Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(5): e0131523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517189

RESUMO

Chromosomal and transferable AmpC ß-lactamases represent top resistance mechanisms in different gram-negatives, but knowledge regarding the latter, mostly concerning regulation and virulence-related implications, is far from being complete. To fill this gap, we used Klebsiella pneumoniae (KP) and two different plasmid-encoded AmpCs [DHA-1 (AmpR regulator linked, inducible) and CMY-2 (constitutive)] as models to perform a study in which we show that blockade of peptidoglycan recycling through AmpG permease inactivation abolished DHA-1 inducibility but did not affect CMY-2 production and neither did it alter KP pathogenic behavior. Moreover, whereas regular production of both AmpC-type enzymes did not attenuate KP virulence, when blaDHA-1 was expressed in an ampG-defective mutant, Galleria mellonella killing was significantly (but not drastically) attenuated. Spontaneous DHA-1 hyperproducer mutants were readily obtained in vitro, showing slight or insignificant virulence attenuations together with high-level resistance to ß-lactams only mildly affected by basal production (e.g., ceftazidime, ceftolozane/tazobactam). By analyzing diverse DHA-1-harboring clinical KP strains, we demonstrate that the natural selection of these hyperproducers is not exceptional (>10% of the collection), whereas mutational inactivation of the typical AmpC hyperproduction-related gene mpl was the most frequent underlying mechanism. The potential silent dissemination of this kind of strains, for which an important fitness cost-related contention barrier does not seem to exist, is envisaged as a neglected threat for most ß-lactams effectiveness, including recently introduced combinations. Analyzing whether this phenomenon is applicable to other transferable ß-lactamases and species as well as determining the levels of conferred resistance poses an essential topic to be addressed.IMPORTANCEAlthough there is solid knowledge about the regulation of transferable and especially chromosomal AmpC ß-lactamases in Enterobacterales, there are still gaps to fill, mainly related to regulatory mechanisms and virulence interplays of the former. This work addresses them using Klebsiella pneumoniae as model, delving into a barely explored conception: the acquisition of a plasmid-encoded inducible AmpC-type enzyme whose production can be increased through selection of chromosomal mutations, entailing dramatically increased resistance compared to basal expression but minor associated virulence costs. Accordingly, we demonstrate that clinical K. pneumoniae DHA-1 hyperproducer strains are not exceptional. Through this study, we warn for the first time that this phenomenon may be a neglected new threat for ß-lactams effectiveness (including some recently introduced ones) silently spreading in the clinical context, not only in K. pneumoniae but potentially also in other pathogens. These facts must be carefully considered in order to design future resistance-preventive strategies.


Assuntos
Antibacterianos , Proteínas de Bactérias , Klebsiella pneumoniae , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Peptidoglicano , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Plasmídeos/genética , Animais , Infecções por Klebsiella/microbiologia , Mariposas/microbiologia
2.
Foodborne Pathog Dis ; 20(11): 492-501, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699238

RESUMO

The production of ß-lactamase by nontyphoidal Salmonella has become a public health issue throughout the world. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of ß-lactamase-producing Salmonella enterica serovar Albany isolates. A total of 434 Salmonella Albany were obtained from feces and carcasses of healthy and diseased food-producing animals [cattle (n = 2), pigs (n = 3), chickens (n = 391), and ducks (n = 38)] during 2013-2020. Among the 434 Salmonella Albany isolates, 3.7% showed resistance to cefoxitin, and all the cefoxitin-resistant isolates were obtained from chickens. Moreover, Salmonella Albany isolates demonstrated high resistance to nalidixic acid (99.3%), trimethoprim/sulfamethoxazole (97.9%), ampicillin (86.6%), chloramphenicol (86.6%), and tetracycline (85.7%), as well as higher rates of multidrug resistance were detected in cefoxitin-resistant isolates compared to cefoxitin-susceptible isolates. All cefoxitin-resistant isolates harbored CMY-2-type ß-lactamase and belonged to seven different pulsotypes, with type IV-b (43.75%) and IV-a (25%) making up the majority. In addition, genes encoding cefoxitin resistant of all blaCMY-2-harboring Salmonella Albany isolates were horizontally transmitted to a recipient Escherichia coli J53 by conjugation. Furthermore, 93.75% (15/16) of conjugative plasmids harboring blaCMY-2 genes belong to ST12/CC12-IncI1. Genetic characteristics of transmitted blaCMY-2 genes were associated with ISEcp1, which can play an essential role in the effective mobilization and expression of these genes. Salmonella Albany containing blaCMY-2 in chickens can potentially be transferred to humans. Therefore, it is necessary to restrict antibiotic use and conduct continuous monitoring and analysis of resistant bacteria in the poultry industry.


Assuntos
Galinhas , Salmonella enterica , Humanos , Animais , Suínos , Bovinos , Galinhas/microbiologia , Cefoxitina/farmacologia , Sorogrupo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Salmonella/genética , República da Coreia , Escherichia coli , Resistência Microbiana a Medicamentos , Farmacorresistência Bacteriana Múltipla , Plasmídeos
3.
Appl Environ Microbiol ; 88(15): e0079122, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35867586

RESUMO

At a time when antibiotic resistance is seemingly ubiquitous worldwide, understanding the mechanisms responsible for successful emergence of new resistance genes may provide insights into the persistence and pathways of dissemination for antibiotic-resistant organisms in general. For example, Escherichia coli strains harboring a class A ß-lactamase-encoding gene (blaCTX-M-15) appear to be displacing strains that harbor a class C ß-lactamase gene (blaCMY-2) in Washington State dairy cattle. We cloned these genes with native promoters into low-copy-number plasmids that were then transformed into isogenic strains of E. coli, and growth curves were generated for two commonly administered antibiotics (ampicillin and ceftiofur). Both strains met the definition of resistance for ampicillin (≥32 µg/mL) and ceftiofur (≥16 µg/mL). Growth of the CMY-2-producing strain was compromised at 1,000 µg/mL ampicillin, whereas the CTX-M-15-producing strain was not inhibited in the presence of 3,000 µg/mL ampicillin or with most concentrations of ceftiofur, although there were mixed outcomes with ceftiofur metabolites. Consequently, in the absence of competing genes, E. coli harboring either gene would experience a selective advantage if exposed to these antibiotics. Successful emergence of CTX-M-15-producing strains where CMY-2-producing strains are already established, however, requires high concentrations of antibiotics that can only be found in the urine of treated animals (e.g., >2,000 µg/mL for ampicillin, based on literature). This ex vivo selection pressure may be important for the emergence of new and more efficient antibiotic resistance genes and likely for persistence of antibiotic-resistant bacteria in food animal populations. IMPORTANCE We studied the relative fitness benefits of a cephalosporin resistance enzyme (CTX-M-15) that is displacing a similar enzyme (CMY-2), which is extant in E. coli from dairy cattle in Washington State. In vitro experiments demonstrated that CTX-M-15 provides a significant fitness advantage, but only in the presence of very high concentrations of antibiotic that are only found when the antibiotic ampicillin, and to a lesser extent ceftiofur, is excreted in urine from treated animals. As such, the increasing prevalence of bacteria with blaCTX-M-15 is likely occurring ex vivo. Interventions should focus on controlling waste from treated animals and, when possible, selecting antibiotics that are less likely to impact the proximal environment of treated animals.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Resistência às Cefalosporinas , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
Foodborne Pathog Dis ; 18(5): 354-363, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33902318

RESUMO

In this study, we investigated the prevalence, serovar distribution, and antimicrobial resistance pattern of Salmonella isolates from vegetable, fruit, and water samples in Ho Chi Minh City, Vietnam. Salmonella was detected in 75% (30/40), 57.1% (12/21), 17.5% (28/160), and 2.5% (1/40) of river water, irrigation water, vegetable, and ice water samples, respectively. However, no Salmonella was isolated from 160 fruit and 40 tap water samples examined. A total of 102 isolates obtained from 71 samples belonged to 34 different serovars, of which Salmonella Rissen was the most prevalent, followed by Salmonella London, Salmonella Hvittingfoss, and Salmonella Weltevreden. Certain Salmonella serovars such as Newport, Rissen, and Weltevreden were isolated from both vegetable and water samples. Antimicrobial resistance was most commonly observed against tetracycline (35.3%), followed by chloramphenicol (34.3%), ampicillin (31.4%), trimethoprim/sulfamethoxazole (23.5%), and nalidixic acid (10.8%). Of 102 isolates analyzed, 52 (51%) showed resistance to at least 1 antimicrobial class whereas 27 (26.5%) showed multidrug resistant (MDR) phenotype, being resistant to at least three different classes of antimicrobials. Determination of the presence and type of ß-lactamase genes showed the cooccurrence of blaTEM-1 and blaCMY-2 in one Salmonella Agona isolate from a river water sample. Taken together, these data indicated that both environmental water and vegetables were contaminated with Salmonella, including MDR strains, and that environmental water used in irrigation might have been the source of Salmonella contamination in the vegetables.


Assuntos
Microbiologia de Alimentos/estatística & dados numéricos , Frutas/microbiologia , Salmonella/isolamento & purificação , Verduras/microbiologia , Microbiologia da Água , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Prevalência , Salmonella/genética , Sorogrupo , Vietnã/epidemiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32366721

RESUMO

The off-label use of third-generation cephalosporins (3GCs) during in ovo vaccination or vaccination of newly hatched chicks has been a common practice worldwide. CMY-2-producing Escherichia coli strains have been disseminated in broiler chicken production. The objective of this study was to determine the epidemiological linkage of blaCMY-2-positive plasmids among broilers both within and outside Japan, because the grandparent stock and parent stock were imported into Japan. We examined the whole-genome sequences of 132 3GC-resistant E. coli isolates collected from healthy broilers during 2002 to 2014. The predominant 3GC resistance gene was blaCMY-2, which was detected in the plasmids of 87 (65.9%) isolates. The main plasmid replicon types were IncI1-Iγ (n = 21; 24.1%), IncI (n = 12; 13.8%), IncB/O/K/Z (n = 28; 32.2%), and IncC (n = 22; 25.3%). Those plasmids were subjected to gene clustering, network analyses, and plasmid multilocus sequence typing (pMLST). The chromosomal DNA of isolates was subjected to MLST and single-nucleotide variant (SNV)-based phylogenetic analysis. MLST and SNV-based phylogenetic analysis revealed high diversity of E. coli isolates. The sequence type 429 (ST429) cluster harboring blaCMY-2-positive IncB/O/K/Z was closely related to isolates from broilers in Germany harboring blaCMY-2-positive IncB/O/K/Z. pST55-IncI, pST12-IncI1-Iγ, and pST3-IncC were prevalent in western Japan. pST12-IncI1-Iγ and pST3-IncC were closely related to plasmids detected in E. coli isolates from chickens in North America, whereas 26 IncB/O/K/Z types were related to those in Europe. These data will be useful to reveal the whole picture of transmission of CMY-2-producing bacteria inside and outside Japan.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Galinhas , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Europa (Continente) , Genômica , Alemanha , Japão , Tipagem de Sequências Multilocus , América do Norte , Filogenia , Plasmídeos/genética , beta-Lactamases/genética
6.
BMC Microbiol ; 20(1): 345, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183231

RESUMO

BACKGROUND: Providencia rettgeri is a nosocomial pathogen associated with urinary tract infections and related to Healthcare-Associated Infection (HAI). In recent years isolates producing New Delhi Metallo-ß-lactamase (NDM) and other ß-lactamases have been reported that reduce the efficiency of clinical antimicrobial treatments. In this study, we analyzed antibiotic resistance, the presence of resistance genes and the clonal relationship of two P. rettgeri isolates obtained from male patients admitted to the same hospital in Bogotá - Colombia, 2015. RESULTS: Antibiotic susceptibility profile evaluated by the Kirby-Bauer method revealed that both isolates were resistant to third-generation carbapenems and cephalosporins. Whole-genome sequencing (Illumina HiSeq) followed by SPAdes assembling, Prokka annotation in combination with an in-house Python program and resistance gene detection by ResFinder identified the same six ß-lactamase genes in both isolates: blaNDM-1, blaVIM-2, blaCTX-M-15, blaOXA-10, blaCMY-2 and blaTEM-1. Additionally, various resistance genes associated with antibiotic target alteration (arnA, PmrE, PmrF, LpxA, LpxC, gyrB, folP, murA, rpoB, rpsL, tet34) were found and four efflux pumps (RosAB, EmrD, mdtH and cmlA). The additional resistance to gentamicin in one of the two isolates could be explained by a detected SNP in CpxA (Cys191Arg) which is involved in the stress response of the bacterial envelope. Genome BLAST comparison using CGView, the ANI value (99.99%) and the pangenome (using Roary) phylogenetic tree (same clade, small distance) showed high similarity between the isolates. The rMLST analysis indicated that both isolates were typed as rST-61,696, same as the RB151 isolate previously isolated in Bucaramanga, Colombia, 2013, and the FDAARGOS_330 isolate isolated in the USA, 2015. CONCLUSIONS: We report the coexistence of the carbapenemase genes blaNDM-1, and blaVIM-2, together with the ß-lactamase genes blaCTX-M-15, blaOXA-10, blaCMY-2 and blaTEM-1, in P. rettgeri isolates from two patients in Colombia. Whole-genome sequence analysis indicated a circulation of P. rettgeri rST-61,696 strains in America that needs to be investigated further.


Assuntos
Proteínas de Bactérias/genética , Infecções por Enterobacteriaceae/microbiologia , Providencia/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Colômbia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Humanos , Masculino , Testes de Sensibilidade Microbiana , Providencia/efeitos dos fármacos , Providencia/isolamento & purificação , Resistência beta-Lactâmica/genética
7.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028030

RESUMO

Ceftiofur, a third-generation cephalosporin antimicrobial, was used in Canadian hatcheries for many years to prevent early mortality in chicks, leading to a high prevalence of cephalosporin resistance in Escherichia coli in chickens. Preventive use of ceftiofur in hatcheries ceased in 2014. We examined the effect of ceftiofur cessation (n = 40 flocks with ceftiofur and n = 28 flocks without antimicrobial at hatchery) and its replacement with an antimicrobial combination, lincomycin-spectinomycin (n = 32), at the hatchery on the proportion of samples with E. coli positive for extended-spectrum-ß-lactamase (ESBL) and AmpC ß-lactamase-related genes, and on the multidrug resistance profiles of ESBL/AmpC-positive E. coli in broilers and their associated breeders (n = 46 samples), at 1 year postcessation. For indicator E. coli from nonenriched media, a significant decrease postcessation in the proportion of samples harboring E. coli isolates positive for blaCMY-2 and/or blaCTX-M was observed. In contrast, following enrichment in medium containing ceftriaxone (1 mg/liter) to facilitate recovery of ESBL/AmpC ß-lactamase-producing E. coli colonies, both pre- and postcessation, 99% of the samples harbored E. coli positive for blaCMY-2 or blaCTX-M Among the 15 tested antimicrobial agents, flocks receiving lincomycin-spectinomycin after cessation of ceftiofur showed a significantly greater nonsusceptibility to aminoglycosides, folate inhibitors, phenicols, and tetracyclines and a greater proportion of possible extensively drug-resistant E. coli than those receiving ceftiofur or no antimicrobial at hatchery. This study clearly demonstrates an initial decrease in ESBL/AmpC-positive E. coli following the cessation of ceftiofur in the hatchery but an increase in antimicrobial non-ß-lactam resistance of ESBL/AmpC-positive E. coli following replacement with lincomycin-spectinomycin.IMPORTANCE Antimicrobial resistance is a global problem. The antimicrobial ceftiofur has been used worldwide for disease prevention in poultry production, resulting in a greatly increased resistance to this antimicrobial important in poultry and human medicine. Our study examined the impact of ceftiofur cessation and its replacement with the antimicrobial combination lincomycin-spectinomycin, a common practice in the industry. Our study demonstrated a decrease in ceftiofur resistance after the cessation of ceftiofur use, although the resistance genes remain ubiquitous in all phases of poultry production, showing that poultry remains a reservoir for ceftiofur resistance and requiring continued vigilance. We also observed a decrease in multidrug resistance involving different antimicrobial classes after cessation of ceftiofur but an increase following use of lincomycin-spectinomycin, indicating that this antimicrobial use should be questioned. Reduced resistance to ceftiofur in poultry may translate to better treatment efficacy, decreased morbidity/mortality, and enhanced food safety for humans.


Assuntos
Anti-Infecciosos/administração & dosagem , Proteínas de Bactérias/genética , Galinhas , Resistência a Múltiplos Medicamentos , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , beta-Lactamases/genética , Animais , Cefalosporinas/administração & dosagem , Escherichia coli/enzimologia , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Lincomicina/administração & dosagem , Quebeque , Espectinomicina/administração & dosagem
8.
J Appl Microbiol ; 121(1): 136-48, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27138244

RESUMO

AIMS: To investigate the mechanisms leading to an increase in the prevalence of blaCMY -2 conferring resistance to ceftiofur in pigs receiving a feed medicated with chlortetracycline and penicillin, and to examine the effect of supplementation with a clay mineral on this phenomenon. METHODS AND RESULTS: In 138 blaCMY -2 -positive Escherichia coli isolates from faeces of pigs receiving feed supplemented or not with 2% clinoptilolite, from day 2 to day 28 after weaning, isolates from the two groups differed significantly with respect to their phylogenetic group: phylotype A predominated in the supplemented group, whereas phylotypes B1 and D predominated in the control group, as determined by PCR. In 36 representative isolates, pulsed-field gel electrophoresis and antimicrobial susceptibility testing revealed that the blaCMY -2 -positive E. coli isolates were polyclonal with diverse antimicrobial resistance patterns and blaCMY -2 -carrying plasmids of incompatibility (Inc) groups, A/C, I1 and ColE were observed in transformants as detected by PCR. Enterobacter cloacae possessing blaCMY -2 -carrying IncA/C plasmids were found in the pens before introduction of this batch of pigs. The blaCMY -2 -positive E. coli isolates were more clonally diverse in the control group than the supplemented group. CONCLUSIONS: The blaCMY -2 gene appears to have spread both horizontally and clonally in this batch of pigs and may have spread from previous batches of pigs via plasmids carried by Ent. cloacae and expanded in animals of the present batch in the presence of the selection pressure due to administration of chlortetracycline and penicillin in the feed. Feed supplementation may have an effect on clonal diversity of blaCMY -2 -positive isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: Implementation of improved hygiene measures, decreased administration of certain antimicrobials on farm and feed supplementation with certain ingredients may limit antimicrobial resistance spread between and within batches of animals.


Assuntos
Silicatos de Alumínio/administração & dosagem , Suplementos Nutricionais/análise , Infecções por Escherichia coli/veterinária , Escherichia coli/enzimologia , Doenças dos Suínos/microbiologia , beta-Lactamases/metabolismo , Silicatos de Alumínio/química , Ração Animal/análise , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Clortetraciclina/farmacologia , Argila , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/fisiopatologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fazendas , Fezes/microbiologia , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Suínos , Doenças dos Suínos/fisiopatologia , Desmame , beta-Lactamases/genética
9.
J Antimicrob Chemother ; 69(6): 1497-500, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24550380

RESUMO

OBJECTIVES: In Sweden the prevalence of Enterobacteriaceae with transferable resistance to extended-spectrum cephalosporins (ESCs) is low. However, in broilers ESC-resistant Escherichia coli is common, with a clear dominance of blaCMY-2. Antimicrobials are rarely used in broiler production in Sweden and cephalosporins are never used. Introduction through imported breeding stock and subsequent vertical transmission of the bacteria through the production pyramid could be one explanation for this high prevalence. METHODS: To test this hypothesis, paper linings from imported flocks of grandparent animals were screened for the presence of ESC-resistant E. coli and a positive flock, together with its progeny, was followed longitudinally through the production pyramid using boot swabs. The relationship of isolated ESC-resistant E. coli was investigated using multiple-locus variable number tandem repeat analysis (MLVA). RESULTS: ESC-resistant E. coli carrying blaCMY-2 was isolated from six out of eight imported flocks of grandparent animals. One clone of E. coli carrying blaCMY-2 occurred in all levels of the production pyramid and in flocks of imported grandparent animals. CONCLUSIONS: E. coli carrying blaCMY-2 is frequently present among grandparent animals imported to Sweden for breeding purposes. The occurrence of one clone in all levels of the production pyramid indicates that its introduction through imported breeding stock and vertical transmission through the production pyramid could be one explanation for the high proportion of Swedish broilers colonized with ESC-resistant E. coli.


Assuntos
Proteínas de Bactérias/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Escherichia coli/genética , Plasmídeos/genética , beta-Lactamases/genética , Animais , Resistência às Cefalosporinas/genética , Galinhas , Escherichia coli/classificação , Transmissão Vertical de Doenças Infecciosas , Tipagem de Sequências Multilocus , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão , Suécia
10.
Antibiotics (Basel) ; 13(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667025

RESUMO

Escherichia coli carrying IncK-blaCMY-2 plasmids mediating resistance to extended-spectrum cephalosporins (ESC) has been frequently described in food-producing animals and in humans. This study aimed to characterize IncK-blaCMY-2-positive ESC-resistant E. coli isolates from poultry production systems in Denmark, Finland, and Germany, as well as from Danish human blood infections, and further compare their plasmids. Whole-genome sequencing (Illumina) of all isolates (n = 46) confirmed the presence of the blaCMY-2 gene. Minimum inhibitory concentration (MIC) testing revealed a resistant phenotype to cefotaxime as well as resistance to ≥3 antibiotic classes. Conjugative transfer of the blaCMY-2 gene confirmed the resistance being on mobile plasmids. Pangenome analysis showed only one-third of the genes being in the core with the remainder being in the large accessory gene pool. Single nucleotide polymorphism (SNP) analysis on sequence type (ST) 429 and 1286 isolates showed between 0-60 and 13-90 SNP differences, respectively, indicating vertical transmission of closely related clones in the poultry production, including among Danish, Finnish, and German ST429 isolates. A comparison of 22 ST429 isolates from this study with 80 ST429 isolates in Enterobase revealed the widespread geographical occurrence of related isolates associated with poultry production. Long-read sequencing of a representative subset of isolates (n = 28) allowed further characterization and comparison of the IncK-blaCMY-2 plasmids with publicly available plasmid sequences. This analysis revealed the presence of highly similar plasmids in ESC-resistant E. coli from Denmark, Finland, and Germany pointing to the existence of common sources. Moreover, the analysis presented evidence of global plasmid transmission and evolution. Lastly, our results indicate that IncK-blaCMY-2 plasmids and their carriers had been circulating in the Danish production chain with an associated risk of spreading to humans, as exemplified by the similarity of the clinical ST429 isolate to poultry isolates. Its persistence may be driven by co-selection since most IncK-blaCMY-2 plasmids harbor resistance factors to drugs used in veterinary medicine.

11.
Antibiotics (Basel) ; 12(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37107106

RESUMO

Overall, 836 Escherichia coli isolates (695 isolates from dogs and 141 from cats) were recovered from the diarrhea, skin/ear, urine, and genitals of dogs and cats between 2018 and 2019. Cefovecin and enrofloxacin resistance were noted in 17.1% and 21.2% of E. coli isolates, respectively. The cefovecin and enrofloxacin resistance rates were higher in dog isolates (18.1% and 22.9%) compared with the rates in cat isolates (12.1%, 12.8%). Interestingly, resistance to both antimicrobials was noted in 10.8% (90/836) of the isolates, predominantly in isolates from dogs. blaCTX-M-14, blaCTX-M-15, and blaCMY-2 were the most frequent extended-spectrum ß-lactamase/plasmid-mediated AmpC ß-lactamase (ESBL/AmpC)- gene types. The co-existence of blaCTX-M andblaCMY-2 was noted in six E. coli isolates from dogs. Sequencing analysis demonstrated that S83L and D87N in gyrA and S80I in parC were the most frequent point mutations in the quinolone resistance-determining regions of the cefovecin and enrofloxacin-resistant isolates. A total of 11 isolates from dogs carried the plasmid-mediated quinolone resistance genes (six aac(6')-Ib-cr, four qnrS, and one qnrB), while only two cat isolates carried the qnrS gene. Multilocus sequence typing of the cefovecin and enrofloxacin-resistant isolates revealed that sequence type (ST)131 E. coli carrying blaCTX-M-14 and blaCTX-M-15 genes and ST405 E. coli carrying blaCMY-2 gene were predominant among the isolated E. coli strains. The majority of the ESBL/AmpC-producing isolates displayed diverse pulsed-field gel electrophoresis profiles. This study demonstrated that third-generation cephalosporin- and fluoroquinolone-resistant E. coli were widely distributed in companion animals. The detection of the pandemic ST131 clone carrying blaCTX-M-14/15 in companion animals presented a public health threat.

12.
Vet Microbiol ; 271: 109493, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728389

RESUMO

The use of antimicrobials in food animals is the major determinant for the propagation of resistant bacteria in the animal reservoir. The objective of this study was to investigate the presence and distribution of third-generation cephalosporin (3GC) -resistant and plasmid-mediated AmpC (pAmpC)-producing Escherichia coli isolated from food animals in Southern China. In total, 744 3GC-resistant and 40 blaCMY-2-positive E. coli strains were recovered from 1656 food animal fecal samples across five rearing regions. The blaCMY-2 genes were located on IncC, IncFIB or IncI1 type plasmids in 12 E. coli isolates. In the other 22 isolates, S1-PFGE and hybridization analyses revealed that the blaCMY-2 gene was chromosomally located and demonstrated a high prevalence of the chromosomally encoded blaCMY-2 gene in E. coli. Plasmid stability and growth curve experiments demonstrated that IncI1, IncC and IncFIB plasmids can exist stably in the host bacteria and with a low growth burden and may be the reason these plasmids can be widely disseminated in breeding environments. Whole genome sequencing indicated that ISEcp1 and IS1294 played important roles in blaCMY-2 transfer to both plasmids and the chromosome. Our study confirmed that blaCMY-2 mediated resistance of food animal-derived E. coli to 3GC and highlights the urgent need for appropriate monitoring programmes.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Cromossomos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Plasmídeos/genética , beta-Lactamases/genética
13.
Antibiotics (Basel) ; 11(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36009900

RESUMO

The accelerated dispersion of multidrug-resistant (MDR) Escherichia coli due to the production of extended-spectrum ß-lactamases (ESBLs) or AmpC enzymes has been noted in Egypt, presenting a serious treatment challenge. In this study, we investigate the prevalence of ESBLs and AmpC enzymes among 48 E. coli isolates collected from patients with urinary tract infections admitted to a teaching hospital in Alexandria. Phenotypic and genotypic methods of detection are conducted. Isolates producing both enzymes are tested for the mobilization of their genes by a broth mating experiment. Whole genome sequencing (WGS) is performed for isolate EC13655. The results indicate that 80% of the isolates are MDR, among which 52% and 13% were ESBL and AmpC producers, respectively. Conjugation experiments fail to show the mobilization of blaCMY-2 in EC13655, which was chosen for WGS. In silico analysis reveals that the isolate belongs to a ST410-H24Rx high-risk clone. It coharbors the ESBL-encoding genes blaCTX-M-15, blaTEM-1, blaOXA-1 and blaNDM-5 on an IncFIA/IncFIB/IncFII/IncQ1 multireplicon plasmid. The chromosomal location of blaCMY-2 is detected with a flanking upstream copy of ISEcp1. This chromosomal integration of blaCMY-2 establishes the stable maintenance of the gene and thus, necessitates an imperative local surveillance to reduce further spread of such strains in different clinical settings.

14.
Animals (Basel) ; 11(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198679

RESUMO

A total of 136 Salmonella isolates from chicken feces and meat samples of the top 12 integrated chicken production companies throughout Korea were collected. Among the 17 ESC-resistant Salmonella; blaCTX-M-15 was the most prevalent gene and two strains carried blaTEM-1/blaCTX-M-15 and blaCMY-2, respectively. The transferable blaCTX-M-15 gene was carried by IncFII plasmid in three isolates and the blaCMY-2 gene carried by IncI1 plasmid in one isolate. blaCMY-2 gene-harboring strain was selected as the donor based on the high frequency of blaCMY-2 gene transfer in vitro and its transfer frequencies were determined at 10-3 transconjugants per recipient. The transfer of blaCMY-2 gene-harboring plasmid derived from chicken isolate into a human pathogen; enteroinvasive Escherichia coli (EIEC), presented in mouse intestine with about 10-1 transfer frequency without selective pressure. From the competition experiment; blaCMY-2 gene-harboring transconjugant showed variable fitness burden depends on the parent strains. Our study demonstrated direct evidence that the blaCMY-2 gene harboring Salmonella from chicken could frequently transfer its ESC-resistant gene to E. coli in a mouse intestine without antimicrobial pressure; resulting in the emergence of multidrug resistance in potentially virulent EIEC isolates of significance to human health; which can increase the risk of therapeutic inadequacy or failures.

15.
Microorganisms ; 9(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466318

RESUMO

Extended-spectrum cephalosporin-resistant Escherichia coli (ESCR E. coli) with plasmids carrying the blaCMY-2 resistance gene have been isolated from the Norwegian broiler production chain through the Norwegian monitoring program for antimicrobial resistance in animals, food and feed, NORM-VET. The aim of the present study was to investigate the biofilm forming abilities of these strains, and in particular to see whether these might be influenced by the carriage of blaCMY-2 plasmids. The ESCR E. coli from the broiler production chain displayed relatively low biofilm forming abilities in the crystal violet biofilm assay as compared to quinolone-resistant E. coli (QREC) from the same population (mean ± SD = 0.686 ± 0.686 vs. 1.439 ± 0.933, respectively). Acquisition of two different blaCMY-2 plasmids by QREC strains reduced their biofilm production in microtiter plates, but not their biofilm production on Congo Red agar plates. Furthermore, motility was reduced, but not planktonic growth. We hypothesize that genes carried by these plasmids may have caused the observed reduction in biofilm formation, possibly mediated through changes in flagellar expression or function. Furthermore, this may help explain the different biofilm forming abilities observed between ESCR E. coli and QREC. The results also indicate that the risk of biofilm reservoirs of antimicrobial resistant E. coli on in the broiler production is lower for ESCR E. coli than for QREC.

16.
Front Cell Infect Microbiol ; 11: 622195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777835

RESUMO

Horizontal gene transfer is an important mechanism which facilitates bacterial populations in overcoming antimicrobial treatment. In this study, a total of 120 Escherichia coli and 62 Salmonella enterica subsp. enterica isolates were isolated from broiler chicken farms in Alberta. Fourteen serovars were identified among Salmonella isolates. Thirty one percent of E. coli isolates (37/120) were multiclass drug resistant (resistant to ≥ 3 drug classes), while only about 16% of Salmonella isolates (10/62) were multiclass drug resistant. Among those, eight E. coli isolates had an AmpC-type phenotype, and one Salmonella isolate had an extended-spectrum beta-lactamase (ESBL)-type beta-lactamase phenotype. We identified both AmpC-type (blaCMY-2) and ESBL-type (blaTEM) genes in both E. coli and Salmonella isolates. Plasmids from eight of nine E. coli and Salmonella isolates were transferred to recipient strain E. coli J53 through conjugation. Transferable plasmids in the eight E. coli and Salmonella isolates were also transferred into a lab-made sodium azide-resistant Salmonella recipient through conjugation. The class 1 integrase gene, int1, was detected on plasmids from two E. coli isolates. Further investigation of class 1 integron cassette regions revealed the presence of an aadA gene encoding streptomycin 3''-adenylyltransferase, an aadA1a/aadA2 gene encoding aminoglycoside 3''-O-adenyltransferase, and a putative adenylyltransferase gene. This study provides some insight into potential horizontal gene transfer events of antimicrobial resistance genes between E. coli and Salmonella in broiler chicken production.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Alberta , Animais , Antibacterianos/farmacologia , Galinhas , Escherichia coli/genética , Fenótipo , Plasmídeos/genética , Salmonella/genética , beta-Lactamases/genética
17.
J Vet Med Sci ; 83(9): 1345-1355, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34275958

RESUMO

Dissemination of extended-spectrum cephalosporin (ESC)-resistant Salmonella is a public health concern in the egg production industry. ESC-resistant Salmonella often acquires the bla gene via insertion sequences (ISs). Therefore, this study aimed to assess antimicrobial resistance in Salmonella from Japanese layer breeding chains and egg processing chains, and determine the genetic profiles of IS-like elements in ESC-resistant Salmonella. Antimicrobial susceptibility testing was performed on 224 isolates from 49 facilities involving layer breeder farms, hatcheries, pullet-rearing farms, and layer farms in breeding chains along with egg processing chains. ESC-resistant Salmonella strains were whole-genome sequenced. Among them, 40 (17.9%) were resistant to at least streptomycin, tetracycline, ampicillin, chloramphenicol, cefpodoxime, nalidixic acid, ciprofloxacin, and/or kanamycin despite lacking resistance to azithromycin and meropenem. Moreover, 15 were ESC-resistant Salmonella harboring blaCMY-2 (Salmonella enterica serovar Ohio, n=12; S. Braenderup, n=1; untypeable with O7:b:-, n=1) and blaCTX-M-14 (S. Cerro, n=1). IncA/C2 plasmids containing ISEcp1, IS26, and multiple antimicrobial resistance genes (including blaCMY-2) were identified in S. Ohio isolates from pullet-rearing and layer farms belonging to the same company. Chromosomal integration of partial or whole IncA/C2 plasmids was seen with two S. Ohio isolates via ISEcp1 or IS26, respectively. Antimicrobial resistance genes such as blaCMY-2 might be transmitted among the upper and the lower levels of layer breeding chains via the replicon type IncA/C2 plasmids containing ISEcp1 and IS26.


Assuntos
Cefalosporinas , Salmonella enterica , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Galinhas , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Japão , Plasmídeos/genética , Salmonella/genética , Salmonella enterica/genética , beta-Lactamases/genética
18.
Front Microbiol ; 12: 735364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069462

RESUMO

Colistin is a last-resort antibiotic in fighting severe infections caused by multidrug resistant Gram negative pathogens in hospitals. Zoonotic bacteria acquire colistin resistance in animal reservoirs and mediate its spread along the food chain. This is the case of non-typhoid serovars of Salmonella enterica. Colistin-resistant S. enterica in foods represents a threat to human health. Here, we assessed the prevalence of colistin-resistance in food-borne isolates of S. enterica (2014-2019; Asturias, Spain), and established the genetic basis and transferability of this resistance. Five out of 231 isolates tested (2.2%) were resistant to colistin. Four of them, belonging to the European monophasic ST34 clone of S. Typhimurium, were characterized in the present study. They were collected from pork or pork and beef meat-derived products, either in 2015 (three isolates) or 2019 (one isolate). Molecular typing with XbaI-PFGE and plasmid profiling revealed distinct patterns for each isolate, even though two of the 2015 isolates derived from the same sample. The MICs of colistin ranged from 8 to 16 mg/L. All isolates carried the mcr-1.1 gene located on conjugative plasmids of the incompatibility groups IncX4 (2015 isolates) or IncHI2 (2019 isolate). Apart from colistin resistance, the four isolates carried chromosomal genes conferring resistance to ampicillin, streptomycin, sulfonamides and tetracycline [bla TEM-1, strA-strB, sul2, and tet(B)] and heavy metals, including copper and silver (silESRCFBAGP and pcoGE1ABCDRSE2), arsenic (arsRSD2A2BCA1D1) ± mercury (merEDACPTR), which are characteristically associated with the European ST34 monophasic clone. The 2019 isolate was also resistant to other antibiotics, comprising third generation cephalosporins and cephamycins. The latter phenotype was conferred by the bla CMY-2 gene located on an IncI1-I(α)-ST2 plasmid. Results in the present study identified meat-derived products as a reservoir of a highly successful clone harboring transferable plasmids which confer resistance to colistin and other clinically important antibiotics. An important reduction in the number of food-borne S. enterica detected during the period of the study, together with the low frequency of colistin resistance, underlines the success of One Health initiatives, such as those implemented at the UE, to control zoonotic bacteria along the food chain and to halt the spread of antimicrobial resistance.

19.
Microorganisms ; 8(11)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171694

RESUMO

Distinguishing epidemiologically related and unrelated plasmids is essential to confirm plasmid transmission. We compared IncI1-pST12 plasmids from both human and livestock origin and explored the degree of sequence similarity between plasmids from Enterobacteriaceae with different epidemiological links. Short-read sequence data of Enterobacteriaceae cultured from humans and broilers were screened for the presence of both a blaCMY-2 gene and an IncI1-pST12 replicon. Isolates were long-read sequenced on a MinION sequencer (OxfordNanopore Technologies). After plasmid reconstruction using hybrid assembly, pairwise single nucleotide polymorphisms (SNPs) were determined. The plasmids were annotated, and a pan-genome was constructed to compare genes variably present between the different plasmids. Nine Escherichia coli sequences of broiler origin, four Escherichia coli sequences, and one Salmonella enterica sequence of human origin were selected for the current analysis. A circular contig with the IncI1-pST12 replicon and blaCMY-2 gene was extracted from the assembly graph of all fourteen isolates. Analysis of the IncI1-pST12 plasmids revealed a low number of SNP differences (range of 0-9 SNPs). The range of SNP differences overlapped in isolates with different epidemiological links. One-hundred and twelve from a total of 113 genes of the pan-genome were present in all plasmid constructs. Next generation sequencing analysis of blaCMY-2-containing IncI1-pST12 plasmids isolated from Enterobacteriaceae with different epidemiological links show a high degree of sequence similarity in terms of SNP differences and the number of shared genes. Therefore, statements on the horizontal transfer of these plasmids based on genetic identity should be made with caution.

20.
Microorganisms ; 8(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962074

RESUMO

We aimed to identify and characterize extended-spectrum ß-lactamase (ESBL)-and/or plasmid-mediated AmpC ß-lactamase (pAmpC)-producing Escherichia coli isolated from healthy broiler chickens slaughtered for human consumption in Korea. A total of 332 E. coli isolates were identified from 339 cloacal swabs in 2019. More than 90% of the isolates were resistant to multiple antimicrobials. ESBL/pAmpC-production was noted in 14% (46/332) of the isolates. Six of the CTX-M-ß-lactamase-producing isolates were found to co-harbor at least one plasmid-mediated quinolone resistance gene. We observed the co-existence of blaCMY-2 and mcr-1 genes in the same isolate for the first time in Korea. Phylogenetic analysis demonstrated that the majority of blaCMY-2-carrying isolates belonged to subgroup D. Conjugation confirmed the transferability of blaCTX-M and blaCMY-2 genes, as well as non-ß-lactam resistance traits from 60.9% (28/46) of the ESBL/pAmpC-producing isolates to a recipient E. coli J53. The ISECP, IS903, and orf477 elements were detected in the upstream or downstream regions. The blaCTX-M and blaCMY-2 genes mainly belonged to the IncI1, IncHI2, and/or IncFII plasmids. Additionally, the majority of ESBL/pAmpC-producing isolates exhibited heterogeneous PFGE profiles. This study showed that healthy chickens act as reservoirs of ESBL/pAmpC-producing E. coli that can potentially be transmitted to humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA