Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36433342

RESUMO

A cymbal transducer has a simple structure consisting of a piezoceramic disk and metallic caps and has broadband characteristics when built as an array. The finite element method (FEM) is generally used to analyze the characteristics of acoustic transducers. However, the FEM requires a longer analysis time as the model becomes larger, which makes it limited and less efficient for analyzing the cymbal array. In this study, a new equivalent circuit with higher efficiency and accuracy, comparable to that of the FEM, was proposed to analyze the performance of cymbal arrays. The equivalent circuit for the array was constructed by connecting the equivalent circuits of individual cymbal transducers in parallel with a radiation impedance matrix that included both the self- and mutual radiation characteristics of the array. The validity of the new equivalent circuit was verified by measuring the transmitting voltage response of a cymbal array specimen and comparing it with that calculated using the circuit. The comparison confirmed the efficiency of the equivalent circuit in analyzing the characteristics of the cymbal array. The proposed equivalent circuit can facilitate the design of a large array of cymbal transducers.


Assuntos
Acústica , Transdutores , Desenho de Equipamento
2.
Sensors (Basel) ; 18(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498636

RESUMO

It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ-3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.

3.
Photoacoustics ; 33: 100548, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021293

RESUMO

Photoacoustic imaging (PAI) uniquely combines optics and ultrasound, presenting a promising role in biomedical imaging as a non-invasive and label-free imaging technology. As the traditional opaque ultrasound (US) transducers could hinder the transportation of the excitation light and limit the performance of PAI system, piezoelectric transparent ultrasonic transducers (TUTs) with indium tin oxide (ITO) electrodes have been developed to allow light transmission through the transducer and illuminate the sample directly. Nevertheless, without having transparent matching materials with appropriate properties, the bandwidth of those TUTs was generally narrow. In this work, we propose to employ polymethyl methacrylate (PMMA) as the matching layer material to improve the bandwidth of lithium niobate (LN)-based TUTs. The effects of PMMA matching layer on the performance of TUTs have been systematically studied. With the optimized PMMA matching layer, the very wide bandwidth of > 50 % could be achieved for the TUTs even with different transducer frequencies, leading to the great enhancement of axial resolution when compared to the similar reported work. In addition, the imaging performance of the developed TUT prototype has been evaluated in a PAI system and demonstrated by both phantom and in vivo small animal imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA