Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 95-109.e26, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181745

RESUMO

DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.


Assuntos
DNA Mitocondrial , Efetores Semelhantes a Ativadores de Transcrição , Animais , Humanos , Camundongos , Adenina , Citosina , DNA Mitocondrial/genética , Edição de Genes , RNA , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Engenharia de Proteínas
2.
Cell ; 184(4): 1081-1097.e19, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606978

RESUMO

Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.


Assuntos
Dano ao DNA , Edição de Genes , Testes Genéticos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Camptotecina/farmacologia , Linhagem Celular , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Humanos , Mutação/genética , Fenótipo , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , Inibidores da Topoisomerase/farmacologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Mol Cell ; 84(13): 2553-2572.e19, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917794

RESUMO

CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.


Assuntos
Éxons , Humanos , Éxons/genética , Sistemas CRISPR-Cas , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Aptidão Genética , Células HEK293 , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Sítios de Splice de RNA , Mutação , Regulação da Expressão Gênica , Processamento Alternativo
4.
Mol Cell ; 84(7): 1257-1270.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377993

RESUMO

Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.


Assuntos
Ácidos Alcanossulfônicos , Edição de Genes , Uracila-DNA Glicosidase , Animais , Camundongos , Mutação , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
5.
Mol Cell ; 83(13): 2167-2187, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37390819

RESUMO

A fundamental challenge in biology is understanding the molecular details of protein function. How mutations alter protein activity, regulation, and response to drugs is of critical importance to human health. Recent years have seen the emergence of pooled base editor screens for in situ mutational scanning: the interrogation of protein sequence-function relationships by directly perturbing endogenous proteins in live cells. These studies have revealed the effects of disease-associated mutations, discovered novel drug resistance mechanisms, and generated biochemical insights into protein function. Here, we discuss how this "base editor scanning" approach has been applied to diverse biological questions, compare it with alternative techniques, and describe the emerging challenges that must be addressed to maximize its utility. Given its broad applicability toward profiling mutations across the proteome, base editor scanning promises to revolutionize the investigation of proteins in their native contexts.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Mutação , Proteoma/genética , Sequência de Aminoácidos
6.
Mol Cell ; 83(1): 139-155.e9, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36521489

RESUMO

Nonsense mutations, accounting for >20% of disease-associated mutations, lead to premature translation termination. Replacing uridine with pseudouridine in stop codons suppresses translation termination, which could be harnessed to mediate readthrough of premature termination codons (PTCs). Here, we present RESTART, a programmable RNA base editor, to revert PTC-induced translation termination in mammalian cells. RESTART utilizes an engineered guide snoRNA (gsnoRNA) and the endogenous H/ACA box snoRNP machinery to achieve precise pseudouridylation. We also identified and optimized gsnoRNA scaffolds to increase the editing efficiency. Unexpectedly, we found that a minor isoform of pseudouridine synthase DKC1, lacking a C-terminal nuclear localization signal, greatly improved the PTC-readthrough efficiency. Although RESTART induced restricted off-target pseudouridylation, they did not change the coding information nor the expression level of off-targets. Finally, RESTART enables robust pseudouridylation in primary cells and achieves functional PTC readthrough in disease-relevant contexts. Collectively, RESTART is a promising RNA-editing tool for research and therapeutics.


Assuntos
Códon sem Sentido , RNA , Animais , Códon sem Sentido/genética , RNA/metabolismo , Códon de Terminação/genética , Mutação , Biossíntese de Proteínas , Mamíferos/metabolismo
7.
Annu Rev Genet ; 55: 453-477, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34530641

RESUMO

CRISPR-based genome editing holds promise for genome engineering and other applications in diverse organisms. Defining and improving the genome-wide and transcriptome-wide specificities of these editing tools are essential for realizing their full potential in basic research and biomedical therapeutics. This review provides an overview of CRISPR-based DNA- and RNA-editing technologies, methods to quantify their specificities, and key solutions to reduce off-target effects for research and improve therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , DNA/genética , Genoma/genética , Transcriptoma
8.
Trends Biochem Sci ; 49(7): 622-632, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614818

RESUMO

Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) by introducing base substitutions into antibody genes, a process enabling antibody affinity maturation in immune response. How a mutator is tamed to precisely and safely generate programmed DNA lesions in a physiological process remains unsettled, as its dysregulation drives lymphomagenesis. Recent research has revealed several hidden features of AID-initiated mutagenesis: preferential activity on flexible DNA substrates, restrained activity within chromatin loop domains, unique DNA repair factors to differentially decode AID-caused lesions, and diverse consequences of aberrant deamination. Here, we depict the multifaceted regulation of AID activity with a focus on emerging concepts/factors and discuss their implications for the design of base editors (BEs) that install somatic mutations to correct deleterious genomic variants.


Assuntos
Citidina Desaminase , Hipermutação Somática de Imunoglobulina , Citidina Desaminase/metabolismo , Citidina Desaminase/genética , Humanos , Animais , Mutação , Reparo do DNA
9.
Trends Genet ; 38(11): 1147-1169, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35853769

RESUMO

Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.


Assuntos
Sistemas CRISPR-Cas , Nucleosídeo Desaminases , Sistemas CRISPR-Cas/genética , DNA/genética , Quebras de DNA de Cadeia Dupla , Edição de Genes/métodos , Nucleosídeo Desaminases/genética , Nucleosídeo Desaminases/metabolismo , Nucleotídeos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo
10.
Cell Mol Life Sci ; 81(1): 257, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874784

RESUMO

Adenine base editors (ABEs), consisting of CRISPR Cas nickase and deaminase, can chemically convert the A:T base pair to G:C. ABE8e, an evolved variant of the base editor ABE7.10, contains eight directed evolution mutations in its deaminase TadA8e that significantly increase its base editing activity. However, the functional implications of these mutations remain unclear. Here, we combined molecular dynamics (MD) simulations and experimental measurements to investigate the role of the directed-evolution mutations in the base editing catalysis. MD simulations showed that the DNA-binding affinity of TadA8e is higher than that of the original deaminase TadA7.10 in ABE7.10 and is mainly driven by electrostatic interactions. The directed-evolution mutations increase the positive charge density in the DNA-binding region, thereby enhancing the electrostatic attraction of TadA8e to DNA. We identified R111, N119 and N167 as the key mutations for the enhanced DNA binding and confirmed them by microscale thermophoresis (MST) and in vivo reversion mutation experiments. Unexpectedly, we also found that the directed mutations improved the thermal stability of TadA8e by ~ 12 °C (Tm, melting temperature) and that of ABE8e by ~ 9 °C, respectively. Our results demonstrate that the directed-evolution mutations improve the substrate-binding ability and protein stability of ABE8e, thus providing a rational basis for further editing optimisation of the system.


Assuntos
DNA , Evolução Molecular Direcionada , Edição de Genes , Simulação de Dinâmica Molecular , Mutação , DNA/metabolismo , DNA/genética , DNA/química , Edição de Genes/métodos , Adenina/metabolismo , Adenina/química , Estabilidade Proteica , Ligação Proteica , Eletricidade Estática , Sistemas CRISPR-Cas/genética
11.
J Cell Mol Med ; 28(4): e18145, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332517

RESUMO

Base editors are emerging as powerful tools to correct single-nucleotide variants and treat genetic diseases. In particular, the adenine base editors (ABEs) exhibit robust and accurate adenine-to-guanidine editing capacity and have entered the clinical stage for cardiovascular therapy. Despite the tremendous progress using ABEs to treat heart diseases, a standard technical route toward successful ABE-based therapy remains to be fully established. In this study, we harnessed adeno-associated virus (AAV) and a mouse model carrying the cardiomyopathy-causing Lmna c.1621C > T mutation to demonstrate key steps and concerns in designing a cardiac ABE experiment in vivo. We found DeepABE as a reliable deep-learning-based model to predict ABE editing outcomes in the heart. Screening of sgRNAs for a Cas9 mutant with relieved protospacer adjacent motif (PAM) allowed the reduction of bystander editing. The ABE editing efficiency can be significantly enhanced by modifying the TadA and Cas9 variants, which are core components of ABEs. The ABE systems can be delivered into the heart via either dual AAV or all-in-one AAV vectors. Together, this study showcased crucial technical considerations in designing an ABE system for the heart and pointed out major challenges in further improvement of this new technology for gene therapy.


Assuntos
Adenina , Edição de Genes , Animais , Camundongos , Terapia Genética , Mutação/genética , RNA Guia de Sistemas CRISPR-Cas
12.
Plant J ; 113(3): 610-625, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565011

RESUMO

Base editing enables precise gene editing without requiring donor DNA or double-stranded breaks. To facilitate base editing tools, a uracil DNA glycosylase inhibitor (UGI) was fused to cytidine deaminase-Cas nickase to inhibit uracil DNA glycosylase (UDG). Herein, we revealed that the bacteriophage PBS2-derived UGI of the cytosine base editor (CBE) could not inhibit archaic Type IV UDG in oligoploid cyanobacteria. To overcome the limitation of the CBE, dCas12a-assisted gene repression of the udg allowed base editing at the desired targets with up to 100% mutation frequencies, and yielded correct phenotypes of desired mutants in cyanobacteria. Compared with the original CBE (BE3), base editing was analyzed within a broader C4-C16 window with a strong TC-motif preference. Using multiplexed CyanoCBE, while udg was repressed, simultaneous base editing at two different sites was achieved with lower mutation frequencies than single CBE. Our discovery of a Type IV UDG that is not inhibited by the UGI of the CBE in cyanobacteria and the development of dCas12a-mediated base editing should facilitate the application of base editing not only in cyanobacteria, but also in archaea and green algae that possess Type IV UDGs. We revealed the bacteriophage-derived UGI of the base editor did not repress Type IV UDG in cyanobacteria. To overcome the limitation, orthogonal dCas12a interference was successfully applied to repress the UDG gene expression in cyanobacteria during base editing occurred, yielding a premature translational termination at desired targets. This study will open a new opportunity to perform base editing with Type IV UDGs in archaea and green algae.


Assuntos
Cianobactérias , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Edição de Genes , DNA , Reparo do DNA , Cianobactérias/genética , Cianobactérias/metabolismo , Citosina
13.
Plant Biotechnol J ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031643

RESUMO

Dual base editors (DBEs) enable simultaneous A-to-G and C-to-T conversions, expanding mutation types. However, low editing efficiency and narrow targeting range limit the widespread use of DBEs in plants. The single-strand DNA binding domain of RAD51 DBD can be fused to base editors to improve their editing efficiency. However, it remains unclear how the DBD affects dual base editing performance in plants. In this study, we generated a series of novel plant DBE-SpGn tools consisting of nine constructs using the high-activity cytidine deaminase evoFERNY, adenosine deaminase TadA8e and DBD in various fusion modes with the PAM-flexible Streptococcus pyogenes Cas9 (SpCas9) nickase variant SpGn (with NG-PAM). By analysing their editing performance on 48 targets in rice, we found that DBE-SpGn constructs containing a single DBD and deaminases located at the N-terminus of SpGn exhibited the highest editing efficiencies. Meanwhile, constructs with deaminases located at the C-terminus and/or multiple DBDs failed to function normally and exhibited inhibited editing activity. We identified three particularly high-efficiency dual base editors (C-A-SpGn, C-A-D-SpGn and A-C-D-SpGn), named PhieDBEs (Plant high-efficiency dual base editors), capable of producing efficient dual base conversions within a narrow editing window (M5 ~ M9, M = A/C). The editing efficiency of C-A-D-SpGn was as high as 95.2% at certain target sites, with frequencies of simultaneous C-to-T and A-to-G conversions as high as 81.0%. In summary, PhieDBEs (especially C-A-D-SpGn) can produce diverse mutants and may prove useful in a wide variety of applications, including plant functional genomics, precise mutagenesis, directed evolution and crop genetic improvement, among others.

14.
Plant Biotechnol J ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713743

RESUMO

CRISPR-Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5'-NNTA-3' PAM, targeting more abundant palindromic TA sites in plant genomes than the 5'-NGG-3' PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5'-NNTA-3' PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR-Cas9 system. FrCas9 induces high-efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2-FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2-FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9-derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C-to-T and A-to-G base edits in rice plants. Whole-genome sequencing-based off-target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2-FrCas9 in plants, however, causes detectable guide RNA-independent off-target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR-FrCas9 system for targeted mutagenesis, large deletions, C-to-T base editing, and A-to-G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR-FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.

15.
BMC Microbiol ; 24(1): 226, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937695

RESUMO

BACKGROUND: Bacterial antimicrobial resistance poses a severe threat to humanity, necessitating the urgent development of new antibiotics. Recent advances in genome sequencing offer new avenues for antibiotic discovery. Paenibacillus genomes encompass a considerable array of antibiotic biosynthetic gene clusters (BGCs), rendering these species as good candidates for genome-driven novel antibiotic exploration. Nevertheless, BGCs within Paenibacillus genomes have not been extensively studied. RESULTS: We conducted an analysis of 554 Paenibacillus genome sequences, sourced from the National Center for Biotechnology Information database, with a focused investigation involving 89 of these genomes via antiSMASH. Our analysis unearthed a total of 848 BGCs, of which 716 (84.4%) were classified as unknown. From the initial pool of 554 Paenibacillus strains, we selected 26 available in culture collections for an in-depth evaluation. Genomic scrutiny of these selected strains unveiled 255 BGCs, encoding non-ribosomal peptide synthetases, polyketide synthases, and bacteriocins, with 221 (86.7%) classified as unknown. Among these strains, 20 exhibited antimicrobial activity against the gram-positive bacterium Micrococcus luteus, yet only six strains displayed activity against the gram-negative bacterium Escherichia coli. We proceeded to focus on Paenibacillus brasilensis, which featured five new BGCs for further investigation. To facilitate detailed characterization, we constructed a mutant in which a single BGC encoding a novel antibiotic was activated while simultaneously inactivating multiple BGCs using a cytosine base editor (CBE). The novel antibiotic was found to be localized to the cell wall and demonstrated activity against both gram-positive bacteria and fungi. The chemical structure of the new antibiotic was elucidated on the basis of ESIMS, 1D and 2D NMR spectroscopic data. The novel compound, with a molecular weight of 926, was named bracidin. CONCLUSIONS: This study outcome highlights the potential of Paenibacillus species as valuable sources for novel antibiotics. In addition, CBE-mediated dereplication of antibiotics proved to be a rapid and efficient method for characterizing novel antibiotics from Paenibacillus species, suggesting that it will greatly accelerate the genome-based development of new antibiotics.


Assuntos
Antibacterianos , Genoma Bacteriano , Família Multigênica , Paenibacillus , Paenibacillus/genética , Paenibacillus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/biossíntese , Vias Biossintéticas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Descoberta de Drogas/métodos
16.
Biotechnol Bioeng ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923503

RESUMO

Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Gene editing technology repairs the conversion of the 6th base T to C in exon 7 of the paralogous SMN2 gene, compensating for the SMN protein expression and promoting the survival and function of motor neurons. However, low editing efficiency and unintended off-target effects limit the application of this technology. Here, we optimized a TaC9-adenine base editor (ABE) system by combining Cas9 nickase with the transcription activator-like effector (TALE)-adenosine deaminase fusion protein to effectively and precisely edit SMN2 without detectable Cas9 dependent off-target effects in human cell lines. We also generated human SMA-induced pluripotent stem cells (SMA-iPSCs) through the mutation of the splice acceptor or deletion of the exon 7 of SMN1. TaC9-R10 induced 45% SMN2 T6 > C conversion in the SMA-iPSCs. The SMN2 T6 > C splice-corrected SMA-iPSCs were directionally differentiated into motor neurons, exhibiting SMN protein recovery and antiapoptosis ability. Therefore, the TaC9-ABE system with dual guides from the combination of Cas9 with TALE could be a potential therapeutic strategy for SMA with high efficacy and safety.

17.
Mol Ther ; 31(8): 2439-2453, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312453

RESUMO

Usher syndrome type 1F (USH1F), characterized by congenital lack of hearing and balance and progressive loss of vision, is caused by mutations in the PCDH15 gene. In the Ashkenazi population, a recessive truncation mutation accounts for a large proportion of USH1F cases. The truncation is caused by a single C→T mutation, which converts an arginine codon to a stop (R245X). To test the potential for base editors to revert this mutation, we developed a humanized Pcdh15R245X mouse model for USH1F. Mice homozygous for the R245X mutation were deaf and exhibited profound balance deficits, while heterozygous mice were unaffected. Here we show that an adenine base editor (ABE) is capable of reversing the R245X mutation to restore the PCDH15 sequence and function. We packaged a split-intein ABE into dual adeno-associated virus (AAV) vectors and delivered them into cochleas of neonatal USH1F mice. Hearing was not restored in a Pcdh15 constitutive null mouse despite base editing, perhaps because of early disorganization of cochlear hair cells. However, injection of vectors encoding the split ABE into a late-deletion conditional Pcdh15 knockout rescued hearing. This study demonstrates the ability of an ABE to correct the PCDH15 R245X mutation in the cochlea and restore hearing.


Assuntos
Síndromes de Usher , Camundongos , Animais , Síndromes de Usher/genética , Síndromes de Usher/terapia , Edição de Genes , Mutação , Audição/genética , Caderinas/genética
18.
BMC Biol ; 21(1): 155, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434184

RESUMO

BACKGROUND: Adenine base editors (ABEs) are promising therapeutic gene editing tools that can efficiently convert targeted A•T to G•C base pairs in the genome. However, the large size of commonly used ABEs based on SpCas9 hinders its delivery in vivo using certain vectors such as adeno-associated virus (AAV) during preclinical applications. Despite a number of approaches having previously been attempted to overcome that challenge, including split Cas9-derived and numerous domain-deleted versions of editors, whether base editor (BE) and prime editor (PE) systems can also allow deletion of those domains remains to be proven. In this study, we present a new small ABE (sABE) with significantly reduced size. RESULTS: We discovered that ABE8e can tolerate large single deletions in the REC2 (Δ174-296) and HNH (Δ786-855) domains of SpCas9, and these deletions can be stacked together to create a new sABE. The sABE showed higher precision than the original ABE8e, with proximally shifted protospacer adjacent motif (PAM) editing windows (A3- A15), and comparable editing efficiencies to 8e-SaCas9-KKH. The sABE system efficiently generated A-G mutations at disease-relevant loci (T1214C in GAA and A494G in MFN2) in HEK293T cells and several canonical Pcsk9 splice sites in N2a cells. Moreover, the sABE enabled in vivo delivery in a single adeno-associated virus (AAV) vector with slight efficiency. Furthermore, we also successfully edited the genome of mouse embryos by microinjecting mRNA and sgRNA of sABE system into zygotes. CONCLUSIONS: We have developed a substantially smaller sABE system that expands the targeting scope and offers higher precision of genome editing. Our findings suggest that the sABE system holds great therapeutic potential in preclinical applications.


Assuntos
Edição de Genes , Pró-Proteína Convertase 9 , RNA Guia de Sistemas CRISPR-Cas , Animais , Humanos , Camundongos , Adenina , Células HEK293
19.
J Biol Chem ; 298(7): 102103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35671823

RESUMO

Base editing has emerged as a revolutionary technology for single nucleotide modifications. The cytosine and adenine base editors (CBEs and ABEs) have demonstrated great potential in clinical and fundamental research. However, screening and isolating target-edited cells remains challenging. In the current study, we developed a universal Adenine and Cytosine Base-Editing Antibiotic Resistance Screening Reporter (ACBE-ARSR) for improving the editing efficiency. To develop the reporter, the CBE-ARSR was first constructed and shown to be capable of enriching cells for those that had undergone CBE editing activity. Then, the ACBE-ARSR was constructed and was further validated in the editing assays by four different CBEs and two versions of ABE at several different genomic loci. Our results demonstrated that ACBE-ARSR, compared to the reporter of transfection (RoT) screening strategy, improved the editing efficiency of CBE and ABE by 4.6- and 1.9-fold on average, respectively. We found the highest CBE and ABE editing efficiencies as enriched by ACBE-ARSR reached 90% and 88.7%. Moreover, we also demonstrated ACBE-ARSR could be employed for enhancing simultaneous multiplexed genome editing. In conclusion, both CBE and ABE activity can be improved significantly using our novel ACBE-ARSR screening strategy, which we believe will facilitate the development of base editors and their application in biomedical and fundamental research studies.


Assuntos
Adenina , Citosina , Resistência Microbiana a Medicamentos , Edição de Genes , Testes de Sensibilidade Microbiana , Adenina/química , Citosina/química , Edição de Genes/métodos , Testes de Sensibilidade Microbiana/métodos
20.
Trends Genet ; 36(12): 899-901, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32951947

RESUMO

Base editors have drawn considerable academic and industrial attention in recent years because of their ability to alter single DNA bases with precision. However, the existing cytosine and adenine base editors can only install transition mutations. Three recent studies (Kurt et al.,Zhao et al., and Chen et al.) expand the base editing toolbox by developing cytosine transversion base editors.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Adenina , Citosina , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA