RESUMO
Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.
Assuntos
Cimentos Ósseos , Peptídeo Relacionado com Gene de Calcitonina , Fosfatos de Cálcio , Osteogênese , Porco Miniatura , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Camundongos , Suínos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Coluna Vertebral/cirurgia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Linhagem Celular , Magnésio/farmacologia , Magnésio/químicaRESUMO
Lung cancer is one of the most common malignant tumors in the world. In approximately 30%-40% of lung cancer patients, bone metastases ensues with osteolytic destruction. Worse still, intractable pain, pathological fracture, and nerve compression caused by bone metastases are currently the bottleneck of research, diagnosis, and treatment of lung cancer. Therefore, the present study aims at investigating the effectiveness of a new composite material made of calcium phosphate cement (CPC) and Endostar on repairing bone defects in vitro and in vivo. As indicated in results, the mechanical properties of CPC+Endostar and CPC+PLGA+Endostar do not differ from those of pure CPC. The PLGA-embedded Endostar slow-release microspheres were designed and prepared, and were combined with CPC. Poly (lactic-co-glycolic acid (PLGA) is a biodegradable polymer material in vivo, so the effect on its mechanical properties is negligible. CPC+Endostar and CPC+PLGA+Endostar have been proved to inhibit cell proliferation, promote apoptosis and block cell cycle in G2 phase; the expression levels of osteoclast-related genes CXCL2, TGF-ß1, IGF-1, IL-6, and RANKL were significantly decreased while osteogenic ability and alkaline phosphatase activity observably enhanced. In vivo studies have revealed that the expression levels of TRAP, RANKL, and Caspase3 in CPC+PLGA+ENDO-treated tumor tissues after 3 weeks were higher than those in other groups with the prolongation of animal treatment time, while the expression levels of OPN and BCL2 were lower than those in other groups. In hematoxylin and eosin and TUNEL staining, 3 weeks of CPC+PLGA+ENDO-treatment yielded higher tissue necrosis and apoptosis than other groups; computed tomography and magnetic resonance imaging results showed the posterior edge bone damage reduced as a result of the CPC+PLGA+ENDO grafting in vertebral pedicle. Overall, the feasibility and reliability of CPC-loaded Endostar in the treatment of bone metastasis in lung cancer were investigated in this study, so as to promote the basic research and treatment of bone metastasis in lung cancer and other malignant tumors.
RESUMO
OBJECTIVES: Current methods for periodontal regeneration do not promote collagen fiber insertions into new bone and cementum. We used a pig wound model to screen different functionalized collagen membranes in promoting periodontal reattachment to root surfaces. METHODS: Treatment groups included (1) control with no membranes, (2) collagen-coated membranes, (3) membranes with insulin-like growth factor-1 (IGF-1), (4) membranes with amelotin, or (5) membranes attached with calcium phosphate cement (CPC), or with CPC combined with IGF-1. Flap procedures were performed on mandibular and maxillary premolars of each pig. RESULTS: Histomorphometric, micro-CT, and clinical measurements obtained at 4 and 12 weeks after surgery showed cementum formation on denuded roots and reformation of alveolar bone, indicating that the pig model can model healing responses in periodontal regeneration. Calcium phosphate cement simplified procedures by eliminating the need for sutures and improved regeneration of alveolar bone (p < 0.05) compared with other treatments. There was a reduction (p < 0.05) of PD only for the IGF group. Large observed variances between treatment groups indicated that a priori power analyses should be conducted to optimize statistical analysis. CONCLUSIONS: Pigs can model discrete elements of periodontal healing using collagen-based, functionalized membranes. Screening indicates that membrane anchorage with calcium phosphate cements improve regeneration of alveolar bone.
Assuntos
Perda do Osso Alveolar , Fator de Crescimento Insulin-Like I , Animais , Suínos , Regeneração Óssea , Colágeno , Cemento Dentário , Fosfatos de Cálcio/farmacologia , Regeneração Tecidual Guiada Periodontal/métodos , Ligamento Periodontal , Perda do Osso Alveolar/tratamento farmacológicoRESUMO
BACKGROUNDS: This study aimed to compare whether Calcium phosphate cement (CPC) promotes the stability of osteoporotic lumbar pedicle screw by enhancer-injecters with different number of holes. METHODS: Through a self-designed bone cement injection device, the pedicle screw canal was strengthened with calcium phosphate bone cement, and divided into 4-hole group, 6-hole group, 8-hole group, straight pore group and the control group. The screw was inserted into the mechanical test module, the Maximum insertion torque and Maximum axial pull-out strength were recorded, and the distribution of calcium phosphate bone cement was analyzed by CT and X-ray. The data results were analyzed using SPSS19.0 statistical software package. RESULTS: The distribution of bone cement in different reinforcement groups was different and showed regularity. The bone cement in the 4-hole group was roughly located in the head 1/3 of the screw, the 6-hole group was located in the middle 1/3 of the screw, and the 8-hole group was located in the caudal 1/3 of the screw. Compared with the control group, the maximum axial pull-out force of screws in the lateral hole and full screw tunnel reinforcement group was significantly increased. There was no significant difference between the 4-hole, 6-hole and straight pore groups. There was no difference in the screw-in torque between the reinforcement groups, and they all increased significantly compared with the control group, and the difference was statistically significant. After the screw was pulled out, the interface between the bone cement and the polyurethane material was fractured, and a tight package was formed with the screw. CONCLUSIONS: Enhancer syringes with different hole numbers combined with CPC bone cement injection can significantly increase the maximum screw pull-out force. The 8-hole group has a smaller pull-out force and is relatively prone to leakage of reinforcing material, which lacks safety in use. The local reinforcement of 4-hole and 6-hole sheath can play a similar role to that of total nail tunnel reinforcement.
Assuntos
Cimentos Ósseos , Parafusos Pediculares , Humanos , Fenômenos Biomecânicos , Fosfatos de Cálcio , Vértebras Lombares/cirurgiaRESUMO
AIM: This study aims to evaluate the efficacy of calcium phosphate-poly(lactide-co-glycolide) composite graft in the regeneration of intrabony defects in chronic periodontitis patients over a period of 12 months. MATERIALS AND METHODS: A total of 11 systemically healthy chronic periodontitis patients with 22 graftable sites were treated with calcium phosphate cement (CPC) bone graft (control group) and CPC-poly(lactic-co-glycolic acid)(PLGA) composite (test group) after flap reflection and debridement. Clinical parameters such as probing pocket depth (PPD) and clinical attachment level (CAL) were recorded at baseline and 3, 6, 9, and 12 months. Bone probing depth (BPD) and radiographic parameters such as defect depth (DD), changes in alveolar crest level (ALR), defect depth reduction (DDR), and percentage in defect depth reduction (PDDR) were calculated at baseline, and 6 and 12 months. The data were recorded and statistically analyzed. RESULTS: On intragroup comparison, there was a significant improvement in all the parameters over a period of 1 year (clinically and radiographically). However, there was no statistically significant difference between the two groups in any of the parameters though there was a slightly higher bone fill noted in the test group. CONCLUSION: Even though the CPC-PLGA composite bone graft showed a slight improvement in clinical and radiographic parameters as compared to the CPC graft, it was not statistically significant. CLINICAL SIGNIFICANCE: A major drawback of Calcium Phosphate cements as bone grafts is their poor degradability. The PLGA microspheres degrade to expose macropores and interconnected pores in the graft substrate which in turn would promote the ingrowth of osteoblasts. Also, this composite graft is mouldable, and resorbable and has been shown to snugly fit into the defects making them a suitable scaffold material. How to cite this article: Ojha M, Pawar Chandrashekara Rao D, Gowda V. Clinical and Radiographic Evaluation of Calcium Phosphate-Poly(lactide-co-glycolide) Graft in Regeneration of Intrabony Defects: Randomized Control Trial. J Contemp Dent Pract 2023;24(12):921-927.
Assuntos
Perda do Osso Alveolar , Periodontite Crônica , Humanos , Poliglactina 910 , Periodontite Crônica/tratamento farmacológico , Processo Alveolar/cirurgia , Fosfatos de Cálcio/uso terapêutico , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/cirurgia , Regeneração Tecidual Guiada PeriodontalRESUMO
PURPOSE: Augmentation strategies for surgical fixation of proximal humerus fractures (PHF) are available to address their relatively high failure rate. The purpose of this study was to compare two medial-buttress augmentation strategies for PHF fixation. METHODS: A two-part PHF model with loss of medial buttress was created in 16 synthetic bones. The PHFs were fixed with locking plates and either calcium phosphate cement (CPC) or fibula strut (FS) augmentation. After cadaveric validations, the fixation constructs were subjected to nondestructive axial compression tests, followed by a cyclic test. Construct stiffness and angular displacement of the humerus head were recorded. RESULTS: Humeral head angular displacement was statistically greater in the CPC group than in the FS group at the applied force of 300 N and higher (p < 0.05). Axial stiffness was statistically greater in the FS fixation group than in the CPC group at initial and final phases of cyclic loading protocol (p < 0.05). CONCLUSIONS: In an osteoporotic cadaveric model of a 2-part PHF with loss of a medial buttress, locked plate constructs augmented with FS have a higher resistance to varus collapse compared to those augmented with CPC.
Assuntos
Fraturas do Úmero , Fraturas do Ombro , Humanos , Fenômenos Biomecânicos , Cimentos Ósseos/uso terapêutico , Placas Ósseas , Cadáver , Fosfatos de Cálcio/uso terapêutico , Fíbula/cirurgia , Fixação Interna de Fraturas/métodos , Fraturas do Ombro/cirurgiaRESUMO
BACKGROUND: Icariin (ICA), a main active ingredient of Herba Epimedium, could promote bone formation, inhibit bone resorption and alleviate inflammatory responses. The aim of this study was to investigate the effect of ICA on the inhibition of bacteria associated with peri-implantitis, and fabricate a calcium phosphate cement (CPC) with ICA-loaded gelatin microspheres (GMs) as a local drug delivery system efficiently promoting bone formation and alleviating inflammation. RESULTS: In this study, ICA exhibited antibacterial activity against P. gingivalis with a MIC value of 1 × 10-4 mol/L. When the concentration of ICA was 0.5 mM, the encapsulation efficiency of GMs reached the maximum value of 76.26 ± 3.97%. GMs with ICA revealed a controlled release profile, 0.5 mM ICA exhibited a higher ICA release profile than the other groups during a 21 d monitoring span. The results of SEM and XRD demonstrated successful fabrication of a calcium phosphate cement with ICA-loaded GMs. ICA released from CPC/GMs (ICA) was slower than ICA released from GMs within 10 days. CPC/GMs (ICA) exhibited antibacterial activity against P. gingivalis, but the antibacterial rate of CPC/GMs (ICA) was only 17.15 ± 6.06%. In addition, CPC/GMs (ICA) promoted the proliferation of BMSCs and significantly stimulated the differentiation and maturation of BMSCs. In vivo, H&E and Masson staining experiments demonstrated that CPC/GMs (ICA) exhibited better capacity for bone regeneration than CPC/GMs and CPC, and the expression of TNF-α and IL-1ß in the tissue around CPC/GMs (ICA) was significantly lower than CPC/GMs and CPC in IHC staining (P < 0.05). CONCLUSION: In this study, ICA exhibited limited antibacterial activity against bacteria associated with peri-implantitis. A composite material of calcium phosphate cement with ICA-loaded gelatin microspheres was developed, which not only promoting osteoinductivity and bone formation, but also alleviating inflammation, demonstrating its potential as a promising bone substitute material for treatment of peri-implantitis.
Assuntos
Gelatina , Peri-Implantite , Humanos , Microesferas , Fosfatos de Cálcio/farmacologia , Sistemas de Liberação de Medicamentos , Regeneração Óssea , Cimentos Ósseos/farmacologiaRESUMO
This bedside-to-bench study aimed to systematically investigate the value of applying BMP2-loaded calcium phosphate cement (BMP2-CPC) in the restoration of large-scale alveolar bone defects. Compared to deproteinized bovine bone (DBB), BMP2-CPC was shown to be capable of inducing a favorable pattern of bone regeneration and bone remodeling accompanied by active osteoclastogenesis and optimized biomaterial resorption when applied in reconstructive periodontally accelerated osteogenic orthodontics (PAOO) surgery. To verify the regulatory role of osteoclasts in the BMP2-CPC-induced pattern of bone regeneration, in vitro and in vivo studies were designed to elucidate the underlying mechanism. Our results revealed that osteoclasts played a multifaceted role (facilitating osteogenesis, bone remodeling and biomaterial resorption) in the BMP2-CPC-induced bone regeneration. Osteoclasts contributed to the osteogenic differentiation of mesenchymal stem cells (MSCs) by secreting calcium ions, CTHRC1 and PDGF-B. Moreover, the increased osteoclasts promoted the remodeling of new bone and BMP2-CPC resorption, leading to a harmonized replacement of biomaterials with mature bone. In conclusion, the in vitro and in vivo experimental results corresponded with the clinical results and showed the optimized properties of BMP2-CPC in activating osteoclast-driven bone regeneration and remodeling, thus indicating the highly promising prospects of BMP2-CPC as an ideal therapeutic for alveolar bone defects.
Assuntos
Osteoclastos , Osteogênese , Animais , Bovinos , Materiais Biocompatíveis , Cimentos Ósseos , Regeneração Óssea , Cálcio , Fosfatos de Cálcio/farmacologia , Diferenciação Celular , Íons , Alicerces TeciduaisRESUMO
Calcium phosphate cement (CPC) has been widely studied, but its lack of osteoinductivity and inadequate mechanical properties limit its application, while strontium is able to promote bone formation and inhibit bone resorption. In this study, different proportions of tristrontium silicate were introduced to create a novel strontium-modified calcium phosphate cement (SMPC). The physicochemical properties of SMPC and CPC were compared, and the microstructures of the bone cements were characterized with scanning electron microscopy assays. Then, the effect of SMPC on cell proliferation and differentiation was examined. Furthermore, local inflammatory response and osteogenesis after SMPC implantation were also confirmed in the study. Finally, a rat model of isolated vertebral defects was used to test the biomechanical properties of the cements. The results showed that SMPC has better injectability and a shorter setting time than CPC. Meanwhile, the addition of tristrontium silicate promoted the mechanical strength of calcium phosphate cement, and the compressive strength of 5% SMPC increased to 6.00 ± 0.74 MPa. However, this promotion effect gradually diminished with an increase in tristrontium silicate, which was also found in the rat model of isolated vertebral defects. Furthermore, SMPC showed a more preferential role in promoting cell proliferation and differentiation compared to CPC. Neither SMPC nor CPC showed significant inflammatory responses in vivo. Histological staining suggested that SMPCs were significantly better than CPC in promoting new bone regeneration. Importantly, this osteogenesis effect of SMPC was positively correlated with the ratio of tristrontium silicate. In conclusion, 5% SMPC is a promising substitute material for bone repair with excellent physicochemical properties and biological activity.
Assuntos
Cimentos Ósseos , Cálcio , Animais , Ratos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Osteogênese , Cálcio da Dieta , Silicatos , Estrôncio/farmacologia , Estrôncio/químicaRESUMO
To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats. Defects left empty (control group) as well as defects treated with scaffolds made of CPC only (CPC group) and MCM only (MCM group) served as controls. Eight weeks after surgery, micro-computed tomography scans and histological analysis were performed to analyze the newly formed bone, the degree of defect healing and the activity of osteoclasts. Mechanical stability was tested by 3-point-bending of the explanted femora. Compared with the other groups, more newly formed bone was found within MCM-CPC scaffolds. The new bone tissue had a clamp-like structure which was fully connected to the hybrid scaffolds and thereby enhanced the biomechanical strength. Together, the biomimetic hybrid MCM-CPC scaffolds enhanced bone defect healing by improved osseointegration and their differentiated degradation provides spatial effects in the process of critical-bone defect healing.
Assuntos
Biomimética , Alicerces Teciduais , Animais , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/uso terapêutico , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Colágeno/farmacologia , Osteogênese , Ratos , Alicerces Teciduais/química , Microtomografia por Raio-XRESUMO
OBJECTIVE: The purpose is to observe whether local administration with selenium (Se) can enhance the efficacy of calcium phosphate cement (CPC) in the treatment of osteoporotic bone defects. METHODS: Thirty ovariectomized (OVX) rats with two defects were generated and randomly allocated into the following graft study groups: (1) OVX group (n = 10), (2) CPC group (n = 10); and (3) Se-CPC group (n = 10). Then, these selenium-modified calcium phosphate cement (Se-CPC) scaffolds were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT, history, western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and to explore the possible mechanism. RESULT: Micro-CT and histological analysis evaluation showed that the Se-CPC group presented the strongest effect on bone regeneration and bone mineralization when compared with the CPC group and the OVX group. Protein expressions showed that the oxidative stress protein expressions, such as SOD2 and GPX1 of the Se-CPC group, are significantly higher than those of the OVX group and the CPC group, while Se-CPC remarkably reduced the expression of CAT. RT-qPCR analysis showed that the Se-CPC group displayed more OPG than the OVX and CPC groups (p < 0.05), while Se-CPC exhibited less RANKL than the OVX and CPC groups (p < 0.05). CONCLUSION: Our current study demonstrated that Se-CPC is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local oxidative stress and through OPG/RANKL signaling pathway.
Assuntos
Osteoporose , Selênio , Animais , Cimentos Ósseos/farmacologia , Regeneração Óssea , Fosfatos de Cálcio/farmacologia , Osteoporose/tratamento farmacológico , Ratos , Selênio/farmacologiaRESUMO
Vascularization is an important early indicator of osteogenesis involving biomaterials. Bone repair and new bone formation are associated with extensive neovascularization. Silicon-based biomaterials have attracted widespread attention due to their rapid vascularization. Although calcium phosphate cement (CPC) is a mature substitute for bone, the application of CPC is limited by its slow degradation and insufficient promotion of neovascularization. Calcium silicate (CS) has been shown to stimulate vascular endothelial proliferation. Thus, CS may be added to CPC (CPC-CS) to improve the biocompatibility and neovascularization of CPC. In the early phase of bone repair (the inflammatory phase), macrophages accumulate around the biomaterial and exert both anti- and pro-inflammatory effects. However, the effect of CPC-CS on macrophage polarization is not known, and it is not clear whether the effect on neovascularization is mediated through macrophage polarization. In the present study, we explored whether silicon-mediated macrophage polarization contributes to vascularization by evaluating the CPC-CS-mediated changes in the immuno-environment under different silicate ion contents both in vivo and in vitro. We found that the silicon released from CPC-CS can promote macrophage polarization into the M2 phenotype and rapid endothelial neovascularization during bone repair. Dramatic neovascularization and osteogenesis were observed in mouse calvarial bone defects implanted with CPC-CS containing 60% CS. These findings suggest that CPC-CS is a novel biomaterial that can modulate immune response, promote endothelial proliferation, and facilitate neovascularization and osteogenesis. Thus, CPC-CS shows potential as a bone substitute material.
Assuntos
Cimentos Ósseos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Fosfatos de Cálcio/farmacologia , Silicatos/farmacologia , Silício/farmacologia , Crânio/efeitos dos fármacos , Animais , Cimentos Ósseos/química , Compostos de Cálcio/química , Fosfatos de Cálcio/química , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Silicatos/química , Silício/química , Crânio/irrigação sanguínea , Crânio/lesõesRESUMO
Calcium-phosphate cements (CPCs) have been used as bone filling materials in orthopaedic surgery. However, CPCs are set using an acid-base reaction, and then change into stable hydroxyapatite (HAp) in a living body. Therefore, we developed bioresorbable chelate-setting ß-tricalcium phosphate (ß-TCP) cements based on surface modifications of inositol phosphate (IP6). In order to improve the bioresorbability, we fabricated IP6/ß-TCP cements hybridized with poly(lactic-co-glycolic acid) (PLGA) particles as a pore-forming agent. The compressive strengths of the cements with the amounts of 5 and 10 mass% PLGA particles were 23.2 and 22.8 MPa, respectively. There was no significant difference from cements without PLGA (23.4 MPa). The setting times of the cement specimens with PLGA particles (30 min) were a little longer than those without PLGA particles (26.3 min). The lack of cytotoxicity of the cement specimens was confirmed using osteoblast-like cells (MC3T3-E1). Cylindrical defects were made by drilling into the tibia of mini-pigs and injecting the prepared cement pastes into the defects. Twelve weeks after implantation the specimens were stained with toluidine blue and histologically evaluated. Histological evaluation of cement specimens with PLGA particles showed enhanced bioresorbability. Newly-formed bone was also observed inside cement specimens with PLGA particles. The IP6/ß-TCP cement specimens with PLGA particles had excellent material properties, such as injectability, compressive strength, high porosity, no cytotoxicity in vitro, bioresorption and bone formation abilities in vivo. Organic-inorganic hybridized CPCs are expected to be valuable as novel biodegradable paste-like artificial bone fillers.
RESUMO
Cleft alveolar bone defects can be treated potentially with tissue engineered bone grafts. Herein, we developed novel biphasic bone constructs consisting of two clinically certified materials, a calcium phosphate cement (CPC) and a fibrin gel that were biofabricated using 3D plotting. The fibrin gel was loaded with mesenchymal stromal cells (MSC) derived from bone marrow. Firstly, the degradation of fibrin as well as the behavior of cells in the biphasic system were evaluated in vitro. Fibrin degraded quickly in presence of MSC. Our results showed that the plotted CPC structure acted slightly stabilizing for the fibrin gel. However, with passing time and fibrin degradation, MSC migrated to the CPC surface. Thus, the fibrin gel could be identified as cell delivery system. A pilot study in vivo was conducted in artificial craniofacial defects in Lewis rats. Ongoing bone formation could be evidenced over 12 weeks but the biphasic constructs were not completely osseous integrated. Nevertheless, our results show that the combination of 3D plotted CPC constructs and fibrin as suitable cell delivery system enables the fabrication of novel regenerative implants for the treatment of alveolar bone defects.
Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Fibrina/química , Engenharia Tecidual , Animais , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Cementoplastia/métodos , Hidrogéis/química , Imuno-Histoquímica , Células-Tronco Mesenquimais , Osteogênese , Ratos , Alicerces Teciduais , Microtomografia por Raio-XRESUMO
OBJECTIVE: To evaluate the biocompatibility and osteogenic effect of new calcium phosphate cement (CPC) in vivo and to provide experimental basis for its further clinical application. METHODS: Thirty New Zealand white rabbits were randomly divided into four groups: CPC group, CPC+Bio-Oss group, Bio-Oss group and blank control group. Bone defect models of 6 mm in diameter and 7 mm in depth were made on the lateral condyle of bilateral hind legs of the rabbits. CPC, Bio-Oss and CPC+Bio-Oss mixture were implanted into the bone defect according to the group, and the mass ratio of CPC and Bio-Oss was 4 ⶠ1. The experimental animals were sacrificed the 4th, 12th and 24th week after operation. The tissue around the bone defect was taken for histological evaluation by H&E staining. Bone ingrowth fraction (BIF) was calculated. The expression of BMP-2 and COL-â was detected by immunohis- tochemical staining by calculating the mean optical density (MOD) of the positive area the 4th week after operation, and the bone healing of each group was evaluated at different time points. The measurement data were analyzed by one-way ANOVA and LSD test was used for multiple comparison of the differences between the means by SPSS 19.0. P < 0.05 was considered to be statistically significant. RESULTS: The results of H&E staining showed that the BIF values of CPC group, CPC + Bio-Oss group and Bio-Oss group were significantly higher than those of blank control group at the same time point (P < 0.01). The BIF values of CPC group were lower than those of Bio-Oss group and CPC + Bio-Oss group (P < 0.01). There was no significant difference between CPC + Bio-Oss group and Bio-Oss group. Immunohistochemical staining showed that the MOD values of BMP-2 and COL-â in CPC group were higher than those in blank control group, but lower than those in Bio-Oss group and CPC+Bio-Oss group (P < 0.01). There was no significant difference between BMP-2 and COL-â in CPC+Bio-Oss group and Bio-Oss group. CONCLUSION: The new calcium phosphate cement has good biocompatibility and can promote early osteogenesis with stable and long-term effect.
Assuntos
Fosfatos de Cálcio , Cálcio , Animais , Cimentos Ósseos , Osteogênese , Coelhos , EstrôncioRESUMO
Bacterial adhesion to the calcium phosphate surface is a serious problem in surgery. To prevent bacterial infection, the development of calcium-phosphate cements (CPCs) with bactericidal properties is indispensable. The aim of this study was to fabricate antibacterial CPCs and evaluate their biological properties. Silver-containing tricalcium phosphate (Ag-TCP) microspheres consisting of α/ß-TCP phases were synthesized by an ultrasonic spray-pyrolysis technique. The powders prepared were mixed with the setting liquid to fabricate the CPCs. The resulting cements consisting of ß-TCP and hydroxyapatite had a porous structure and wash-out resistance. Additionally, silver and calcium ions could be released into the culture medium from Ag-TCP cements for a long time accompanied by the dissolution of TCP. These data showed the bioresorbability of the Ag-TCP cement. In vitro antibacterial evaluation demonstrated that both released and immobilized silver suppressed the growth of bacteria and prevented bacterial adhesion to the surface of CPCs. Furthermore, histological evaluation by implantation of Ag-TCP cements into rabbit tibiae exhibited abundant bone apposition on the cement without inflammatory responses. These results showed that Ag-TCP cement has a good antibacterial property and good biocompatibility. The present Ag-TCP cements are promising for bone tissue engineering and may be used as antibacterial biomaterials.
Assuntos
Antibacterianos/química , Cimentos Ósseos/química , Microesferas , Animais , Antibacterianos/farmacologia , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/química , Hidroxiapatitas/química , Masculino , Coelhos , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Tíbia/cirurgiaRESUMO
The objectives of this study were to incorporate iron oxide nanoparticles (IONPs) into calcium phosphate cement (CPC) to enhance bone engineering, and to investigate the effects of IONPs as a liquid or powder on stem cells using IONP-CPC scaffold for the first time. IONP-CPCs were prepared by adding 1% IONPs as liquid or powder. Human dental pulp stem cells (hDPSCs) were seeded. Subcutaneous implantation in mice was investigated. IONP-CPCs had better cell spreading, and greater ALP activity and bone mineral synthesis, than CPC control. Subcutaneous implantation for 6 weeks showed good biocompatibility for all groups. In conclusion, incorporating IONPs in liquid or powder form both substantially enhanced hDPSCs on IONP-CPC scaffold and exhibited excellent biocompatibility. IONP incorporation as a liquid was better than IONP powder in promoting osteogenic differentiation of hDPSCs. Incorporating IONPs and chitosan lactate together in CPC enhanced osteogenesis of hDPSCs more than using either alone.
Assuntos
Fosfatos de Cálcio , Células Imobilizadas , Polpa Dentária/metabolismo , Compostos Férricos , Nanopartículas/química , Osteogênese , Transplante de Células-Tronco , Células-Tronco/metabolismo , Alicerces Teciduais/química , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Polpa Dentária/citologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Xenoenxertos , Humanos , Masculino , Camundongos , Células-Tronco/citologiaRESUMO
We present a solid-state nuclear magnetic resonance (NMR) spectroscopy study of the local 31 P and 1 H environments in monetite [CaHPO 4 ; dicalcium phosphate anhydrous (DCPA)], as well as their relative spatial proximities. Each of the three 1 H NMR peaks was unambiguously assigned to its respective crystallographically unique H site of monetite, while their pairwise spatial proximities were probed by homonuclear 1 H- 1 H double quantum-single quantum NMR experimentation under fast magic-angle spinning (MAS) of 66 kHz. We also examined the relative 1 H- 31 P proximities among the inequivalent {P1, P2} and {H1, H2, H3} sites in monetite; the corresponding shortest internuclear 1 H- 31 P distances accorded well with those of a previous neutron diffraction study. The NMR results from the monetite phase were also contrasted with those observed from the monetite component present in a pyrophosphate-bearing calcium phosphate cement, demonstrating that while the latter represents a disordered form of monetite, it shares all essential local features of the monetite structure.
Assuntos
Fosfatos de Cálcio/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ligação de HidrogênioRESUMO
1 H magnetic resonance imaging (MRI) by a zero echo time (ZTE) sequence is an excellent method to image teeth. Calcium phosphate cement (CPC) materials are applied in the restoration of tooth lesions, but it has not yet been investigated whether they can be detected by computed tomography (CT) or MRI. The aim of this study was to optimize high-field ZTE imaging to enable the visualization of a new CPC formulation implanted in teeth and to apply this in the assessment of its decomposition in vivo. CPC was implanted in three human and three goat teeth ex vivo and in three goat teeth in vivo. An ultrashort echo time (UTE) sequence with multiple flip angles and echo times was applied at 11.7 T to measure T1 and T2 * values of CPC, enamel and dentin. Teeth with CPC were imaged with an optimized ZTE sequence. Goat teeth implanted with CPC in vivo were imaged after 7 weeks ex vivo. T2 * relaxation of implanted CPC, dentin and enamel was better fitted by a model assuming a Gaussian rather than a Lorentzian distribution. For CPC and human enamel and dentin, the average T2 * values were 273 ± 19, 562 ± 221 and 476 ± 147 µs, respectively, the average T2 values were 1234 ± 27, 963 ± 151 and 577 ± 41 µs, respectively, and the average T1 values were 1065 ± 45, 972 ± 40 and 903 ± 7 ms, respectively. In ZTE images, CPC had a higher signal-to-noise-ratio than dentin and enamel because of the higher water content. Seven weeks after in vivo implantation, the CPC-filled lesions showed less homogeneous structures, a lower T1 value and T2 * separated into two components. MRI by ZTE provides excellent contrast for CPC in teeth and allows its decomposition to be followed.
Assuntos
Cimentos Ósseos/análise , Fosfatos de Cálcio/análise , Imageamento por Ressonância Magnética , Dente/química , Animais , Dentina/química , Cabras , Humanos , Razão Sinal-Ruído , Fatores de Tempo , Água/químicaRESUMO
Purpose/Aim of the study: To evaluate the biomechanical characteristics and biocompatibility of an injectable, biodegradable calcium phosphate cement (CPC) containing poly lactic-co-glycolic acid (PLGA). MATERIALS AND METHODS: A vertebral compression fracture model was established using 20 human cadaveric vertebrae (T11-L3) divided into CPC/PLGA composite versus PMMA groups for biomechanical testing. In addition, 35 New Zealand rabbits were used to evaluate biodegradability and osteoconductive properties of CPC/PLGA using a bone defect model. In vitro cytotoxicity was evaluated by culturing with L929 cells. RESULTS: The CPC/PLGA composite effectively restored vertebral biomechanical properties. Compared with controls, the maximum load and compression strength of the CPC/PLGA group were lower, and stiffness was lower after kyphoplasty (all p <.05). Degradation was much slower in the control CPC compared with CPC/PLGA group. The bone tissue percentage in the CPC/PLGA group (44.9 ± 23.7%) was significantly higher compared with control CPC group (25.7 ± 10.9%) (p <.05). The viability of cells cultured on CPC/PLGA was greater than 70% compared with the blanks. CONCLUSIONS: Our biodegradable CPC/PLGA composite showed good biomechanical properties, cytocompatibility, and osteoconductivity and may represent an ideal bone substitute for future applications.