Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(44): e2414539121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39453750

RESUMO

At the northern high latitudes, rapid warming, associated changes in the hydrological cycle, and rising atmospheric CO2 concentrations, [CO2], are observed at present. Under rapid environmental changes, it is important to understand the current and future trajectories of the CO2 budget in high-latitude ecosystems. In this study, we present the importance of anomalous wet conditions and rising [CO2] on the long-term CO2 budget based on two decades (2003-2022) of quasicontinuous measurements of CO2 flux at a poorly drained black spruce forest on permafrost peat in interior Alaska. The long-term CO2 budget for the black spruce forest was a small sink of -53 ± 63 g C m-2 y-1. The CO2 sink increased from 49 g C m-2 y-1 for the first decade to 58 g C m-2 y-1 for the second decade. The increased CO2 sink was attributed to an 11.3% increase in gross primary productivity (GPP) among which 9% increase in GPP was explained by a recent increase in precipitation. Furthermore, a 3% increase in GPP in response to a 37-ppm increase in [CO2] was estimated from the data-model fusion. Our study shows that understanding the coupling between hydrological and carbon cycles and the CO2 fertilization effect is important for understanding the current and future carbon budgets of high-latitude ecosystems in permafrost regions.

2.
Proc Natl Acad Sci U S A ; 120(2): e2212780120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595673

RESUMO

Large projected increases in forest disturbance pose a major threat to future wood fiber supply and carbon sequestration in the cold-limited, Canadian boreal forest ecosystem. Given the large sensitivity of tree growth to temperature, warming-induced increases in forest productivity have the potential to reduce these threats, but research efforts to date have yielded contradictory results attributed to limited data availability, methodological biases, and regional variability in forest dynamics. Here, we apply a machine learning algorithm to an unprecedented network of over 1 million tree growth records (1958 to 2018) from 20,089 permanent sample plots distributed across both Canada and the United States, spanning a 16.5 °C climatic gradient. Fitted models were then used to project the near-term (2050 s time period) growth of the six most abundant tree species in the Canadian boreal forest. Our results reveal a large, positive effect of increasing thermal energy on tree growth for most of the target species, leading to 20.5 to 22.7% projected gains in growth with climate change under RCP 4.5 and 8.5. The magnitude of these gains, which peak in the colder and wetter regions of the boreal forest, suggests that warming-induced growth increases should no longer be considered marginal but may in fact significantly offset some of the negative impacts of projected increases in drought and wildfire on wood supply and carbon sequestration and have major implications on ecological forecasts and the global economy.


Assuntos
Taiga , Árvores , Canadá , Ecossistema , Florestas , Mudança Climática
3.
Proc Natl Acad Sci U S A ; 119(18): e2117464119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476522

RESUMO

As northern latitudes experience rapid winter warming, there is an urgent need to assess the effect of varying winter conditions on tree growth and forest carbon sequestration potential. We examined tree growth responses to variability in cold-season (November­April) frequency of freeze days (FFD) over 1951 to 2018 using tree-ring data from 35,217 trees and 57 species at 4,375 sites distributed across Canada. We found that annual radial growth responses to FFD varied by species, with some commonalities across genera and clades. The growth of gymnosperms with late spring leaf-out strategies was negatively related to FFD; years with high FFD were most detrimental to the annual growth of Pinus banksiana, Pinus contorta, Larix lyalli, Abies amabilis, and Abies lasiocarpa. In contrast, the growth of angiosperms with early leaf-out strategies, namely, Populus tremuloides and Betula papyrifera, was better in the coldest years, and gymnosperms with intermediate leaf-out timing, such as widespread Picea mariana and Picea glauca, had no consistent relationship to FFD. Tree growth responses to FFD were further modulated by tree size, tree age, regional climate (i.e., mean cold-season temperature), and local site conditions. Overall, our results suggest that moderately warming winters may temporarily improve the growth of widespread pines and some high-elevation conifers in western Canada, whereas warming winters may be detrimental to the growth of widespread boreal angiosperms. Our findings also highlight the value of using species-specific climate-growth relationships to refine predictions of forest carbon dynamics.


Assuntos
Florestas , Árvores , Sequestro de Carbono , Mudança Climática , Estações do Ano
4.
New Phytol ; 241(3): 1062-1073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950517

RESUMO

High-latitude ecosystems are warming faster than other biomes and are often dominated by a ground layer of Ericaceous shrubs, which can respond positively to warming. The carbon-for-nitrogen (C-for-N) exchange between Ericaceous shrubs and root-associated fungi may underlie shrub responses to warming, but has been understudied. In a glasshouse setting, we examined the effects of warming on the C-for-N exchange between the Ericaceous shrub Empetrum nigrum ssp. hermaphroditum and its root-associated fungi. We applied different 13 C and 15 N isotope labels, including a simple organic N form (glycine) and a complex organic N form (moss litter) and quantified their assimilation into soil, plant biomass, and root fungal biomass pools. We found that warming lowered the amount of 13 C partitioned to root-associated fungi per unit of glycine 15 N assimilated by E. nigrum, but only in the short term. By contrast, warming increased the amount of 13 C partitioned to root-associated fungi per unit of moss 15 N assimilated by E. nigrum. Our study suggests that climate warming affects the short-term exchange of C and N between a widespread Ericaceous shrub and root-associated fungi. Furthermore, while most isotope tracing studies use labile N sources, we demonstrate that a ubiquitous recalcitrant N source may produce contrasting results.


Assuntos
Ecossistema , Nitrogênio , Carbono , Solo , Fungos , Isótopos , Glicina
5.
New Phytol ; 242(6): 2440-2452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549455

RESUMO

Shoot-level emissions of aerobically produced methane (CH4) may be an overlooked source of tree-derived CH4, but insufficient understanding of the interactions between their environmental and physiological drivers still prevents the reliable upscaling of canopy CH4 fluxes. We utilised a novel automated chamber system to continuously measure CH4 fluxes from the shoots of Pinus sylvestris (Scots pine) saplings under drought to investigate how canopy CH4 fluxes respond to the drought-induced alterations in their physiological processes and to isolate the shoot-level production of CH4 from soil-derived transport and photosynthesis. We found that aerobic CH4 emissions are not affected by the drought-induced stress, changes in physiological processes, or decrease in photosynthesis. Instead, these emissions vary on short temporal scales with environmental drivers such as temperature, suggesting that they result from abiotic degradation of plant compounds. Our study shows that aerobic CH4 emissions from foliage are distinct from photosynthesis-related processes. Thus, instead of photosynthesis rates, it is more reliable to construct regional and global estimates for the aerobic CH4 emission based on regional differences in foliage biomass and climate, also accounting for short-term variations of weather variables such as air temperature and solar radiation.


Assuntos
Secas , Metano , Fotossíntese , Pinus sylvestris , Brotos de Planta , Pinus sylvestris/fisiologia , Pinus sylvestris/metabolismo , Metano/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Aerobiose , Temperatura , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Biomassa
6.
New Phytol ; 242(3): 1333-1347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515239

RESUMO

Warming and elevated CO2 (eCO2) are expected to facilitate vascular plant encroachment in peatlands. The rhizosphere, where microbial activity is fueled by root turnover and exudates, plays a crucial role in biogeochemical cycling, and will likely at least partially dictate the response of the belowground carbon cycle to climate changes. We leveraged the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, to explore the effects of a whole-ecosystem warming gradient (+0°C to 9°C) and eCO2 on vascular plant fine roots and their associated microbes. We combined trait-based approaches with the profiling of fungal and prokaryote communities in plant roots and rhizospheres, through amplicon sequencing. Warming promoted self-reliance for resource uptake in trees and shrubs, while saprophytic fungi and putative chemoorganoheterotrophic bacteria utilizing plant-derived carbon substrates were favored in the root zone. Conversely, eCO2 promoted associations between trees and ectomycorrhizal fungi. Trees mostly associated with short-distance exploration-type fungi that preferentially use labile soil N. Additionally, eCO2 decreased the relative abundance of saprotrophs in tree roots. Our results indicate that plant fine-root trait variation is a crucial mechanism through which vascular plants in peatlands respond to climate change via their influence on microbial communities that regulate biogeochemical cycles.


Assuntos
Microbiota , Micorrizas , Traqueófitas , Ecossistema , Dióxido de Carbono/farmacologia , Plantas , Árvores , Solo , Microbiologia do Solo , Raízes de Plantas
7.
Plant Cell Environ ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101396

RESUMO

Photosynthetic acclimation to both warming and elevated CO2 of boreal trees remains a key uncertainty in modelling the response of photosynthesis to future climates. We investigated the impact of increased growth temperature and elevated CO2 on photosynthetic capacity (Vcmax and Jmax) in mature trees of two North American boreal conifers, tamarack and black spruce. We show that Vcmax and Jmax at a standard temperature of 25°C did not change with warming, while Vcmax and Jmax at their thermal optima (Topt) and growth temperature (Tg) increased. Moreover, Vcmax and Jmax at either 25°C, Topt or Tg decreased with elevated CO2. The Jmax/Vcmax ratio decreased with warming when assessed at both Topt and Tg but did not significantly vary at 25°C. The Jmax/Vcmax increased with elevated CO2 at either reference temperature. We found no significant interaction between warming and elevated CO2 on all traits. If this lack of interaction between warming and elevated CO2 on the Vcmax, Jmax and Jmax/Vcmax ratio is a general trend, it would have significant implications for improving photosynthesis representation in vegetation models. However, future research is required to investigate the widespread nature of this response in a larger number of species and biomes.

8.
Plant Cell Environ ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189985

RESUMO

Understanding the dynamics of δ13C and δ18O in modern resin is crucial for interpreting (sub)fossilized resin records and resin production dynamics. We measured the δ13C and δ18O offsets between resin acids and their precursor molecules in the top-canopy twigs and breast-height stems of mature Pinus sylvestris trees. We also investigated the physiological and environmental signals imprinted in resin δ13C and δ18O at an intra-seasonal scale. Resin δ13C was c. 2‰ lower than sucrose δ13C, in both twigs and stems, likely due to the loss of 13C-enriched C-1 atoms of pyruvate during isoprene formation and kinetic isotope effects during diterpene synthesis. Resin δ18O was c. 20‰ higher than xylem water δ18O and c. 20‰ lower than δ18O of water-soluble carbohydrates, possibly caused by discrimination against 18O during O2-based diterpene oxidation and 35%-50% oxygen atom exchange with water. Resin δ13C and δ18O recorded a strong signal of soil water potential; however, their overall capacity to infer intraseasonal environmental changes was limited by their temporal, within-tree and among-tree variations. Future studies should validate the potential isotope fractionation mechanisms associated with resin synthesis and explore the use of resin δ13C and δ18O as a long-term proxy for physiological and environmental changes.

9.
Glob Chang Biol ; 30(2): e17205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403895

RESUMO

Global climate change has been identified as a potential driver of observed insect declines, yet in many regions, there are critical data gaps that make it difficult to assess how communities are responding to climate change. Poleward regions are of particular interest because warming is most rapid while biodiversity data are most sparse. Building on recent advances in occupancy modeling of presence-only data, we reconstructed 50 years (1970-2019) of butterfly occupancy trends in response to rising minimum temperatures in one of the most under-sampled regions of North America. Among 90 modeled species, we found that cold-adapted species are far more often in decline compared with their warm-adapted, more southernly distributed counterparts. Furthermore, in a post hoc analysis using species' traits, we find that species' range-wide average annual temperature is the only consistent predictor of occupancy changes. Species with warmer ranges were most likely to be increasing in occupancy. This trend results in the majority of butterflies increasing in occupancy probability over the last 50 years. Our results provide the first look at macroscale butterfly biodiversity shifts in high-latitude North America. These results highlight the potential of leveraging the wealth of presence-only data, the most abundant source of biodiversity data, for inferring changes in species distributions.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Temperatura , Biodiversidade , Mudança Climática , Regiões Árticas , Ecossistema
10.
Glob Chang Biol ; 30(1): e17002, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916481

RESUMO

The migration of trees induced by climatic warming has been observed at many alpine treelines and boreal-tundra ecotones, but the migration of temperate trees into southern boreal forest remains less well documented. We conducted a field investigation across an ecotone of temperate and boreal forests in northern Greater Khingan Mountains of northeast China. Our analysis demonstrates that Mongolian oak (Quercus mongolica), an important temperate tree species, has migrated rapidly into southern boreal forest in synchrony with significant climatic warming over the past century. The average rate of migration is estimated to be 12.0 ± 1.0 km decade-1 , being slightly slower than the movement of isotherms (14.7 ± 6.4 km decade-1 ). The migration rate of Mongolian oak is the highest observed among migratory temperate trees (average rate 4.0 ± 1.0 km decade-1 ) and significantly higher than the rates of tree migration at boreal-tundra ecotones (0.9 ± 0.4 km decade-1 ) and alpine treelines (0.004 ± 0.003 km decade-1 ). Compared with the coexisting dominant boreal tree species, Dahurian larch (Larix gmelinii), temperate Mongolian oak is observed to have significantly lower capacity for light acquisition, comparable water-use efficiency but stronger capacity to utilize nutrients especially the most limiting nutrient, nitrogen. In the context of climatic warming, and in addition to a high seed dispersal capacity and potential thermal niche differences, the advantage of nutrient utilization, reflected by foliar elementomes and stable nitrogen isotope ratios, is also likely a key mechanism for Mongolian oak to coexist with Dahurian larch and facilitate its migration toward boreal forest. These findings highlight a rapid deborealization of southern Asian boreal forest in response to climatic warming.


Assuntos
Larix , Quercus , Taiga , Árvores/fisiologia , Tundra , Nitrogênio , Larix/fisiologia , Florestas
11.
Glob Chang Biol ; 30(7): e17424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044435

RESUMO

Extreme droughts are globally increasing in frequency and severity. Most research on drought in forests focuses on the response of trees, while less is known about the impacts of drought on forest understory species and how these effects are moderated by the local environment. We assessed the impacts of a 45-day experimental summer drought on the performance of six boreal forest understory plants, using a transplant experiment with rainout shelters replicated across 25 sites. We recorded growth, vitality and reproduction immediately, 2 months, and 1 year after the simulated drought, and examined how differences in ambient soil moisture and canopy cover among sites influenced the effects of drought on the performance of each species. Drought negatively affected the growth and/or vitality of all species, but the effects were stronger and more persistent in the bryophytes than in the vascular plants. The two species associated with older forests, the moss Hylocomiastrum umbratum and the orchid Goodyera repens, suffered larger effects than the more generalist species included in the experiment. The drought reduced reproductive output in the moss Hylocomium splendens in the next growing season, but increased reproduction in the graminoid Luzula pilosa. Higher ambient soil moisture reduced some negative effects of drought on vascular plants. Both denser canopy cover and higher soil moisture alleviated drought effects on bryophytes, likely through alleviating cellular damage. Our experiment shows that boreal understory species can be adversely affected by drought and that effects might be stronger for bryophytes and species associated with older forests. Our results indicate that the effects of drought can vary over small spatial scales and that forest landscapes can be actively managed to alleviate drought effects on boreal forest biodiversity. For example, by managing the tree canopy and protecting hydrological networks.


Assuntos
Secas , Florestas , Estações do Ano , Solo , Solo/química , Água/análise , Taiga , Reprodução , Árvores/crescimento & desenvolvimento
12.
Glob Chang Biol ; 30(7): e17401, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041207

RESUMO

Climate change in high latitude regions leads to both higher temperatures and more precipitation but their combined effects on terrestrial ecosystem processes are poorly understood. In nitrogen (N) limited and often moss-dominated tundra and boreal ecosystems, moss-associated N2 fixation is an important process that provides new N. We tested whether high mean annual precipitation enhanced experimental warming effects on growing season N2 fixation in three common arctic-boreal moss species adapted to different moisture conditions and evaluated their N contribution to the landscape level. We measured in situ N2 fixation rates in Hylocomium splendens, Pleurozium schreberi and Sphagnum spp. from June to September in subarctic tundra in Sweden. We exposed mosses occurring along a natural precipitation gradient (mean annual precipitation: 571-1155 mm) to 8 years of experimental summer warming using open-top chambers before our measurements. We modelled species-specific seasonal N input to the ecosystem at the colony and landscape level. Higher mean annual precipitation clearly increased N2 fixation, especially during peak growing season and in feather mosses. For Sphagnum-associated N2 fixation, high mean annual precipitation reversed a small negative warming response. By contrast, in the dry-adapted feather moss species higher mean annual precipitation led to negative warming effects. Modelled total growing season N inputs for Sphagnum spp. colonies were two to three times that of feather mosses at an area basis. However, at the landscape level where feather mosses were more abundant, they contributed 50% more N than Sphagnum. The discrepancy between modelled estimates of species-specific N input via N2 fixation at the moss core versus ecosystem scale, exemplify how moss cover is essential for evaluating impact of altered N2 fixation. Importantly, combined effects of warming and higher mean annual precipitation may not lead to similar responses across moss species, which could affect moss fitness and their abilities to buffer environmental changes.


Assuntos
Briófitas , Mudança Climática , Fixação de Nitrogênio , Chuva , Estações do Ano , Tundra , Briófitas/fisiologia , Briófitas/crescimento & desenvolvimento , Suécia
13.
Glob Chang Biol ; 30(6): e17363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864471

RESUMO

Recently burned boreal forests have lower aboveground fuel loads, generating a negative feedback to subsequent wildfires. Despite this feedback, short-interval reburns (≤20 years between fires) are possible under extreme weather conditions. Reburns have consequences for ecosystem recovery, leading to enduring vegetation change. In this study, we characterize the strength of the fire-fuel feedback in recently burned Canadian boreal forests and the weather conditions that overwhelm resistance to fire spread in recently burned areas. We used a dataset of daily fire spread for thousands of large boreal fires, interpolated from remotely sensed thermal anomalies to which we associated local weather from ERA5-Land for each day of a fire's duration. We classified days with >3 ha of fire growth as spread days and defined burned pixels overlapping a fire perimeter ≤20 years old as short-interval reburns. Results of a logistic regression showed that the odds of fire spread in recently burned areas were ~50% lower than in long-interval fires; however, all Canadian boreal ecozones experienced short-interval reburning (1981-2021), with over 100,000 ha reburning annually. As fire weather conditions intensify, the resistance to fire spread declines, allowing fire to spread in recently burned areas. The weather associated with short-interval fire spread days was more extreme than the conditions during long-interval spread, but overall differences were modest (e.g. relative humidity 2.6% lower). The frequency of fire weather conducive to short-interval fire spread has significantly increased in the western boreal forest due to climate warming and drying (1981-2021). Our results suggest an ongoing degradation of fire-fuel feedbacks, which is likely to continue with climatic warming and drying.


Assuntos
Florestas , Tempo (Meteorologia) , Incêndios Florestais , Incêndios Florestais/prevenção & controle , Incêndios Florestais/estatística & dados numéricos , Mudança Climática , Aquecimento Global
14.
Glob Chang Biol ; 30(6): e17374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863181

RESUMO

In this Technical Advance, we describe a novel method to improve ecological interpretation of remotely sensed vegetation greenness measurements that involved sampling 24,395 Landsat pixels (30 m) across 639 km of Alaska's central Brooks Range. The method goes well beyond the spatial scale of traditional plot-based sampling and thereby more thoroughly relates ground-based observations to satellite measurements. Our example dataset illustrates that, along the boreal-Arctic boundary, vegetation with the greatest Landsat Normalized Difference Vegetation Index (NDVI) is taller than 1 m, woody, and deciduous; whereas vegetation with lower NDVI tends to be shorter, evergreen, or non-woody. The field methods and associated analyses advance efforts to inform satellite data with ground-based vegetation observations using field samples collected at spatial scales that closely match the resolution of remotely sensed imagery.


Assuntos
Imagens de Satélites , Tundra , Alaska , Regiões Árticas , Tecnologia de Sensoriamento Remoto/métodos , Taiga , Monitoramento Ambiental/métodos
15.
Glob Chang Biol ; 30(3): e17246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501699

RESUMO

Northern peatlands provide a globally important carbon (C) store. Since the beginning of the 20th century, however, large areas of natural peatlands have been drained for biomass production across Fennoscandia. Today, drained peatland forests constitute a common feature of the managed boreal landscape, yet their ecosystem C balance and associated climate impact are not well understood, particularly within the nutrient-poor boreal region. In this study, we estimated the net ecosystem carbon balance (NECB) from a nutrient-poor drained peatland forest and an adjacent natural mire in northern Sweden by integrating terrestrial carbon dioxide (CO2 ) and methane (CH4 ) fluxes with aquatic losses of dissolved organic C (DOC) and inorganic C based on eddy covariance and stream discharge measurements, respectively, over two hydrological years. Since the forest included a dense spruce-birch area and a sparse pine area, we were able to further evaluate the effect of contrasting forest structure on the NECB and component fluxes. We found that the drained peatland forest was a net C sink with a 2-year mean NECB of -115 ± 5 g C m-2 year-1 while the adjacent mire was close to C neutral with 14.6 ± 1.7 g C m-2 year-1 . The NECB of the drained peatland forest was dominated by the net CO2 exchange (net ecosystem exchange [NEE]), whereas NEE and DOC export fluxes contributed equally to the mire NECB. We further found that the C sink strength in the sparse pine forest area (-153 ± 8 g C m-2 year-1 ) was about 1.5 times as high as in the dense spruce-birch forest area (-95 ± 8 g C m-2 year-1 ) due to enhanced C uptake by ground vegetation and lower DOC export. Our study suggests that historically drained peatland forests in nutrient-poor boreal regions may provide a significant net ecosystem C sink and associated climate benefits.


Assuntos
Sequestro de Carbono , Ecossistema , Dióxido de Carbono/análise , Suécia , Solo/química , Florestas , Metano/análise
16.
Glob Chang Biol ; 30(6): e17347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822663

RESUMO

Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.


Assuntos
Sequestro de Carbono , Mudança Climática , Variação Genética , Picea , Árvores , Picea/genética , Picea/crescimento & desenvolvimento , Árvores/genética , Árvores/crescimento & desenvolvimento , Filogeografia
17.
Glob Chang Biol ; 30(1): e17139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273498

RESUMO

Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year-round eddy covariance estimates of net carbon dioxide (CO2 ), mid-April to October methane (CH4 ) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow-season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2 (13-59 g C m-2 year-1 ) and stronger sources of CH4 (11-14 g CH4 m-2 from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m-2 year-1 , or twice what has been previously reported across other boreal sites. Net CO2 release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4 emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2 , was also the largest CH4 emitter. These results suggest that the future carbon-source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2 ), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long-term measurements to identify carbon cycle process changes in a warming climate.


Assuntos
Ecossistema , Pergelissolo , Dióxido de Carbono/análise , Metano , Solo , Água
18.
Glob Chang Biol ; 30(9): e17516, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39311643

RESUMO

Forests play a crucial role in global carbon cycling by absorbing and storing significant amounts of atmospheric carbon dioxide. Although boreal forests contribute to approximately 45% of the total forest carbon sink, tree growth and soil carbon sequestration are constrained by nutrient availability. Here, we examine if long-term nutrient input enhances tree productivity and whether this leads to carbon storage or whether stimulated microbial decomposition of organic matter limits soil carbon accumulation. Over six decades, nitrogen, phosphorus, and calcium were supplied to a Pinus sylvestris-dominated boreal forest. We found that nitrogen fertilization alone or together with calcium and/or phosphorus increased tree biomass production by 50% and soil carbon sequestration by 65% compared to unfertilized plots. However, the nonlinear relationship observed between tree productivity and soil carbon stock across treatments suggests microbial regulation. When phosphorus was co-applied with nitrogen, it acidified the soil, increased fungal biomass, altered microbial community composition, and enhanced biopolymer degradation capabilities. While no evidence of competition between ectomycorrhizal and saprotrophic fungi has been observed, key functional groups with the potential to reduce carbon stocks were identified. In contrast, when nitrogen was added without phosphorus, it increased soil carbon sequestration because microbial activity was likely limited by phosphorus availability. In conclusion, the addition of nitrogen to boreal forests may contribute to global warming mitigation, but this effect is context dependent.


Assuntos
Carbono , Fertilizantes , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Fósforo/metabolismo , Solo/química , Nitrogênio/metabolismo , Fertilizantes/análise , Carbono/metabolismo , Sequestro de Carbono , Biomassa , Taiga , Pinus sylvestris/crescimento & desenvolvimento , Pinus sylvestris/metabolismo , Pinus sylvestris/microbiologia , Florestas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Cálcio/metabolismo , Cálcio/análise
19.
Glob Chang Biol ; 30(2): e17195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389196

RESUMO

Scientific innovation is overturning conventional paradigms of forest, water, and energy cycle interactions. This has implications for our understanding of the principal causal pathways by which tree, forest, and vegetation cover (TFVC) influence local and global warming/cooling. Many identify surface albedo and carbon sequestration as the principal causal pathways by which TFVC affects global warming/cooling. Moving toward the outer latitudes, in particular, where snow cover is more important, surface albedo effects are perceived to overpower carbon sequestration. By raising surface albedo, deforestation is thus predicted to lead to surface cooling, while increasing forest cover is assumed to result in warming. Observational data, however, generally support the opposite conclusion, suggesting surface albedo is poorly understood. Most accept that surface temperatures are influenced by the interplay of surface albedo, incoming shortwave (SW) radiation, and the partitioning of the remaining, post-albedo, SW radiation into latent and sensible heat. However, the extent to which the avoidance of sensible heat formation is first and foremost mediated by the presence (absence) of water and TFVC is not well understood. TFVC both mediates the availability of water on the land surface and drives the potential for latent heat production (evapotranspiration, ET). While latent heat is more directly linked to local than global cooling/warming, it is driven by photosynthesis and carbon sequestration and powers additional cloud formation and top-of-cloud reflectivity, both of which drive global cooling. TFVC loss reduces water storage, precipitation recycling, and downwind rainfall potential, thus driving the reduction of both ET (latent heat) and cloud formation. By reducing latent heat, cloud formation, and precipitation, deforestation thus powers warming (sensible heat formation), which further diminishes TFVC growth (carbon sequestration). Large-scale tree and forest restoration could, therefore, contribute significantly to both global and surface temperature cooling through the principal causal pathways of carbon sequestration and cloud formation.


Assuntos
Sequestro de Carbono , Mudança Climática , Florestas , Planetas , Temperatura , Água , Temperatura Baixa , Árvores
20.
Ecol Appl ; 34(2): e2929, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37942503

RESUMO

The Sandhill Wetland (SW) and Nikanotee Fen (NF) are two wetland research projects designed to test the viability of peatland reclamation in the Alberta oil sands post-mining landscape. To identify effective approaches for establishing peat-forming vegetation in reclaimed wetlands, we evaluated how plant introduction approaches and water level gradients influence species distribution, plant community development, and the establishment of bryophyte and peatland species richness and cover. Plant introduction approaches included seeding with a Carex aquatilis-dominated seed mix, planting C. aquatilis and Juncus balticus seedlings, and spreading a harvested moss layer transfer. Establishment was assessed 6 years after the introduction at SW and 5 years after the introduction at NF. In total, 51 species were introduced to the reclaimed wetlands, and 122 species were observed after 5 and 6 years. The most abundant species in both reclaimed wetlands was C. aquatilis, which produced dense canopies and occupied the largest water level range of observed plants. Introducing C. aquatilis also helped to exclude marsh plants such as Typha latifolia that has little to no peat accumulation potential. Juncus balticus persisted where the water table was lower and encouraged the formation of a diverse peatland community and facilitated bryophyte establishment. Various bryophytes colonized suitable areas, but the moss layer transfer increased the cover of desirable peat-forming mosses. Communities with the highest bryophyte and peatland species richness and cover (averaging 9 and 14 species, and 50%-160% cover respectively) occurred where the summer water level was between -10 and -40 cm. Outside this water level range, a marsh community of Typha latifolia dominated in standing water and a wet meadow upland community of Calamagrostis canadensis and woody species established where the water table was deeper. Overall, the two wetland reclamation projects demonstrated that establishing peat-forming vascular plants and bryophytes is possible, and community formation is dependent upon water level and plant introduction approaches. Future projects should aim to create microtopography with water tables within 40 cm of the surface and introduce vascular plants such as J. balticus that facilitate bryophyte establishment and support the development of a diverse peatland plant community.


Assuntos
Briófitas , Traqueófitas , Áreas Alagadas , Campos de Petróleo e Gás , Alberta , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA