Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 1-15, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126416

RESUMO

I have been a scientific grasshopper throughout my career, moving from question to question within the domain of lupus. This has proven to be immensely gratifying. Scientific exploration is endlessly fascinating, and succeeding in studies you care about with colleagues and trainees leads to strong and lasting bonds. Science isn't easy; being a woman in science presents challenges, but the drive to understand a disease remains strong.


Assuntos
Escolha da Profissão , Lúpus Eritematoso Sistêmico , Feminino , Humanos , Pesquisa Biomédica
2.
Annu Rev Immunol ; 40: 1-14, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34871102

RESUMO

I've had serious misgivings about writing this article, because from living the experience day by day, it's hard to believe my accomplishments merit the attention. To skirt this roadblock, I forced myself to pretend I was in a conversation with my trainees, trying to distill the central driving forces of my career in science. The below chronicles my evolution from would-be astronaut/ballerina to budding developmental biologist to devoted T cell immunologist. It traces my work from a focus on intrathymic events that mold developing T cells into self-major histocompatibility complex (MHC)-restricted lymphocytes to extrathymic events that fine-tune the T cell receptor (TCR) repertoire and impose the finishing touches on T cell maturation. It is a story of a few personal attributes multiplied by generous mentors, good luck, hard work, perseverance, and knowing when to step down.


Assuntos
Complexo Principal de Histocompatibilidade , Linfócitos T , Animais , Diferenciação Celular , Humanos , Timo
3.
Annu Rev Immunol ; 38: 1-21, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31594433

RESUMO

It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αß receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.


Assuntos
Suscetibilidade a Doenças , Transtorno Obsessivo-Compulsivo/etiologia , Transtorno Obsessivo-Compulsivo/metabolismo , Animais , Autoimunidade , Biomarcadores , Morte Celular , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Humanos , Imunidade Inata , Transtorno Obsessivo-Compulsivo/psicologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Superantígenos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo
4.
Annu Rev Immunol ; 37: 1-17, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30379594

RESUMO

Each of us is a story. Mine is a story of doing science for 60 years, and I am honored to be asked to tell it. Even though this autobiography was written for the Annual Review of Immunology, I have chosen to describe my whole career in science because the segment that was immunology is so intertwined with all else I was doing. This article is an elongation and modification of a talk I gave at my 80th birthday celebration at Caltech on March 23, 2018.


Assuntos
Alergia e Imunologia/história , NF-kappa B/metabolismo , Vírus de RNA/fisiologia , Viroses/imunologia , Animais , Modelos Animais de Doenças , Rearranjo Gênico , História do Século XX , História do Século XXI , Humanos , Camundongos , Proteínas Tirosina Quinases/metabolismo , Transcrição Reversa , Estados Unidos
5.
Annu Rev Biochem ; 92: 1-13, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001139

RESUMO

In this autobiographical article, I reflect on my Swedish background. Then I discuss endogenous DNA alterations and the base excision repair pathway and alternative repair strategies for some unusual DNA lesions. Endogenous DNA damage, such as loss of purine bases and cytosine deamination, is proposed as a major source of cancer-causing mutations.


Assuntos
DNA Glicosilases , Reparo do DNA , Dano ao DNA , DNA/genética , DNA/metabolismo , DNA Glicosilases/metabolismo
6.
Annu Rev Immunol ; 34: 1-30, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27168238

RESUMO

I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.


Assuntos
Antígeno CD47/metabolismo , Células-Tronco Hematopoéticas/imunologia , Imunoterapia/tendências , Leucemia Mieloide Aguda/imunologia , Células-Tronco Multipotentes/fisiologia , Linfócitos T/imunologia , Animais , Biomarcadores Tumorais/metabolismo , Antígeno CD47/genética , Humanos , Tolerância Imunológica , Leucemia Mieloide Aguda/terapia , Terapia de Alvo Molecular , Mutação/genética , Medicina Regenerativa , Imunologia de Transplantes
7.
Annu Rev Biochem ; 90: 57-76, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153218

RESUMO

I endeavor to share how various choices-some deliberate, some unconscious-and the unmistakable influence of many others shaped my scientific pursuits. I am fascinated by how two long-term, major streams of my research, DNA replication and purine biosynthesis, have merged with unexpected interconnections. If I have imparted to many of the talented individuals who have passed through my lab a degree of my passion for uncloaking the mysteries hidden in scientific research and an understanding of the honesty and rigor it demands and its impact on the world community, then my mentorship has been successful.


Assuntos
Bioquímica/história , Replicação do DNA , Enzimas , Purinas/biossíntese , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anticorpos Catalíticos/química , Anticorpos Catalíticos/metabolismo , Enzimas/química , Enzimas/metabolismo , História do Século XX , História do Século XXI , Humanos , Masculino , Estados Unidos
8.
Annu Rev Biochem ; 90: 1-29, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472005

RESUMO

Bacterial cytoplasmic membrane vesicles provide a unique experimental system for studying active transport. Vesicles are prepared by lysis of osmotically sensitized cells (i.e., protoplasts or spheroplasts) and comprise osmotically intact, unit-membrane-bound sacs that are approximately 0.5-1.0 µm in diameter and devoid of internal structure. Their metabolic activities are restricted to those provided by the enzymes of the membrane itself, and each vesicle is functional. The energy source for accumulation of a particular substrate can be determined by studying which compounds or experimental conditions drive solute accumulation, and metabolic conversion of the transported substrate or the energy source is minimal. These properties of the vesicle system constitute a considerable advantage over intact cells, as the system provides clear definition of the reactions involved in the transport process. This discussion is not intended as a general review but is concerned with respiration-dependent active transport in membrane vesicles from Escherichia coli. Emphasis is placed on experimental observations demonstrating that respiratory energy is converted primarily into work in the form of a solute concentration gradient that is driven by a proton electrochemical gradient, as postulated by the chemiosmotic theory of Peter Mitchell.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Escherichia coli/metabolismo , Biologia Molecular/história , Transporte Biológico , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , História do Século XX , História do Século XXI , Humanos , Ácido Láctico/metabolismo , Masculino , Estados Unidos
9.
Annu Rev Biochem ; 90: 31-55, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153217

RESUMO

My graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Bioquímica/história , Frutosedifosfatos/metabolismo , Fosfofrutoquinase-2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Gluconeogênese/fisiologia , Glucose/metabolismo , Glicólise , História do Século XX , História do Século XXI , Humanos , Masculino , Camundongos , Fosfofrutoquinase-2/química , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Fosforilação , Estados Unidos
10.
Annu Rev Biochem ; 89: 21-43, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569520

RESUMO

My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).


Assuntos
Calnexina/genética , Calreticulina/genética , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/genética , Picornaviridae/genética , Proteínas Virais/genética , Virologia/história , Animais , Calnexina/química , Calnexina/metabolismo , Calreticulina/química , Calreticulina/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Endossomos/metabolismo , Endossomos/virologia , Regulação da Expressão Gênica , História do Século XX , História do Século XXI , Humanos , Vírus da Influenza A/metabolismo , Picornaviridae/metabolismo , Dobramento de Proteína , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Internalização do Vírus
11.
Annu Rev Biochem ; 88: 1-24, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31220975

RESUMO

This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.


Assuntos
Coenzimas/química , Enzimas/química , Mulheres Trabalhadoras/história , Biocatálise , Escolha da Profissão , Coenzimas/metabolismo , Ensaios Enzimáticos , Enzimas/metabolismo , Feminino , História do Século XX , História do Século XXI , Humanos , Cinética , Teoria Quântica
12.
Annu Rev Biochem ; 87: 1-21, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925256

RESUMO

My initial research experience involved studying how bacteria synthesize nucleotide sugars, the donors for the formation of cell wall polysaccharides. During this time, I became aware that mammalian cells also have a surface coat of sugars and was intrigued as to whether these sugars might be arranged in specific sequences that function as information molecules in biologic processes. Thus began a long journey that has taken me from glycan structural analysis and determination of plant lectin-binding preferences to the biosynthesis of Asn-linked oligosaccharides and the mannose 6-phosphate (Man-6-P) lysosomal enzyme targeting pathway. The Man-6-P system represents an early example of a glycan serving as an information molecule in a fundamental cellular function. The remarkable advances in the field of glycobiology since I entered have uncovered scores of additional examples of oligosaccharide-lectin interactions mediating critical biologic processes. It has been a rewarding experience to participate in the efforts that have established a central role for glycans in biology.


Assuntos
Glicômica/história , Proteínas Adaptadoras de Transporte Vesicular/história , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , História do Século XX , História do Século XXI , Humanos , Manosefosfatos/história , Manosefosfatos/metabolismo , Redes e Vias Metabólicas , Diester Fosfórico Hidrolases/história , Diester Fosfórico Hidrolases/metabolismo , Receptor IGF Tipo 2/história , Receptor IGF Tipo 2/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/história , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Estados Unidos
13.
Annu Rev Cell Dev Biol ; 35: 1-28, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31394047

RESUMO

This is the story of someone who has been fortunate to work in a field of research where essentially nothing was known at the outset but that blossomed with the discovery of profound insights about two basic biological processes: cell motility and cytokinesis. The field started with no molecules, just a few people, and primitive methods. Over time, technological advances in biophysics, biochemistry, and microscopy allowed the combined efforts of scientists in hundreds of laboratories to explain mysterious processes with molecular mechanisms that can be embodied in mathematical equations and simulated by computers. The success of this field is a tribute to the power of the reductionist strategy for understanding biology.


Assuntos
Biologia Celular/história , Movimento Celular , Citocinese , História do Século XX , História do Século XXI , Proteínas dos Microfilamentos/metabolismo , Estados Unidos
14.
Annu Rev Biochem ; 86: 1-19, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28125288

RESUMO

After an undergraduate degree in biology at Harvard, I started graduate school at The Rockefeller Institute for Medical Research in New York City in July 1965. I was attracted to the chemical side of biochemistry and joined Fritz Lipmann's large, hierarchical laboratory to study enzyme mechanisms. That work led to postdoctoral research with Robert Abeles at Brandeis, then a center of what, 30 years later, would be called chemical biology. I spent 15 years on the Massachusetts Institute of Technology faculty, in both the Chemistry and Biology Departments, and then 26 years on the Harvard Medical School Faculty. My research interests have been at the intersection of chemistry, biology, and medicine. One unanticipated major focus has been investigating the chemical logic and enzymatic machinery of natural product biosynthesis, including antibiotics and antitumor agents. In this postgenomic era it is now recognized that there may be from 105 to 106 biosynthetic gene clusters as yet uncharacterized for potential new therapeutic agents.


Assuntos
Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Bioquímica/história , Produtos Biológicos/metabolismo , Pesquisa Biomédica/história , Indústria Farmacêutica/história , Antibacterianos/química , Antineoplásicos/química , Bioquímica/tendências , Produtos Biológicos/química , Pesquisa Biomédica/tendências , Indústria Farmacêutica/tendências , Regulação da Expressão Gênica , História do Século XX , História do Século XXI , Humanos , Ligases/genética , Ligases/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Resistência a Vancomicina/genética , Recursos Humanos
15.
Annu Rev Cell Dev Biol ; 33: 1-22, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28992437

RESUMO

During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.


Assuntos
Cromossomos/metabolismo , Enzimas/metabolismo , Microtúbulos/metabolismo , Mitose , Proteínas Motores Moleculares/metabolismo , Movimento (Física) , Animais , Cromossomos/ultraestrutura , Humanos , Microtúbulos/ultraestrutura
16.
Annu Rev Biochem ; 84: 1-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26034887

RESUMO

I spent my childhood and adolescence in North and South Carolina, attended Duke University, and then entered Duke Medical School. One year in the laboratory of George Schwert in the biochemistry department kindled my interest in biochemistry. After one year of residency on the medical service of Duke Hospital, chaired by Eugene Stead, I joined the group of Arthur Kornberg at Stanford Medical School as a postdoctoral fellow. Two years later I accepted a faculty position at Harvard Medical School, where I remain today. During these 50 years, together with an outstanding group of students, postdoctoral fellows, and collaborators, I have pursued studies on DNA replication. I have experienced the excitement of discovering a number of important enzymes in DNA replication that, in turn, triggered an interest in the dynamics of a replisome. My associations with industry have been stimulating and fostered new friendships. I could not have chosen a better career.


Assuntos
Bioquímica/história , Bacteriófago T7/enzimologia , Bacteriófago T7/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/história , História do Século XX , História do Século XXI , Aposentadoria , Faculdades de Medicina/história , Estados Unidos
17.
Annu Rev Genet ; 56: 1-15, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449355

RESUMO

Over more than fifty years, I have studied how the logic that controls and integrates cell function is built into the dynamic architecture of living cells. I worked with a succession of exceptionally talented students and postdocs, and we discovered that the bacterial cell is controlled by an integrated genetic circuit in which transcriptional and translational controls are interwoven with the three-dimensional deployment of key regulatory and morphological proteins. Caulobacter's interconnected genetic regulatory network includes logic that regulates sets of genes expressed at specific times in the cell cycle and mechanisms that synchronize the advancement of the core cyclical circuit with chromosome replication and cytokinesis. Here, I have traced my journey from New York City art student to Stanford developmental biologist.


Assuntos
Replicação do DNA , Redes Reguladoras de Genes , Humanos , Redes Reguladoras de Genes/genética , Ciclo Celular/genética , Lógica
18.
Annu Rev Cell Dev Biol ; 32: 1-46, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501451

RESUMO

In large-scale mutagenesis screens performed in 1979-1980 at the EMBL in Heidelberg, we isolated mutations affecting the pattern or structure of the larval cuticle in Drosophila. The 600 mutants we characterized could be assigned to 120 genes and represent the majority of such genes in the genome. These mutants subsequently provided a rich resource for understanding many fundamental developmental processes, such as the transcriptional hierarchies controlling segmentation, the establishment of cell states by signaling pathways, and the differentiation of epithelial cells. Most of the Heidelberg genes are now molecularly known, and many of them are conserved in other animals, including humans. Although the screens were initially driven entirely by curiosity, the mutants now serve as models for many human diseases. In this review, we describe the rationale of the screening procedures and provide a classification of the genes on the basis of their initial phenotypes and the subsequent molecular analyses.


Assuntos
Drosophila/genética , Testes Genéticos , Mutação/genética , Animais , Genes de Insetos , Mutagênese/genética , Transdução de Sinais/genética
19.
Annu Rev Biochem ; 83: 1-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24437663

RESUMO

My scientific journeys began at Oxford nearly 50 years ago. My paths have taken me from magnetic resonance through enzyme systems to antibodies, which led directly to glycobiology. Oxford University's first industrial grant helped the development of the technology for isolating and sequencing oligosaccharides from glycoproteins. This technology was disseminated through a spin-off company, Oxford GlycoSystems, and by the establishment of the Glycobiology Institute. The technology gave rise to the concept of glycoforms, which allow diversification of a protein's properties. Iminosugars, which are glucosidase inhibitors, can interfere with the initial steps of glycan processing on proteins and inhibit three-dimensional folding of glycoproteins. Glucosidase targets for therapy include viral envelope glycoproteins. Clinical trials of an iminosugar as an antiviral for dengue virus are under way. Another iminosugar activity, inhibition of glycolipid synthesis, resulted in a drug for Gaucher disease, which was approved worldwide in 2002. The success of the company and the institute allowed me to undertake several initiatives, in the United Kingdom and abroad, that might help the paths of future generations of scientists.


Assuntos
Glicômica/história , Alergia e Imunologia/história , Animais , Antígenos , Pesquisa Biomédica/história , Desenho de Fármacos , Inglaterra , Glucosidases/química , História do Século XX , História do Século XXI , Humanos , Israel
20.
Annu Rev Cell Dev Biol ; 31: 1-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393774

RESUMO

I am a developmental biologist, but I started off as a civil engineer. I did some research on soil mechanics but decided to change to biology. A friend changed my life when he told me about the mechanics of cell division, on which I did my PhD at Kings College. I then worked on the morphogenesis of the sea urchin embryo and became interested in how embryos are patterned, and I proposed positional information as a basic mechanism. I was a professor at the Middlesex Hospital Medical School, where we concentrated on how the chick limb developed.


Assuntos
Morfogênese/fisiologia , Animais , Galinhas/crescimento & desenvolvimento , Biologia do Desenvolvimento/métodos , Ouriços-do-Mar/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA