Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 80(2): 210-226.e7, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002424

RESUMO

Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.


Assuntos
Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , RNA Bacteriano/genética , Sequências Repetitivas de Ácido Nucleico/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Contagem de Colônia Microbiana , Endocitose/efeitos dos fármacos , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Helicobacter pylori/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Níquel/farmacologia , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
2.
Annu Rev Physiol ; 84: 485-506, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34672717

RESUMO

The body depends on its physical barriers and innate and adaptive immune responses to defend against the constant assault of potentially harmful microbes. In turn, successful pathogens have evolved unique mechanisms to adapt to the host environment and manipulate host defenses. Helicobacter pylori (Hp), a human gastric pathogen that is acquired in childhood and persists throughout life, is an example of a bacterium that is very successful at remodeling the host-pathogen interface to promote a long-term persistent infection. Using a combination of secreted virulence factors, immune subversion, and manipulation of cellular mechanisms, Hp can colonize and persist in the hostile environment of the human stomach. Here, we review the most recent and relevant information regarding how this successful pathogen overcomes gastric epithelial host defense responses to facilitate its own survival and establish a chronic infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Humanos , Imunidade
3.
J Cell Biochem ; 125(3): e30527, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38332574

RESUMO

The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/patologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo
4.
Immunogenetics ; 76(1): 1-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979046

RESUMO

Helicobacter pylori was reported as an important cause of gastritis, and gastric ulcers and CagA oncoprotein-producing H. pylori subgroups were blamed to increase the severity of gastritis. Disparities were reported in that the presence of serum anti-CagA IgA was not parallel with CagA-positive H. pylori cohabitation. We hypothesized that the HLA-DQA1 ~ DQB1 haplotypes in human populations include protective haplotypes that more effectively present immunogenic CagA peptides and susceptible haplotypes with an impaired capacity to present CagA peptides. We recruited patients (n = 201) admitted for gastroendoscopy procedures and performed high-resolution HLA-DQA1 and DQB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.0% positive), and H. pylori was classified as positive or negative in gastric mucosal tissue slides (72.6% positive). The HLA DQA1*05:05 allele (29.1%) and HLA DQB1*03:01 allele (32.8%) were found at the highest frequency among gastritis patients of Turkish descent. In HLA DQA1*05:05 ~ DQB1*03:01 double homozygous (7.3%) and heterozygous (40.7%) haplotype carriers, the presence of anti-CagA IgA decreased dramatically, the presence of H. pylori increased, and the presence of metaplasia followed a decreasing trend. The DQ protein encoded by HLA DQA1*05:05-DQ*03:01 showed a low binding affinity to the CagA peptide when binding capacity was analyzed by the NetMHCIIPan 4.0 prediction method. In conclusion, HLA DQA1 ~ DQB1 polymorphisms are crucial as host defense mechanisms against CagA H. pylori since antigen binding capacity plays a crucial role in anti-CagA IgA production.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Haplótipos , Antígenos HLA-DQ/genética , Cadeias alfa de HLA-DQ/genética , Cadeias beta de HLA-DQ/genética , Gastrite/genética , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Alelos , Peptídeos , Metaplasia , Imunoglobulina A/genética , Frequência do Gene , Cadeias HLA-DRB1
5.
Crit Rev Microbiol ; : 1-17, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288575

RESUMO

Cancer research has extensively explored various factors contributing to cancer development, including chemicals, drugs, smoking, and obesity. However, the role of bacterial infections in cancer induction remains underexplored. In particular, the mechanisms underlying H. pylori-induced B-cell lymphoma, a potential consequence of bacterial infection, have received little attention. In recent years, there has been speculation about contagious agents causing persistent inflammation and encouraging B-lymphocyte transition along with lymphomagenesis. MALT lymphoma associated with chronic H. pylori infection, apart from two other central associated lymphomas - Burkitt's Lymphoma and DLBCL, is well studied. Owing to the increasing colonization of H. pylori in the host gut and its possible action in the development of B-cell lymphoma, this review aims to summarize the existing reports on different B-cell lymphomas' probable association with H. pylori infections; also emphasizing the function of the organism in lymphomagenesis; including its interaction with the host, pathogen and host-specific factors, and tumor microenvironment.

6.
Curr Top Microbiol Immunol ; 444: 239-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38231221

RESUMO

Helicobacter pylori CagA is the first and only bacterial oncoprotein etiologically associated with human cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA acts as a pathogenic/pro-oncogenic scaffold that interacts with and functionally perturbs multiple host proteins such as pro-oncogenic SHP2 phosphatase and polarity-regulating kinase PAR1b/MARK2. Although H. pylori infection is established during early childhood, gastric cancer generally develops in elderly individuals, indicating that oncogenic CagA activity is effectively counteracted at a younger age. Moreover, the eradication of cagA-positive H. pylori cannot cure established gastric cancer, indicating that H. pylori CagA-triggered gastric carcinogenesis proceeds via a hit-and-run mechanism. In addition to its direct oncogenic action, CagA induces BRCAness, a cellular status characterized by replication fork destabilization and loss of error-free homologous recombination-mediated DNA double-strand breaks (DSBs) by inhibiting cytoplasmic-to-nuclear localization of the BRCA1 tumor suppressor. This causes genomic instability that leads to the accumulation of excess mutations in the host cell genome, which may underlie hit-and-run gastric carcinogenesis. The close connection between CagA and BRCAness was corroborated by a recent large-scale case-control study that revealed that the risk of gastric cancer in individuals carrying pathogenic variants of genes that induce BRCAness (such as BRCA1 and BRCA2) dramatically increases upon infection with cagA-positive H. pylori. Accordingly, CagA-mediated BRCAness plays a crucial role in the development of gastric cancer in conjunction with the direct oncogenic action of CagA.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Pré-Escolar , Idoso , Humanos , Neoplasias Gástricas/genética , Helicobacter pylori/genética , Estudos de Casos e Controles , Proteínas Oncogênicas , Carcinogênese/genética
7.
Helicobacter ; 29(2): e13066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468575

RESUMO

BACKGROUND: SHP1 has been documented as a tumor suppressor and it was thought to play an antagonistic role in the pathogenesis of Helicobacter pylori infection. In this study, the exact mechanism of this antagonistic action was studied. MATERIALS AND METHODS: AGS, MGC803, and GES-1 cells were infected with H. pylori, intracellular distribution changes of SHP1 were first detected by immunofluorescence. SHP1 overexpression and knockdown were then constructed in these cells to investigate its antagonistic roles in H. pylori infection. Migration and invasion of infected cells were detected by transwell assay, secretion of IL-8 was examined via ELISA, the cells with hummingbird-like alteration were determined by microexamination, and activation of JAK2/STAT3, PI3K/Akt, and ERK pathways were detected by immunoblotting. Mice infection model was established and gastric pathological changes were evaluated. Finally, the SHP1 activator sorafenib was used to analyze the attenuating effect of SHP1 activation on H. pylori pathogenesis in vitro and in vivo. RESULTS: The sub-localization of SHP1 changed after H. pylori infection, specifically that the majority of the cytoplasmic SHP1 was transferred to the cell membrane. SHP1 inhibited H. pylori-induced activation of JAK2/STAT3 pathway, PI3K/Akt pathway, nuclear translocation of NF-κB, and then reduced EMT, migration, invasion, and IL-8 secretion. In addition, SHP1 inhibited the formation of CagA-SHP2 complex by dephosphorylating phosphorylated CagA, reduced ERK phosphorylation and the formation of CagA-dependent hummingbird-like cells. In the mice infection model, gastric pathological changes were observed and increased IL-8 secretion, indicators of cell proliferation and EMT progression were also detected. By activating SHP1 with sorafenib, a significant curative effect against H. pylori infection was obtained in vitro and in vivo. CONCLUSIONS: SHP1 plays an antagonistic role in H. pylori pathogenesis by inhibiting JAK2/STAT3 and PI3K/Akt pathways, NF-κB nuclear translocation, and CagA phosphorylation, thereby reducing cell EMT, migration, invasion, IL-8 secretion, and hummingbird-like changes.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Helicobacter pylori/fisiologia , NF-kappa B/metabolismo , Interleucina-8/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Helicobacter/patologia , Sorafenibe/metabolismo , Células Epiteliais/metabolismo
8.
Helicobacter ; 29(3): e13100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873839

RESUMO

BACKGROUND: The formation of gallstones is often accompanied by chronic inflammation, and the mechanisms underlying inflammation and stone formation are not fully understood. Our aim is to utilize single-cell transcriptomics, bulk transcriptomics, and microbiome data to explore key pathogenic bacteria that may contribute to chronic inflammation and gallstone formation, as well as their associated mechanisms. METHODS: scRNA-seq data from a gallstone mouse model were extracted from the Gene Expression Omnibus (GEO) database and analyzed using the FindCluster() package for cell clustering analysis. Bulk transcriptomics data from patients with gallstone were also extracted from the GEO database, and intergroup functional differences were assessed using GO and KEGG enrichment analysis. Additionally, 16S rRNA sequencing was performed on gallbladder mucosal samples from asymptomatic patients with gallstone (n = 6) and liver transplant donor gallbladder mucosal samples (n = 6) to identify key bacteria associated with stone formation and chronic inflammation. Animal models were constructed to investigate the mechanisms by which these key pathogenic bacterial genera promote gallstone formation. RESULTS: Analysis of scRNA-seq data from the gallstone mouse model (GSE179524) revealed seven distinct cell clusters, with a significant increase in neutrophil numbers in the gallstone group. Analysis of bulk transcriptomics data from patients with gallstone (GSE202479) identified chronic inflammation in the gallbladder, potentially associated with dysbiosis of the gallbladder microbiota. 16S rRNA sequencing identified Helicobacter pylori as a key bacterium associated with gallbladder chronic inflammation and stone formation. CONCLUSIONS: Dysbiosis of the gallbladder mucosal microbiota is implicated in gallstone disease and leads to chronic inflammation. This study identified H. pylori as a potential key mucosal resident bacterium contributing to gallstone formation and discovered its key pathogenic factor CagA, which causes damage to the gallbladder mucosal barrier. These findings provide important clues for the prevention and treatment of gallstones.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Células Epiteliais , Vesícula Biliar , Cálculos Biliares , Helicobacter pylori , Animais , Cálculos Biliares/microbiologia , Cálculos Biliares/patologia , Células Epiteliais/microbiologia , Camundongos , Humanos , Vesícula Biliar/microbiologia , Vesícula Biliar/patologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Helicobacter pylori/fisiologia , RNA Ribossômico 16S/genética , Modelos Animais de Doenças , Permeabilidade , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL
9.
Mol Biol Rep ; 51(1): 95, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194007

RESUMO

BACKGROUND: Helicobacter pylori is a fastidious pathogen that is required a complicated medium for growth. Invading epithelial cells of the stomach. H. pylori virulence factors are classified by function, acidic resistivity, adhesion, chemotaxis and motility, molecular mimicry, immunological invasion and modulation, and toxins formation such as cytotoxin-associated genes A (cagA) and vacuolating cytotoxin A (vacA). This study aims to determine a simple and innovative technique to isolate H. pylori from gastric biopsies and assess pathogenicity by virulence factor gene detection. METHODS: A total of 200 patients who were suspected of having H. pylori infection had two antral gastric biopsies undertaken. A rapid urease test (RUT) was used for one, and Brain Heart Infusion broth (BHI) was used to cultivate the other. The molecular study included diagnostics utilizing the 16sRNA housekeeping gene along with the identification of the virulence factors genes (cagA, cagT, and vacA) and sequencing, RESULT: Of the 200 antral gastric biopsies collected, 135 were positive rapid urease tests, and 17 H. pylori isolates were successfully obtained from 135 biopsies. The 16SrRNA as a housekeeping gene is confirmed, and about 53%, 70.5%, and 82.3% of the 17 isolates show carrying cagA, cagT, and vacA genes, respectively. All peptic ulcer isolates have the cagA gene, while Gastroesophageal Reflux Disease (GERD) and non-peptic ulcer disease (NPUD) isolates show the lack of the cagA gene. All bacteria, which were isolated from peptic ulcer, nodular gastritis, and gastritis patients, have a vacA gene. CONCLUSION: The effective method for isolating H. pylori is centrifuging the transport broth after 24 h of incubation. The cagA toxin causes peptic ulcer while vacA toxin induces several histopathological changes in the stomach. Three virulence genes were present in all peptic ulcer-causing bacteria, while only one or none were present in the GERD and NPUD biopsy isolates.


Assuntos
Gastrite , Refluxo Gastroesofágico , Helicobacter pylori , Úlcera Péptica , Humanos , Virulência/genética , Helicobacter pylori/genética , Urease/genética , Fatores de Virulência/genética , Citotoxinas
10.
BMC Cardiovasc Disord ; 24(1): 161, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491418

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori), according to a number of recent observational studies, is connected to atherosclerosis (AS). However, the link between H. pylori and AS is debatable. METHODS: In order to calculate the causal relationship between H. pylori and AS, we employed a two-sample Mendelian randomization (MR) analysis. The data for H. pylori were obtained from the IEU GWAS database ( https://gwas.mrcieu.ac.uk/datasets/ ) and the data for AS were obtained from the Finngen GWAS database ( https://r5.finngen.fi/ ). We selected single nucleotide polymorphisms with a threshold of 5 × 10-6 from earlier genome-wide association studies. MR was performed mainly using the inverse variance weighted (IVW) method. To ensure the reliability of the findings, We performed a leave-one-out sensitivity analysis to test for sensitivity. F-value was used to test weak instrument. RESULTS: A positive causal relationship between H. pylori OMP antibody levels and peripheral atherosclerosis was shown by our two-sample MR analysis (odds ratio (OR) = 1.33, 95% confidence interval (CI) = 1.14-1.54, P = 0.26E-03) using IVW. Additionally, there was a causative link between coronary atherosclerosis and H. pylori VacA antibody levels (IVW OR = 1.06, 95% CI = 1.01-1.10, P = 0.016). All the F-values were above 10. CONCLUSIONS: This MR study discovered a causal link between H. pylori and AS. Different antibodies have different effects, so future researches are needed to figure out the exact mechanisms behind this link.


Assuntos
Aterosclerose , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Aterosclerose/diagnóstico , Aterosclerose/genética , Anticorpos Antibacterianos
11.
Can J Microbiol ; 70(4): 119-127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176008

RESUMO

Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Interleucina-8/metabolismo , Infecções por Helicobacter/microbiologia
12.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000189

RESUMO

Impaired E-cadherin (Cdh1) functions are closely associated with cellular dedifferentiation, infiltrative tumor growth and metastasis, particularly in gastric cancer. The class-I carcinogen Helicobacter pylori (H. pylori) colonizes gastric epithelial cells and induces Cdh1 shedding, which is primarily mediated by the secreted bacterial protease high temperature requirement A (HtrA). In this study, we used human primary epithelial cell lines derived from gastroids and mucosoids from different healthy donors to investigate HtrA-mediated Cdh1 cleavage and the subsequent impact on bacterial pathogenesis in a non-neoplastic context. We found a severe impairment of Cdh1 functions by HtrA-induced ectodomain cleavage in 2D primary cells and mucosoids. Since mucosoids exhibit an intact apico-basal polarity, we investigated bacterial transmigration across the monolayer, which was partially depolarized by HtrA, as indicated by microscopy, the analyses of the transepithelial electrical resistance (TEER) and colony forming unit (cfu) assays. Finally, we investigated CagA injection and observed efficient CagA translocation and tyrosine phosphorylation in 2D primary cells and, to a lesser extent, similar effects in mucosoids. In summary, HtrA is a crucially important factor promoting the multistep pathogenesis of H. pylori in non-transformed primary gastric epithelial cells and organoid-based epithelial models.


Assuntos
Proteínas de Bactérias , Caderinas , Células Epiteliais , Mucosa Gástrica , Helicobacter pylori , Organoides , Humanos , Caderinas/metabolismo , Organoides/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Antígenos de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Antígenos CD/metabolismo , Estômago/microbiologia , Estômago/patologia , Linhagem Celular , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/microbiologia , Serina Proteases
13.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339039

RESUMO

Helicobacter pylori (H. pylori) is responsible for causing chronic gastritis, which can cause peptic ulcer and premalignant lesions such as atrophic gastritis, intestinal metaplasia, and dysplasia, with the risk of developing gastric cancer. Recent data describe that H. pylori colonizes the gastric mucosa of more than 50% of the world's population; however, this bacterium has been described as infecting the human population since its prehistory. This review focuses on the populations and subpopulations of H. pylori, differentiated by the polymorphisms present in their constitutive and virulence genes. These genes have spread and associated with different human populations, showing variability depending on their geographical distribution, and have evolved together with the human being. The predominant genotypes worldwide, Latin America and Chile, are described to understand the genetic diversity and pathogenicity of H. pylori in different populations and geographic regions. The high similarity in the sequence of virulence genes between H. pylori strains present in Peruvian and Spanish natives in Latin America suggests a European influence. The presence of cagA-positive strains and vacA s1 m1 allelic variants is observed with greater prevalence in Chilean patients with more severe gastrointestinal diseases and is associated with its geographical distribution. These findings highlight the importance of understanding the genetic diversity of H. pylori in different regions of the world for a more accurate assessment of the risk of associated diseases and their potential impact on health.


Assuntos
Gastrite Atrófica , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/microbiologia , América Latina/epidemiologia , Gastrite/patologia , Genótipo , Medição de Risco , Infecções por Helicobacter/complicações , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Antígenos de Bactérias/genética
14.
BMC Microbiol ; 23(1): 401, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114907

RESUMO

BACKGROUND: Two important virulence factors, urease and cagA, play an important role in Helicobacter pylori (H. pylori) gastric cancer. Aim of this study was to investigate the expression level and function of ureB and cagA using small interfering RNAs (siRNA). METHODS: SS1 strain of H. pylori was considered as host for natural transformation. siRNA designed for ureB and cagA genes were inserted in pGPU6/GFP/Neo siRNA plasmid vector to evaluate using phenotypic and genotypic approaches. Then, qPCR was performed for determining inhibition rate of ureB and cagA gene expression. RESULTS: The expression levels of siRNA-ureB and siRNA-cagA in the recombinant strain SS1 were reduced by about 5000 and 1000 fold, respectively, compared to the native H. pylori strain SS1. Also, preliminary evaluation of siRNA-ureB in vitro showed inhibition of urea enzyme activity. These data suggest that siRNA may be a powerful new tool for gene silencing in vitro, and for the development of RNAi-based anti-H. pylori therapies. CONCLUSION: Our results show that targeting ureB and cagA genes with siRNA seems to be a new strategy to inhibit urease enzyme activity, reduce inflammation and colonization rate.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Urease/genética , Urease/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Bactérias/genética , Antígenos de Bactérias/genética
15.
Cytokine ; 163: 156122, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640695

RESUMO

Helicobacter pylori infection is a major cause of intestinal metaplasia. In this study, we aimed to understand the reason underlying the low grade and incidence of intestinal metaplasia in Indonesia, based on the expression of genes encoding proinflammatory cytokines in gastric biopsy specimens. The possible reasons for the lesser virulence of the East-Asian-type CagA in Indonesia than that of the Western-type CagA, which is not common in other countries, were also investigated. The mRNA expression of cytokines was evaluated using real-time PCR. CagA characteristics were analyzed using in silico analysis. The expression of cytokines was typically not robust, among H. pylori-infected subjects in Indonesia, despite them predominantly demonstrating the East-Asian-type CagA. This might partially be explained by the characteristics of the East-Asian-type CagA in Indonesia, which showed a higher instability index and required higher energy to interact with proteins related to the cytokine induction pathway compared with the other types (p < 0.001 and p < 0.05, respectively). Taken together, besides the low prevalence of H. pylori, the low inflammatory response of the host and low CagA virulence, even among populations with high infection rates, may play an essential role in the low grade and low incidence of intestinal metaplasia in Indonesia. We believe that these findings would be relevant for better understanding of intestinal metaplasia, which is closely associated with the development of gastric cancer.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/complicações , Citocinas , Indonésia , Biópsia , Neoplasias Gástricas/patologia , Metaplasia/complicações , Metaplasia/patologia
16.
Helicobacter ; 28(6): e13023, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37753804

RESUMO

BACKGROUND: Helicobacter pylori is a bacterium that infects 70%-80% of the population in Colombia, causing chronic gastritis in all those infected and gastric cancer in 1%-2% of those infected. In Colombia, some studies have identified the presence of vacA and cagA genes in environmental samples such as treated, surface, and wastewater, but they have not been evaluated in the Bogotá River. For this, the aim of this study was to identify the virulence genotypes of H. pylori present in samples from the Bogotá River and domestic wastewater treatment plants (WWTPs). MATERIALS AND METHODS: A total of 75 water samples (51 from the Bogotá River and 24 from wastewater treatment plants) were collected. The presence of H. pylori DNA and its virulence genotypes was determined by polymerase chain reaction (PCR). RESULTS: The presence of H. pylori DNA was demonstrated in 44% (33/75) of the samples, obtaining 63.6% (21/33) from the Bogotá River and 36.4% (12/33) from the WWTPs. The most prevalent H. pylori genotype was cagA (-) and vacAm1/s1/i1 being the most virulent of the vacA gene. CONCLUSIONS: This is the first study in Colombia that determines the cagA and vacA genotypes in surface water and WWTPs, indicating the circulation of virulent genotypes in the population. The presence of this pathogen in the waters can be represent a risk to the health of the surrounding population since these waters are reused by the communities for different purposes.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Antígenos de Bactérias/genética , Helicobacter pylori/genética , Virulência/genética , Colômbia/epidemiologia , Rios , Gastrite/microbiologia , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Genótipo , DNA Bacteriano/genética , Água
17.
Helicobacter ; 28(5): e13002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37350445

RESUMO

BACKGROUND: Functional dyspepsia (FD) is a multifactorial disorder. Helicobacter pylori (H. pylori)-related dyspepsia (HpD) may be considered a separate entity. Duodenal eosinophilia is a potential pathogenic mechanism in FD. However, the impact of duodenal eosinophilia and host genetic polymorphism of innate and pro-inflammatory cascade, nucleotide-binding oligomerization domain 1 (NOD-1), and interleukin-1 beta (IL-1ß) in HpD was not explored. AIM: To evaluate the association of NOD1-796G>A and IL-1B-511C>T gene variants and low-grade duodenal eosinophilia in HpD. METHODS: A multicenter cross-sectional study was conducted. A total of 253 patients who met Rome-IV criteria were selected before upper endoscopy and 98 patients were included after unremarkable upper endoscopy and positive H. pylori in gastric biopsies were assessed. Clinical parameters, H. pylori cagA and duodenal histology, were evaluated. RESULTS: Sixty-four (65%) patients had epigastric pain syndrome (EPS), 24 (25%) postprandial distress syndrome (PDS), and 10 (10%) EPS/PDS overlap. FD subtypes were not associated with NOD1-796G>A and IL-1B-511C>T gene variants. Low-grade duodenal eosinophilia was significantly increased in NOD1-796 GG versus single A-allele, but not in IL-1B-511 single T-allele or CC-allele. This association is dependent of cagA infection, since harboring cagA strain was significantly associated with low-grade duodenal eosinophilia with isolated variants NOD1-796 GG and IL-1B-511 single T-allele, but not without cagA. When we performed combined polymorphism analysis with NOD1-796 GG/IL-1B-511 single T-allele, a synergistic effect on low-grade duodenal eosinophilia was found between these two loci irrespective of cagA strain status in HpD. CONCLUSION: Our findings suggest that low-grade duodenal eosinophilia is significantly associated with NOD1-796 GG allele specially in cagA strain and with allelic combination NOD1-796 GG/IL-1B-511 single T-allele independent of cagA strain infection in HpD patients.


Assuntos
Dispepsia , Eosinofilia , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Estudos Transversais , Dispepsia/genética , Dispepsia/complicações , Eosinofilia/complicações , Gastrite/complicações , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Polimorfismo Genético
18.
Helicobacter ; 28(4): e12987, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37139985

RESUMO

BACKGROUND AND AIMS: Helicobacter pylori (H. pylori)-induced gastric pathology involves remodeling of extracellular matrix mediated by aberrant activity of matrix metalloproteinases (MMPs). We have previously shown that in vitro H. pylori infection leads to MMP-3 and MMP-9 overexpression, associated with phosphorylation of bacterial oncoprotein CagA. We extended these findings in an in vivo model of H. pylori infection and further assessed the involvement of MAPK pathways in MMP expression. MATERIALS AND METHODS: C57BL/6 mice were infected with H. pylori strains HPARE, HPARE ΔCagA, and SS1, for 6 and 9 months. Transcriptional expression of Mmp-3 and Mmp-9 was evaluated via qPCR while respective protein levels in the gastric mucosa were determined immunohistochemically. Epithelial cell lines AGS and GES-1 were infected with H. pylori strain P12 in the presence of chemical inhibitors of JNK, ERK1/2, and p38 pathways, for 24 h. mRNA and protein expression of MMP-3 and MMP-9 were determined via qPCR and Western blot, respectively. RESULTS: We observed transcriptional activation of Mmp-3 and Mmp-9 as well as aberrant MMP-3 and MMP-9 protein expression in murine gastric tissue following H. pylori infection. CagA expression was associated with MMP upregulation, particularly during the early time points of infection. We found that inhibition of ERK1/2 resulted in reduced mRNA and protein expression of MMP-3 and MMP-9 during H. pylori infection, in both cell lines. Expressed protein levels of both MMPs were also found reduced in the presence of JNK pathway inhibitors in both cell lines. However, p38 inhibition resulted in a more complex effect, probably attributed to the accumulation of phospho-p38 and increased phospho-ERK1/2 activity due to crosstalk between MAPK pathways. CONCLUSIONS: H. pylori colonization leads to the upregulation of MMP-3 and MMP-9 in vivo, which primarily involves ERK1/2 and JNK pathways. Therefore, their inhibition may potentially offer a protective effect against gastric carcinogenesis and metastasis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Metaloproteinase 3 da Matriz , Metaloproteinase 9 da Matriz , Animais , Camundongos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Células Epiteliais/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Sistema de Sinalização das MAP Quinases , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro
19.
J Bone Miner Metab ; 41(1): 74-87, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36348162

RESUMO

INTRODUCTION: This study used systematic review and meta-analysis to evaluate the association between Helicobacter pylori infection and osteoporosis. MATERIALS AND METHODS: PubMed, Ovid and Web of Science were searched to include observational studies published in English comparing bone mineral density changes between Helicobacter pylori-positive and -negative participants. The quality of the included literature was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS). R software was used for meta-analysis, and odds ratio (OR) and 95% confidence interval (CI) were calculated to evaluate the relationship between Helicobacter pylori infection and osteoporosis. RESULTS: Twenty-two studies involving 24,176 participants were included in the study. Our meta-analysis showed that Helicobacter pylori infection was significantly associated with the risk of osteoporosis (OR: 1.12, 95%CI: 1.03, 1.22). Participants infected with the CagA-positive Helicobacter pylori strain were more likely to develop osteoporosis (OR = 1.42, 95%CI: 1.09; 1.85). CONCLUSION: Infection with Helicobacter pylori, particularly the CagA-positive strain, has been associated with an increased risk of osteoporosis. The bone health of Helicobacter pylori-positive patients deserves more attention.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Osteoporose , Humanos , Infecções por Helicobacter/complicações , Osteoporose/complicações , Densidade Óssea , Razão de Chances
20.
J Gastroenterol Hepatol ; 38(2): 274-282, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36334009

RESUMO

BACKGROUND AND AIM: Functional dyspepsia (FD) is a multifactorial disorder. Helicobacter pylori (H. pylori)-related dyspepsia (HpD) may be considered a separate entity. Duodenal eosinophilia is a potential pathogenic mechanism in FD. However, the impact of duodenal eosinophilia and H. pylori virulence genes in HpD was not explored. We aim to evaluate the association of H. pylori virulence genes and low-grade duodenal eosinophilia in HpD. METHODS: A multi-center cross-sectional study was conducted. A total of 301 patients who meet Rome-III criteria were selected before upper endoscopy, and 95 patients were included after normal endoscopy and positive H. pylori in gastric biopsies were assessed. Clinical parameters, H. pylori virulence genes (cagA, oipA, and vacA) and duodenal histology were evaluated. RESULTS: Sixty-nine (72%) patients had epigastric pain syndrome (EPS), 17 (18%) post-prandial distress syndrome (PDS) and 9 (10%) EPS/PDS overlap. FD syndromes were not associated with cagA or oipA strains. A significantly trend of vacA s1/m1 (78%) and s1/m2 (80%) positive strains in EPS was observed. Histological duodenal grading of chronic inflammation, low-grade duodenal eosinophilia and intra-epithelial lymphocytes showed no difference in oipA and vacA strains. Low-grade duodenal eosinophilia was significant in cagA positive strain, and the OR for low-grade duodenal eosinophilia with H. pylori cagA positive strain was 4.2 (95% CI, 1.78-9.93). Adjusting for age, gender, smoking, diabetes, alcohol, PPI, and NSAID, the OR was 5.44 (1.989-14.902). CONCLUSION: Our findings suggest that low-grade duodenal eosinophilia is significantly associated with cagA strain in HpD.


Assuntos
Dispepsia , Eosinofilia , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Dispepsia/complicações , Helicobacter pylori/genética , Estudos Transversais , Genótipo , Gastrite/complicações , Eosinofilia/complicações , Infecções por Helicobacter/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA