Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2307129120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844247

RESUMO

The ability of echolocating toothed whales to detect and classify prey at long ranges enables efficient searching and stalking of sparse prey in these time-limited dives. However, nonecholocating deep-diving seals such as elephant seals appear to have much less sensory advantage over their prey. Both elephant seals and their prey rely on visual and hydrodynamic cues that may be detectable only at short ranges in the deep ocean, leading us to hypothesize that elephant seals must adopt a less efficient reactive mode of hunting that requires high prey densities. To test that hypothesis, we deployed high-resolution sonar and movement tags on 25 females to record simultaneous predator and prey behavior during foraging interactions. We demonstrate that elephant seals have a sensory advantage over their prey that allows them to potentially detect prey 5 to 10 s before striking. The corresponding prey detection ranges of 7 to 17 m enable stealthy approaches and prey-specific capture tactics. In comparison, prey react at a median range of 0.7 m, close to the neck extension range of striking elephant seals. Estimated search swathes of 150 to 900 m2 explain how elephant seals can locate up to 2,000 prey while swimming more than 100 km per day. This efficient search capability allows elephant seals to subsist on prey densities that are consonant with the deep scattering layer resources estimated by hydroacoustic surveys but which are two orders of magnitude lower than the prey densities needed by a reactive hunter.


Assuntos
Comportamento Predatório , Focas Verdadeiras , Animais , Feminino , Comportamento Alimentar , Movimento , Natação , Cetáceos
2.
Proc Natl Acad Sci U S A ; 120(47): e2306357120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38150462

RESUMO

Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.


Assuntos
Ecossistema , Cadeia Alimentar , Comportamento Predatório , Animais , Oceano Atlântico , Biomassa
3.
Proc Natl Acad Sci U S A ; 119(41): e2212925119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36194636

RESUMO

Cyclones can cause mass mortality of seabirds, sometimes wrecking thousands of individuals. The few studies to track pelagic seabirds during cyclones show they tend to circumnavigate the strongest winds. We tracked adult shearwaters in the Sea of Japan over 11 y and found that the response to cyclones varied according to the wind speed and direction. In strong winds, birds that were sandwiched between the storm and mainland Japan flew away from land and toward the eye of the storm, flying within ≤30 km of the eye and tracking it for up to 8 h. This exposed shearwaters to some of the highest wind speeds near the eye wall (≤21 m s-1) but enabled them to avoid strong onshore winds in the storm's wake. Extreme winds may therefore become a threat when an inability to compensate for drift could lead to forced landings and collisions. Birds may need to know where land is in order to avoid it. This provides additional selective pressure for a map sense and could explain why juvenile shearwaters, which lack a map sense, instead navigating using a compass heading, are susceptible to being wrecked. We suggest that the ability to respond to storms is influenced by both flight and navigational capacities. This may become increasingly pertinent due to changes in extreme weather patterns.


Assuntos
Aves , Tempestades Ciclônicas , Voo Animal , Animais , Aves/fisiologia , Humanos , Japão , Vento
4.
Proc Natl Acad Sci U S A ; 119(25): e2119502119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696561

RESUMO

The darkness of the deep ocean limits the vision of diving predators, except when prey emit bioluminescence. It is hypothesized that deep-diving seals rely on highly developed whiskers to locate their prey. However, if and how seals use their whiskers while foraging in natural conditions remains unknown. We used animal-borne tags to show that free-ranging elephant seals use their whiskers for hydrodynamic prey sensing. Small, cheek-mounted video loggers documented seals actively protracting their whiskers in front of their mouths with rhythmic whisker movement, like terrestrial mammals exploring their environment. Seals focused their sensing effort at deep foraging depths, performing prolonged whisker protraction to detect, pursue, and capture prey. Feeding-event recorders with light sensors demonstrated that bioluminescence contributed to only about 20% of overall foraging success, confirming that whiskers play the primary role in sensing prey. Accordingly, visual prey detection complemented and enhanced prey capture. The whiskers' role highlights an evolutionary alternative to echolocation for adapting to the extreme dark of the deep ocean environment, revealing how sensory abilities shape foraging niche segregation in deep-diving mammals. Mammals typically have mobile facial whiskers, and our study reveals the significant function of whiskers in the natural foraging behavior of a marine predator. We demonstrate the importance of field-based sensory studies incorporating multimodality to better understand how multiple sensory systems are complementary in shaping the foraging success of predators.


Assuntos
Comportamento Alimentar , Comportamento Predatório , Focas Verdadeiras , Vibrissas , Animais , Hidrodinâmica , Focas Verdadeiras/fisiologia , Vibrissas/fisiologia
5.
Proc Biol Sci ; 291(2023): 20232115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808449

RESUMO

Sleep serves vital physiological functions, yet how sleep in wild animals is influenced by environmental conditions is poorly understood. Here we use high-resolution biologgers to investigate sleep in wild animals over ecologically relevant time scales and quantify variability between individuals under changing conditions. We developed a robust classification for accelerometer data and measured multiple dimensions of sleep in the wild boar (Sus scrofa) over an annual cycle. In support of the hypothesis that environmental conditions determine thermoregulatory challenges, which regulate sleep, we show that sleep quantity, efficiency and quality are reduced on warmer days, sleep is less fragmented in longer and more humid days, while greater snow cover and rainfall promote sleep quality. Importantly, this longest and most detailed analysis of sleep in wild animals to date reveals large inter- and intra-individual variation. Specifically, short-sleepers sleep up to 46% less than long-sleepers but do not compensate for their short sleep through greater plasticity or quality, suggesting they may pay higher costs of sleep deprivation. Given the major role of sleep in health, our results suggest that global warming and the associated increase in extreme climatic events are likely to negatively impact sleep, and consequently health, in wildlife, particularly in nocturnal animals.


Assuntos
Sono , Sus scrofa , Animais , Sus scrofa/fisiologia , Sono/fisiologia , Meio Ambiente , Masculino , Estações do Ano , Feminino
6.
Glob Chang Biol ; 30(1): e17063, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273536

RESUMO

Urbanization has significant impacts on wildlife and ecosystems and acts as an environmental filter excluding certain species from local ecological communities. Specifically, it may be challenging for some animals to find enough food in urban environments to achieve a positive energy balance. Because urban environments favor small-sized bats with low energy requirements, we hypothesized that common noctules (Nyctalus noctula) acquire food at a slower rate and rely less on conspecifics to find prey in urban than in rural environments due to a low food abundance and predictable distribution of insects in urban environments. To address this, we estimated prey sizes and measured prey capture rates, foraging efforts, and the presence of conspecifics during hunting of 22 common noctule bats equipped with sensor loggers in an urban and rural environment. Even though common noctule bats hunted similar-sized prey in both environments, urban bats captured prey at a lower rate (mean: 2.4 vs. 6.3 prey attacks/min), and a lower total amount of prey (mean: 179 vs. 377 prey attacks/foraging bout) than conspecifics from rural environments. Consequently, the energy expended to capture prey was higher for common noctules in urban than in rural environments. In line with our prediction, urban bats relied less on group hunting, likely because group hunting was unnecessary in an environment where the spatial distribution of prey insects is predictable, for example, in parks or around floodlights. While acknowledging the limitations of a small sample size and low number of spatial replicates, our study suggests that scarce food resources may make urban habitats unfavorable for large bat species with higher energy requirements compared to smaller bat species. In conclusion, a lower food intake may displace larger species from urban areas making habitats with high insect biomass production key for protecting large bat species in urban environments.


Assuntos
Quirópteros , Ecossistema , Animais , Animais Selvagens , Biomassa , Urbanização , Insetos , Comportamento Predatório
7.
Glob Chang Biol ; 30(9): e17490, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39254237

RESUMO

Understanding how the environment mediates an organism's ability to meet basic survival requirements is a fundamental goal of ecology. Vessel noise is a global threat to marine ecosystems and is increasing in intensity and spatiotemporal extent due to growth in shipping coupled with physical changes to ocean soundscapes from ocean warming and acidification. Odontocetes rely on biosonar to forage, yet determining the consequences of vessel noise on foraging has been limited by the challenges of observing underwater foraging outcomes and measuring noise levels received by individuals. To address these challenges, we leveraged a unique acoustic and movement dataset from 25 animal-borne biologging tags temporarily attached to individuals from two populations of fish-eating killer whales (Orcinus orca) in highly transited coastal waters to (1) test for the effects of vessel noise on foraging behaviors-searching (slow-click echolocation), pursuit (buzzes), and capture and (2) investigate the mechanism of interference. For every 1 dB increase in maximum noise level, there was a 4% increase in the odds of searching for prey by both sexes, a 58% decrease in the odds of pursuit by females and a 12.5% decrease in the odds of prey capture by both sexes. Moreover, all but one deep (≥75 m) foraging attempt with noise ≥110 dB re 1 µPa (15-45 kHz band; n = 6 dives by n = 4 whales) resulted in failed prey capture. These responses are consistent with an auditory masking mechanism. Our findings demonstrate the effects of vessel noise across multiple phases of odontocete foraging, underscoring the importance of managing anthropogenic inputs into soundscapes to achieve conservation objectives for acoustically sensitive species. While the timescales for recovering depleted prey species may span decades, these findings suggest that complementary actions to reduce ocean noise in the short term offer a critical pathway for recovering odontocete foraging opportunities.


Assuntos
Orca , Animais , Feminino , Orca/fisiologia , Masculino , Navios , Ruído/efeitos adversos , Comportamento Alimentar , Ecolocação/fisiologia , Ruído dos Transportes/efeitos adversos , Comportamento Predatório
8.
J Exp Biol ; 227(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38634142

RESUMO

The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.


Assuntos
Otárias , Comportamento Predatório , Focas Verdadeiras , Animais , Otárias/fisiologia , Feminino , Focas Verdadeiras/fisiologia , Regiões Antárticas , Acústica , Reação de Fuga/fisiologia
9.
J Anim Ecol ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072797

RESUMO

In migratory animals, the developmental period from inexperienced juveniles to breeding adults could be a key life stage in shaping population migration patterns. Nevertheless, the development of migration routines in early life remains underexplored. While age-related changes in migration routes and timing have been described in obligate migrants, most investigations into the ontogeny of partial migrants only focused on age-dependency of migration as a binary tactic (migrant or resident), and variations in routes and timing among individuals classified as 'migrants' is rarely considered. To fill this gap, we study the ontogeny of migration destination, route and timing in a partially migratory red kite (Milvus milvus) population. Using an extensive GPS-tracking dataset (292 fledglings and 38 adults, with 1-5 migrations tracked per individual), we studied how nine different migration characteristics changed with age and breeding status in migrant individuals, many of which become resident later in life. Individuals departed later from and arrived earlier at the breeding areas as they aged, resulting in a gradual prolongation of stay in the breeding area by 2 months from the first to the fifth migration. Individuals delayed southward migration in the year prior to territory acquirement, and they further delayed it after occupying a territory. Migration routes became more direct with age. Individuals were highly faithful to their wintering site. Migration distance shortened only slightly with age and was more similar among siblings than among unrelated individuals. The large gradual changes in northward and southward migrations suggest a high degree of plasticity in temporal characteristics during the developmental window. However, the high wintering site fidelity points towards large benefits of site familiarity, prompting spatial migratory plasticity to be expressed through a switch to residency. The contrasting patterns of trajectories of age-related changes between spatial and temporal migration characteristics might reflect different mechanisms underlying the expression of plasticity. Investigating such patterns among species along the entire spectrum of migration tactics would enable further understanding of the plastic responses exhibited by migratory species to rapid environmental changes.

10.
Conserv Biol ; 38(3): e14224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38111961

RESUMO

Seabirds interact with fishing vessels to consume fishing discards and baits, sometimes resulting in incidental capture (bycatch) and the death of the bird, which has clear conservation implications. To understand seabird-fishery interactions at large spatiotemporal scales, researchers are increasing their use of simultaneous seabird and fishing vessel tracking. However, vessel tracking data can contain gaps due to technical problems, illicit manipulation, or lack of adoption of tracking monitoring systems. These gaps might lead to underestimating the fishing effort and bycatch rates and jeopardize the effectiveness of marine conservation. We deployed bird-borne radar detector tags capable of recording radar signals from vessels. We placed tags on 88 shearwaters (Calonectris diomedea, Calonectris borealis, and Calonectris edwardsii) that forage in the northwestern Mediterranean Sea and the Canary Current Large Marine Ecosystem. We modeled vessel radar detections registered by the tags in relation to gridded automatic identification system (AIS) vessel tracking data to examine the spatiotemporal dynamics of seabird-vessel interactions and identify unreported fishing activity areas. Our models showed a moderate fit (area under the curve >0.7) to vessel tracking data, indicating a strong association of shearwaters to fishing vessels in major fishing grounds. Although in high-marine-traffic regions, radar detections were also driven by nonfishing vessels. The tags registered the presence of potential unregulated and unreported fishing vessels in West African waters, where merchant shipping is unusual but fishing activity is intense. Overall, bird-borne radar detectors showed areas and periods when the association of seabirds with legal and illegal fishing vessels was high. Bird-borne radar detectors could improve the focus of conservation efforts.


Uso de radares en aves para analizar las interacciones de las pardelas con las pesquerías legales e ilegales Resumen Las aves marinas interactúan con los barcos pesqueros para consumir los cebos y lo que descartan, lo que a veces resulta en la captura accesoria y la muerte del ave, por lo que esto tiene implicaciones claras para la conservación. Los investigadores cada vez usan más el rastreo simultáneo de las aves marinas y los barcos pesqueros para comprender las interacciones aves marinas ­ pesquerías a gran escala espaciotemporal. Sin embargo, los datos del rastreo de barcos pueden incluir vacíos por problemas técnicos, manipulación ilícita o porque no adoptan sistemas para monitorear el rastreo. Estos vacíos pueden llevar a subestimar el esfuerzo de pesca y las tasas de captura accesoria y a comprometer la efectividad de la conservación marina. Desplegamos marcas detectoras de radar encima de aves capaces de registrar las señales de radar de los barcos. Colocamos estas marcas en 88 pardelas (Calonectris diomedea, C. borealis, y C. edwardsii) que forrajean en el noroeste del Mar Mediterráneo y el Gran Ecosistema Marino de Canarias. Modelamos las detecciones del radar de los barcos registradas por las marcas en relación con los datos reticulados de rastreo de barcos del sistema de identificación automático (AIS) para analizar las dinámicas espaciotemporales de las interacciones aves marinas­barcos e identificar áreas con actividad pesquera no reportada. Nuestros modelos mostraron un ajuste moderado (área bajo la curva > 0.7) a los datos de rastreo de barcos, lo que indica una fuerte asociación entre las pardelas y los barcos en los principales sitios de pesca, aunque en las regiones con alto tránsito de barcos las detecciones por radar también fueron causadas por barcos no pesqueros. Las marcas registraron la presencia del potencial de barcos pesqueros sin regular y sin reportar en aguas del oeste de África, en donde los buques mercantes son poco comunes pero la actividad pesquera es intensa. En general, los detectores por radar en las aves mostraron áreas y periodos en donde la asociación entre las aves marinas y los barcos pesqueros legales e ilegales es alta. Estos detectores por radar podrían mejorar el enfoque de los esfuerzos de conservación.


Assuntos
Aves , Conservação dos Recursos Naturais , Pesqueiros , Radar , Animais , Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Mar Mediterrâneo , Navios , Espanha
11.
Environ Sci Technol ; 58(29): 12909-12920, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38991194

RESUMO

Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas. We tested this by combining movement tracking data and PFAS analysis (nine compounds) from the blood of prelaying black-legged kittiwakes (Rissa tridactyla) nesting in Arctic Norway (Svalbard). PFAS burden before egg laying varied with the latitude of the wintering area and was negatively associated with time upon return of individuals at the Arctic nesting site. Kittiwakes (n = 64) wintering farther south carried lighter burdens of shorter-chain perfluoroalkyl carboxylates (PFCAs, C9-C12) and heavier burdens of longer chain PFCAs (C13-C14) and perfluorooctanesulfonic acid compared to those wintering farther north. Thus, blood concentrations prior to egg laying still reflected the uptake during the previous wintering stage, suggesting that migratory seabirds can act as biovectors of PFAS to Arctic nesting sites.


Assuntos
Migração Animal , Charadriiformes , Fluorocarbonos , Estações do Ano , Animais , Regiões Árticas , Fluorocarbonos/sangue , Fluorocarbonos/metabolismo , Charadriiformes/metabolismo , Monitoramento Ambiental , Comportamento de Nidação , Noruega , Aves/metabolismo , Feminino
12.
J Therm Biol ; 124: 103943, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39151217

RESUMO

Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (MO2max and MO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (MO2max) and 1.6 (MO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.


Assuntos
Termotolerância , Animais , Temperatura Alta , Ecossistema , Consumo de Oxigênio , Áreas Alagadas , Temperatura Corporal
13.
J Fish Biol ; 105(2): 482-511, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852616

RESUMO

Levels of dissolved oxygen in open ocean and coastal waters are decreasing (ocean deoxygenation), with poorly understood effects on marine megafauna. All of the more than 1000 species of elasmobranchs (sharks, skates, and rays) are obligate water breathers, with a variety of life-history strategies and oxygen requirements. This review demonstrates that although many elasmobranchs typically avoid hypoxic water, they also appear capable of withstanding mild to moderate hypoxia with changes in activity, ventilatory responses, alterations to circulatory and hematological parameters, and morphological alterations to gill structures. However, such strategies may be insufficient to withstand severe, progressive, or prolonged hypoxia or anoxia where anaerobic metabolic pathways may be used for limited periods. As water temperatures increase with climate warming, ectothermic elasmobranchs will exhibit elevated metabolic rates and are likely to be less able to tolerate the effects of even mild hypoxia associated with deoxygenation. As a result, sustained hypoxic conditions in warmer coastal or surface-pelagic waters are likely to lead to shifts in elasmobranch distributions. Mass mortalities of elasmobranchs linked directly to deoxygenation have only rarely been observed but are likely underreported. One key concern is how reductions in habitat volume as a result of expanding hypoxia resulting from deoxygenation will influence interactions between elasmobranchs and industrial fisheries. Catch per unit of effort of threatened pelagic sharks by longline fisheries, for instance, has been shown to be higher above oxygen minimum zones compared to adjacent, normoxic regions, and attributed to vertical habitat compression of sharks overlapping with increased fishing effort. How a compound stressor such as marine heatwaves alters vulnerability to deoxygenation remains an open question. With over a third of elasmobranch species listed as endangered, a priority for conservation and management now lies in understanding and mitigating ocean deoxygenation effects in addition to population declines already occurring from overfishing.


Assuntos
Oxigênio , Tubarões , Animais , Oxigênio/metabolismo , Tubarões/fisiologia , Rajidae/fisiologia , Oceanos e Mares , Elasmobrânquios/fisiologia , Mudança Climática
14.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470141

RESUMO

Animals rely on movement to explore and exploit resources in their environment. While movement can provide energetic benefits, it also comes with energetic costs. This study examines how group phenotypic composition influences individual speed and energy expenditure during group travel in homing pigeons. We manipulated the composition of pigeon groups based on body mass and leadership rank. Our findings indicate that groups of 'leader' phenotypes show faster speeds and greater cohesion than 'follower' phenotype groups. Additionally, we show that groups of homogenous mass composition, whether all heavy or all light, were faster and expended less energy over the course of a whole flight than flocks composed of a mixture of heavy and light individuals. We highlight the importance of considering individual-level variation in social-level studies, and the interaction between individual and group-level traits in governing speed and the costs of travel.


Assuntos
Columbidae , Animais , Columbidae/anatomia & histologia , Columbidae/fisiologia , Distribuição Animal , Metabolismo Energético , Voo Animal , Comportamento de Retorno ao Território Vital
15.
J Exp Biol ; 226(14)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345474

RESUMO

Diving is central to the foraging strategies of many marine mammals and seabirds. Still, the effect of dive depth on foraging cost remains elusive because energy expenditure is difficult to measure at fine temporal scales in wild animals. We used depth and acceleration data from eight lactating California sea lions (Zalophus californianus) to model body density and investigate the effect of dive depth and tissue density on rates of energy expenditure. We calculated body density in 5 s intervals from the rate of gliding descent. We modeled body density across depth in each dive, revealing high tissue densities and diving lung volumes (DLVs). DLV increased with dive depth in four individuals. We used the buoyancy calculated from dive-specific body-density models and drag calculated from swim speed to estimate metabolic power and cost of transport in 5 s intervals during descents and ascents. Deeper dives required greater mean power for round-trip vertical transit, especially in individuals with higher tissue density. These trends likely follow from increased mean swim speed and buoyant hinderance that increasingly outweighs buoyant aid in deeper dives. This suggests that deep diving is either a 'high-cost, high-reward' strategy or an energetically expensive option to access prey when prey in shallow waters are limited, and that poor body condition may increase the energetic costs of deep diving. These results add to our mechanistic understanding of how foraging strategy and body condition affect energy expenditure in wild breath-hold divers.


Assuntos
Leões-Marinhos , Humanos , Animais , Feminino , Lactação , Suspensão da Respiração , Animais Selvagens , Natação , Cetáceos
16.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345501

RESUMO

Intermittent locomotion composed of periods of active flapping/stroking followed by inactive gliding has been observed with species that inhabit both aerial and marine environments. However, studies on the energetic benefits of a fluke-and-glide (FG) gait during horizontal locomotion are limited for dolphins. This work presents a physics-based model of FG gait and an analysis of the associated cost of transport for bottlenose dolphins (Tursiops truncatus). New gliding drag coefficients for the model were estimated using measured data from free-swimming bottlenose dolphins. The data-driven approach used kinematic measurement from 84 h of biologging tag data collected from three animals to estimate the coefficients. A set of 532 qualifying gliding events were automatically extracted for estimation of the gliding drag coefficient. Next, data from 783 FG bouts were parameterized and used with the model-based dynamic analysis to investigate the cost benefits of FG gait. Experimental results indicate that FG gait was preferred at speeds of ∼2.2-2.7 m s-1. Observed FG bouts had an average duty factor of 0.45 and a gliding duration of 5 s. The average associated metabolic cost of transport (COT) and mechanical cost of transport (MECOT) of FG gait are 2.53 and 0.35 J m-1 kg-1, respectively, at the preferred speeds. This corresponded to a respective 18.9% and 27.1% reduction in cost when compared with model predictions of continuous fluking gait at the same average bout speed. Average thrust was positively correlated with fluking frequency and amplitude as animals accelerated during the FG bouts, whereas fluking frequency and amplitude were negatively correlated for a given thrust range. These results suggest that FG gait enhances the horizontal swimming efficiency of bottlenose dolphins and provides new insights into the gait dynamics of these animals.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Natação , Marcha , Metabolismo Energético
17.
J Anim Ecol ; 92(8): 1658-1671, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37283143

RESUMO

Pelagic predators must contend with low prey densities that are irregularly distributed and dynamic in space and time. Based on satellite imagery and telemetry data, many pelagic predators will concentrate horizontal movements on ephemeral surface fronts-gradients between water masses-because of enhanced local productivity and increased forage fish densities. Vertical fronts (e.g. thermoclines, oxyclines) can be spatially and temporally persistent, and aggregate lower trophic level and diel vertically migrating organisms due to sharp changes in temperature, water density or available oxygen. Thus, vertical fronts represent a stable and potentially energy rich habitat feature for diving pelagic predators but remain little explored in their capacity to enhance foraging opportunities. Here, we use a novel suite of high-resolution biologging data, including in situ derived oxygen saturation and video, to document how two top predators in the pelagic ecosystem exploit the vertical fronts created by the oxygen minimum zone of the eastern tropical Pacific. Prey search behaviour was dependent on dive shape, and significantly increased near the thermocline and hypoxic boundary for blue marlin Makaira nigricans and sailfish Istiophorus platypterus, respectively. Further, we identify a behaviour not yet reported for pelagic predators, whereby the predator repeatedly dives below the thermocline and hypoxic boundary (and by extension, below the prey). We hypothesize this behaviour is used to ambush prey concentrated at the boundaries from below. We describe how habitat fronts created by low oxygen environments can influence pelagic ecosystems, which will become increasingly important to understand in the context of global change and expanding oxygen minimum zones. We anticipate that our findings are shared among many pelagic predators where strong vertical fronts occur, and additional high-resolution tagging is warranted to confirm this.


Assuntos
Ecossistema , Oxigênio , Animais , Peixes , Comportamento Alimentar , Água , Comportamento Predatório
18.
J Anim Ecol ; 92(8): 1509-1519, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672881

RESUMO

Advances in biologging technologies have significantly improved our ability to track individual animals' behaviour in their natural environment. Beyond observations, automation of data collection has revolutionized cognitive experiments in the wild. For example, radio-frequency identification (RFID) antennae embedded in 'puzzle box' devices have allowed for large-scale cognitive experiments where individuals tagged with passive integrated transponder (PIT) tags interact with puzzle boxes to gain a food reward, with devices logging both the identity and solving action of visitors. Here, we extended the scope of wild cognitive experiments by developing a fully automated selective two-option foraging device to specifically control which actions lead to a food reward and which remain unrewarded. Selective devices were based on a sliding-door foraging puzzle, and built using commercially available low-cost electronics. We tested it on two free-ranging PIT-tagged subpopulations of great tits Parus major as a proof of concept. We conducted a diffusion experiment where birds learned from trained demonstrators to get a food reward by sliding the door either to the left or right. We then restricted access of knowledgeable birds to their less preferred side and calculated the latency until birds produced solutions as a measure of behavioural flexibility. A total of 22 of 23 knowledgeable birds produced at least one solution on their less preferred side after being restricted, with higher-frequency solvers being faster at doing so. In addition, 18 of the 23 birds reached their solving rate from prior to the restriction on their less preferred side, with birds with stronger prior side preference taking longer to do so. We therefore introduce and successfully test a new selective two-option puzzle box, providing detailed instructions and freely available software that allows reproducibility. It extends the functionality of existing systems by allowing fine-scale manipulations of individuals' actions and opens a large range of possibilities to study cognitive processes in wild animal populations.


Assuntos
Animais Selvagens , Passeriformes , Animais , Reprodutibilidade dos Testes , Comportamento Animal , Cognição
19.
Proc Natl Acad Sci U S A ; 117(49): 31242-31248, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33199633

RESUMO

Understanding what, how, and how often apex predators hunt is important due to their disproportionately large effects on ecosystems. In Lake Baikal with rich endemic fauna, Baikal seals appear to eat, in addition to fishes, a tiny (<0.1 g) endemic amphipod Macrohectopus branickii (the world's only freshwater planktonic species). Yet, its importance as prey to seals is unclear. Globally, amphipods are rarely targeted by single-prey feeding (i.e., nonfilter-feeding) mammals, presumably due to their small size. If M. branickii is energetically important prey, Baikal seals would exhibit exceptionally high foraging rates, potentially with behavioral and morphological specializations. Here, we used animal-borne accelerometers and video cameras to record Baikal seal foraging behavior. Unlike the prevailing view that they predominantly eat fishes, they also hunted M. branickii at the highest rates (mean, 57 individuals per dive) ever recorded for single-prey feeding aquatic mammals, leading to thousands of catches per day. These rates were achieved by gradual changes in dive depth following the diel vertical migration of M. branickii swarms. Examining museum specimens revealed that Baikal seals have the most specialized comb-like postcanine teeth in the subfamily Phocinae, allowing them to expel water while retaining prey during high-speed foraging. Our findings show unique mammal-amphipod interactions in an ancient lake, demonstrating that organisms even smaller than krill can be important prey for single-prey feeding aquatic mammals if the environment and predators' adaptations allow high foraging rates. Further, our finding that Baikal seals directly eat macroplankton may explain why they are so abundant in this ultraoligotrophic lake.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Comportamento Alimentar/fisiologia , Focas Verdadeiras/fisiologia , Anfípodes/fisiologia , Animais , Peixes/fisiologia , Lagos , Sibéria
20.
Proc Natl Acad Sci U S A ; 117(30): 17884-17890, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661147

RESUMO

Flight costs are predicted to vary with environmental conditions, and this should ultimately determine the movement capacity and distributions of large soaring birds. Despite this, little is known about how flight effort varies with environmental parameters. We deployed bio-logging devices on the world's heaviest soaring bird, the Andean condor (Vultur gryphus), to assess the extent to which these birds can operate without resorting to powered flight. Our records of individual wingbeats in >216 h of flight show that condors can sustain soaring across a wide range of wind and thermal conditions, flapping for only 1% of their flight time. This is among the very lowest estimated movement costs in vertebrates. One bird even flew for >5 h without flapping, covering ∼172 km. Overall, > 75% of flapping flight was associated with takeoffs. Movement between weak thermal updrafts at the start of the day also imposed a metabolic cost, with birds flapping toward the end of glides to reach ephemeral thermal updrafts. Nonetheless, the investment required was still remarkably low, and even in winter conditions with weak thermals, condors are only predicted to flap for ∼2 s per kilometer. Therefore, the overall flight effort in the largest soaring birds appears to be constrained by the requirements for takeoff.


Assuntos
Fenômenos Biomecânicos , Aves , Voo Animal , Animais , Ecologia , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA