal resolution is a challenging task in fluorescence microscopy. Single-molecule techniques build on the ability to count molecules one by one. Here, a method is presented that extends recent approaches to analyze the statistics of coincidently emitted photons to enable reliable counting of molecules in the range of 1-20. This method does not require photochemistry such as blinking or bleaching. DNA origami structures are labeled with up to 36 dye molecules as a new evaluation tool to characterize this counting by a photon statistics approach. Labeled DNA origami has a well-defined labeling stoichiometry and ensures equal brightness for all dyes incorporated. Bias and precision of the estimating algorithm are determined, along with the minimal acquisition time required for robust estimation. Complexes containing up to 18 molecules can be investigated non-invasively within 150 ms. The method might become a quantifying add-on for confocal microscopes and could be especially powerful in combination with STED/RESOLFT-type microscopy.


Assuntos
DNA/química , Corantes Fluorescentes/química , Microscopia de Fluorescência , Fótons
12.
Macromol Rapid Commun ; 34(14): 1145-50, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23744755

RESUMO

Colloidal quantum dots are well-established probes for quantum optical experiments. However, they possess a limited stability toward their environment. Herein, the generation of hybrid particles composed of a high optical quality quantum dot centered in a polymer particle by means of a miniemulsion polymerization procedure is reported. This embedding strongly enhances emission intensity and photochemical stability of these single-photon emitters. At the same time, their colloidal mobile nature is not compromised.


Assuntos
Compostos de Cádmio/química , Fótons , Polimetil Metacrilato/química , Pontos Quânticos , Selênio/química , Emulsões , Luz , Processos Fotoquímicos
13.
Methods Appl Fluoresc ; 10(4)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35817064

RESUMO

Molecular interactions are fundamental to any chemical or biological processes, and their rates define the operational sequence and control for any desirable product. Here, we deliberate on a recently developed novel fluorescence spectroscopic method, which combines fluorescence photon anti-bunching, photon bunching, time-correlated single-photon counting (TCSPC), and steady-state fluorescence spectroscopy, to study composite chemical reactions with single molecule sensitivity. The proposed method captures the full picture of the multifaceted quenching kinetics, which involves static quenching by ground state complexation and collisional quenching in the excited state under dynamic exchange of fluorophore in a heterogeneous media, and which cannot be seen by steady-state or lifetime measurements alone. Photon correlation in fluorescence correlation spectroscopy (FCS) provides access to interrogate interaction dynamics from picosecond to seconds, stitching all possible stages of dye-quencher interaction in a micellar media. This is not possible with the limited time window available to conventional ensemble techniques like TCSPC, flash photolysis, transient absorption, stop-flow, etc. The basic premises of such unified global analysis and sanctity of extracted parameters critically depends on the minimum but precise description of reaction scheme, for which careful inspection of ensemble spectroscopy data for photo-physical behaviour is very important. Though in this contribution we discussed and demonstrated the merits of photon antibunching and bunching spectroscopy for dye-quencher interaction in cationic cetyltrimethylammonium bromide (CTAB) micellar solution by photo-induced electron transfer mechanism and the influence of micellar charge and microenvironment on the interaction kinetics, but in principal similar arguments are equally applicable to any other interaction mechanisms which alter fluorescence photon correlations, like Förster resonance energy transfer (FRET), proton transfer, isomerisation, etc.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fótons , Corantes Fluorescentes/química , Cinética , Espectrometria de Fluorescência/métodos
14.
ACS Nano ; 15(7): 11358-11368, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33729770

RESUMO

Although colloidal lead halide perovskite quantum dots (PQDs) exhibit desirable emitter characteristics with high quantum yields and narrow bandwidths, instability has limited their applications in devices. In this paper, we describe spray-synthesized CsPbI3 PQD quantum emitters displaying strong photon antibunching and high brightness at room temperature and stable performance under continuous excitation with a high-intensity laser for more than 24 h. Our PQDs provided high single-photon emission rates, exceeding 9 × 106 count/s, after excluding multiexciton emissions and strong photon antibunching, as confirmed by low values of the second-order correlation function g(2)(0) (reaching 0.021 and 0.061 for the best and average PQD performance, respectively). With such high brightness and stability, we applied our PQDs as quantum random number generators, which demonstrably passed all of the National Institute of Standards and Technology's randomness tests. Intriguingly, all of the PQDs exhibited self-healing behavior and restored their PL intensities to greater than half of their initial values after excitation at extremely high intensity. Half of the PQDs even recovered almost all of their initial PL intensity. The robust properties of these spray-synthesized PQDs resulted from high crystallinity and good ligand encapsulation. Our results suggest that spray-synthesized PQDs have great potential for use in future quantum technologies (e.g., quantum communication, quantum cryptography, and quantum computing).

15.
ACS Nano ; 15(6): 10406-10414, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34061507

RESUMO

Solid-state single-photon sources are essential building blocks for quantum photonics and quantum information technologies. This study demonstrates promising single-photon emission from quantum defects generated in single-wall carbon nanotubes (SWCNTs) by covalent reaction with guanine nucleotides in their single-stranded DNA coatings. Low-temperature photoluminescence spectroscopy and photon-correlation measurements on individual guanine-functionalized SWCNTs (GF-SWCNTs) indicate that multiple, closely spaced guanine defect sites within a single ssDNA strand collectively form an exciton trapping potential that supports a localized quantum state capable of room-temperature single-photon emission. In addition, exciton traps from adjacent ssDNA strands are weakly coupled to give cross-correlations between their separate photon emissions. Theoretical modeling identifies coupling mechanism as a capture of band-edge excitons. Because the spatial pattern of nanotube functionalization sites can be readily controlled by selecting ssDNA base sequences, GF-SWCNTs should become a versatile family of quantum light emitters with engineered properties.


Assuntos
Nanotubos de Carbono , DNA , DNA de Cadeia Simples , Óptica e Fotônica , Fótons
16.
Nanomaterials (Basel) ; 11(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34443750

RESUMO

This review is devoted to the study of effects of quantum optics in nanostructures. The mechanisms by which the rates of radiative and nonradiative decay are modified are considered in the model of a two-level quantum emitter (QE) near a plasmonic nanoparticle (NP). The distributions of the intensity and polarization of the near field around an NP are analyzed, which substantially depend on the polarization of the external field and parameters of plasmon resonances of the NP. The effects of quantum optics in the system NP + QE plus external laser field are analyzed-modification of the resonance fluorescence spectrum of a QE in the near field, bunching/antibunching phenomena, quantum statistics of photons in the spectrum, formation of squeezed states of light, and quantum entangled states in these systems.

17.
ACS Nano ; 14(4): 4216-4223, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159937

RESUMO

A hallmark of quantum control is the ability to manipulate quantum emission at the nanoscale. Through scanning tunneling microscopy-induced luminescence (STML), we are able to generate plasmonic light originating from inelastic tunneling processes that occur in the vacuum between a tip and a few-nanometer-thick molecular film of C60 deposited on Ag(111). Single photon emission, not of molecular excitonic origin, occurs with a 1/e recovery time of a tenth of a nanosecond or less, as shown through Hanbury Brown and Twiss photon intensity interferometry. Tight-binding calculations of the electronic structure for the combined tip and Ag-C60 system results in good agreement with experiment. The tunneling happens through electric-field-induced split-off states below the C60 LUMO band, which leads to a Coulomb blockade effect and single photon emission. The use of split-off states is shown to be a general technique that has special relevance for narrowband materials with a large bandgap.

18.
ACS Nano ; 14(10): 12629-12641, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32804475

RESUMO

The degree of labeling (DOL) of antibodies has so far been optimized for high brightness and specific and efficient binding. The influence of the DOL on the blinking performance of antibodies used in direct stochastic optical reconstruction microscopy (dSTORM) has so far attained limited attention. Here, we investigated the spectroscopic characteristics of IgG antibodies labeled at DOLs of 1.1-8.3 with Alexa Fluor 647 (Al647) at the ensemble and single-molecule level. Multiple-Al647-labeled antibodies showed weak and strong quenching interactions in aqueous buffer but could all be used for dSTORM imaging with spatial resolutions of ∼20 nm independent of the DOL. Single-molecule fluorescence trajectories and photon antibunching experiments revealed that individual multiple-Al647-labeled antibodies show complex photophysics in aqueous buffer but behave as single emitters in photoswitching buffer independent of the DOL. We developed a model that explains the observed blinking of multiple-labeled antibodies and can be used for the development of improved fluorescent probes for dSTORM experiments.


Assuntos
Corantes Fluorescentes , Fótons , Anticorpos , Carbocianinas , Microscopia de Fluorescência
19.
ACS Nano ; 13(11): 13492-13500, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31689076

RESUMO

Generating single photons at high temperature remains a major challenge, particularly for group III-As and III-P materials widely used in optical communication. Here, we report a high temperature single photon emitter based on a "surface-free" GaAs quantum dot (QD) in a GaAsP nanowire. By using self-catalyzed vapor-liquid-solid growth and simple surface engineering, we can significantly enhance the optical signal from the QDs with a highly polarized photoluminescence at 750 nm. The "surface-free" nanowire quantum dots show photon antibunching up to 160 K and well resolved exciton lines as high as 220 K.

20.
ACS Nano ; 12(3): 2580-2590, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29489324

RESUMO

We study the quantum-mechanical effects arising in a single semiconductor core/shell quantum dot (QD) controllably sandwiched between two plasmonic nanorods. Control over the position and the "sandwich" confinement structure is achieved by the use of a linear-trap liquid crystal (LC) line defect and laser tweezers that "push" the sandwich together. This arrangement allows for the study of exciton-plasmon interactions in a single structure, unaltered by ensemble effects or the complexity of dielectric interfaces. We demonstrate the effect of plasmonic confinement on the photon antibunching behavior of the QD and its luminescence lifetime. The QD behaves as a single emitter when nanorods are far away from the QD but shows possible multiexciton emission and a significantly decreased lifetime when tightly confined in a plasmonic "sandwich". These findings demonstrate that LC defects, combined with laser tweezers, enable a versatile platform to study plasmonic coupling phenomena in a nanoscale laboratory, where all elements can be arranged almost at will.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA