Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163642

RESUMO

Artificial pigmentation of apple fruits has been intensely evaluated to generate less pigmented red apples, which are profitable because of the changes in fruit quality. In this study, we analyzed the diversity of flavonoids and the patterns of flavonoid metabolic gene expression under light irradiation with or without methyl jasmonate (MeJA) treatment in immature (S1) and color-turning (S2) staged 'Fuji' apples. Further, we assessed the metabolic regulation at the gene level between anthocyanin and flavonol in light-responsive apple skins. UV-B exposure within 3 days was found to significantly stimulate anthocyanin accumulation in apple skin compared to other light exposure. S1 skin was more sensitive to UV-B and MeJA treatment, in the aspect of indaein accumulation. The enhancement of apple pigmentation following treatment with adequate levels of UV-B and MeJA was maximized at approximately 72 h. Red (range from 4.25 to 17.96 µg·g-1 DW), blue (range from 4.59 to 9.17 µg·g-1 DW) and UV-A (range from 3.98 to 19.12 µg·g-1 DW) lights contributed to the induction of idaein content. Most genes related to the flavonoid pathways increased their expression under UV-B exposure, including the gene expression of the transcription factor, MdMYB10, a well-known upstream factor of flavonoid biosynthesis in apples. The boosted upregulation of MdMYB10, MdCHS, MdF3H MdLDOX, and MdUFGT genes due to MeJA in UV-B was found and may contribute the increase of idaein. UV-A and UV-B caused higher quercetin glycoside content in both S1 and S2 apple skins than longer wavelengths, resulting in significant increases in quercetin-3-O-galactoside and quercetin-3-O-glucoside. These results suggest that the application of adequate UV-B with MeJA in less-pigmented postharvest apples will improve apple color quality within a short period.


Assuntos
Acetatos/metabolismo , Antocianinas/metabolismo , Ciclopentanos/metabolismo , Flavonoides/metabolismo , Frutas , Malus , Oxilipinas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/crescimento & desenvolvimento , Malus/metabolismo , Pigmentação , Raios Ultravioleta
2.
Int J Mol Sci ; 18(6)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617325

RESUMO

Biopolymer films based on apple skin powder (ASP) and carboxymethylcellulose (CMC) were developed with the addition of apple skin extract (ASE) and tartaric acid (TA). ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR), optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film.


Assuntos
Anti-Infecciosos/química , Antioxidantes/química , Carboximetilcelulose Sódica/química , Embalagem de Alimentos/métodos , Malus/química , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Infecções Bacterianas/prevenção & controle , Carboximetilcelulose Sódica/farmacologia , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/efeitos dos fármacos , Microfluídica/instrumentação , Tamanho da Partícula , Extratos Vegetais/farmacologia , Salmonella enterica/efeitos dos fármacos , Shigella flexneri/efeitos dos fármacos , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Vapor , Tartaratos/química , Tartaratos/farmacologia
3.
Materials (Basel) ; 17(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591566

RESUMO

The protective and preservative role of apple skin in maintaining the integrity of the fruit is well-known, with its mechanical behaviour playing a pivotal role in determining fruit storage capacity. This study employs a combination of experimental and numerical methodologies, specifically utilising the digital image correlation (DIC) technique. A specially devised inverse strategy is applied to evaluate the mechanical behaviour of apple skin under uniaxial tensile loading. Three apple cultivars were tested in this work: Malus domestica Starking Delicious, Malus pumila Rennet, and Malus domestica Golden Delicious. Stress-strain curves were reconstructed, revealing distinct variations in the mechanical responses among these cultivars. Yeoh's hyperelastic model was fitted to the experimental data to identify the coefficients capable of reproducing the non-linear deformation. The results suggest that apple skin varies significantly in composition and structure among the tested cultivars, as evidenced by differences in elastic properties and non-linear behaviour. These differences can significantly affect how fruit is handled, stored, and transported. Thus, the insights resulting from this research enable the development of mathematical models based on the mechanical behaviour of apple tissue, constituting important data for improvements in the economics of the agri-food industry.

4.
Plants (Basel) ; 11(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161271

RESUMO

Apple russeting develops on the fruit surface when skin integrity has been lost. It induces a modification of fruit wax composition, including its triterpene profile. In the present work, we studied two closely related apple varieties, 'Reinette grise du Canada' and 'Reinette blanche du Canada', which display russeted and non-russeted skin phenotypes, respectively, during fruit development. To better understand the molecular events associated with russeting and the differential triterpene composition, metabolomics data were generated using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and combined with proteomic and transcriptomic data. Our results indicated lower expression of genes linked to cuticle biosynthesis (cutin and wax) in russet apple throughout fruit development, along with an alteration of the specialized metabolism pathways, including triterpene and phenylpropanoid. We identified a lipid transfer protein (LTP3) as a novel player in cuticle formation, possibly involved in the transport of both cutin and wax components in apple skin. Metabolomic data highlighted for the first time a large diversity of triterpene-hydroxycinnamates in russeted tissues, accumulation of which was highly correlated with suberin-related genes, including some enzymes belonging to the BAHD (HXXXD-motif) acyltransferase family. Overall, this study increases our understanding about the crosstalk between triterpene and suberin pathways.

5.
Int J Biol Macromol ; 124: 1292-1298, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557640

RESUMO

The aim a present study was developed methylcellulose (MC) active edible films with extracts of green apple skin, as model systems of edible coating. Active edible films were developed by incorporation of ethanolic extract of freeze-dried apple skin (EEFD) and aqueous extract of apple skin (AES) at 10, 20 and 25% (v/v) concentrations. Analysis of thermal, mechanical and functional properties was carried out. Results showed that incorporation of green apple skin extracts into MC films contribute to total phenolic content and antioxidant properties. Addition of green apple skin extracts generated shifts toward lower glass transition temperature values regarding MC films without extracts. A lower tensile strength and increased elongation at break in MC-AES films were observed. Mechanical properties of MC-EEFD films were less affected by the increase in extract concentration due to absence of the plasticizing effect of sugars present in AES. The methylcellulose films are important for actives edibles coatings with applications in the food industry.


Assuntos
Antioxidantes/química , Materiais Revestidos Biocompatíveis/química , Embalagem de Alimentos/métodos , Malus/química , Metilcelulose/química , Polifenóis/química , Antioxidantes/isolamento & purificação , Ácido Ascórbico/química , Compostos de Bifenilo/antagonistas & inibidores , Etanol/química , Liofilização , Frutas/química , Humanos , Transição de Fase , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Solventes/química , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA