Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.072
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(26): 5784-5797.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38101408

RESUMO

Cannabis activates the cannabinoid receptor 1 (CB1), which elicits analgesic and emotion regulation benefits, along with adverse effects, via Gi and ß-arrestin signaling pathways. However, the lack of understanding of the mechanism of ß-arrestin-1 (ßarr1) coupling and signaling bias has hindered drug development targeting CB1. Here, we present the high-resolution cryo-electron microscopy structure of CB1-ßarr1 complex bound to the synthetic cannabinoid MDMB-Fubinaca (FUB), revealing notable differences in the transducer pocket and ligand-binding site compared with the Gi protein complex. ßarr1 occupies a wider transducer pocket promoting substantial outward movement of the TM6 and distinctive twin toggle switch rearrangements, whereas FUB adopts a different pose, inserting more deeply than the Gi-coupled state, suggesting the allosteric correlation between the orthosteric binding pocket and the partner protein site. Taken together, our findings unravel the molecular mechanism of signaling bias toward CB1, facilitating the development of CB1 agonists.


Assuntos
Arrestina , Receptor CB1 de Canabinoide , Transdução de Sinais , Arrestina/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Microscopia Crioeletrônica , Receptor CB1 de Canabinoide/metabolismo , Humanos , Animais , Linhagem Celular
2.
Cell ; 180(4): 645-654.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004460

RESUMO

Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptor CB2 de Canabinoide/química , Transdução de Sinais , Animais , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/farmacologia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Células Sf9 , Spodoptera
3.
Cell ; 176(3): 448-458.e12, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30639101

RESUMO

Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Activation of CB1-Gi signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of Gi activation by CB1. Here, we present the structure of the CB1-Gi signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities. The structure illustrates how FUB stabilizes the receptor in an active state to facilitate nucleotide exchange in Gi. The results compose the structural framework to explain CB1 activation by different classes of ligands and provide insights into the G protein coupling and selectivity mechanisms adopted by the receptor.


Assuntos
Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/ultraestrutura , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Microscopia Crioeletrônica/métodos , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Indazóis/farmacologia , Ligantes , Ligação Proteica , Receptor CB1 de Canabinoide/química , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Células Sf9 , Transdução de Sinais/efeitos dos fármacos
4.
Cell ; 176(3): 459-467.e13, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30639103

RESUMO

The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257's unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.


Assuntos
Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/ultraestrutura , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Desenho de Fármacos , Endocanabinoides , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/química , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Células Sf9 , Relação Estrutura-Atividade
5.
Cell ; 167(3): 750-762.e14, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768894

RESUMO

Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.


Assuntos
Antagonistas de Receptores de Canabinoides/química , Morfolinas/química , Pirazóis/química , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/química , Sítios de Ligação , Canabinoides/farmacologia , Cannabis/química , Cristalografia por Raios X , Dronabinol/farmacologia , Endocanabinoides/farmacologia , Humanos , Ligantes , Morfolinas/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Pirazóis/síntese química
6.
Proc Natl Acad Sci U S A ; 121(24): e2321532121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830102

RESUMO

Cannabis sativa is known for its therapeutic benefit in various diseases including pain relief by targeting cannabinoid receptors. The primary component of cannabis, Δ9-tetrahydrocannabinol (THC), and other agonists engage the orthosteric site of CB1, activating both Gi and ß-arrestin signaling pathways. The activation of diverse pathways could result in on-target side effects and cannabis addiction, which may hinder therapeutic potential. A significant challenge in pharmacology is the design of a ligand that can modulate specific signaling of CB1. By leveraging insights from the structure-function selectivity relationship (SFSR), we have identified Gi signaling-biased agonist-allosteric modulators (ago-BAMs). Further, two cryoelectron microscopy (cryo-EM) structures reveal the binding mode of ago-BAM at the extrahelical allosteric site of CB1. Combining mutagenesis and pharmacological studies, we elucidated the detailed mechanism of ago-BAM-mediated biased signaling. Notably, ago-BAM CB-05 demonstrated analgesic efficacy with fewer side effects, minimal drug toxicity and no cannabis addiction in mouse pain models. In summary, our finding not only suggests that ago-BAMs of CB1 provide a potential nonopioid strategy for pain management but also sheds light on BAM identification for GPCRs.


Assuntos
Microscopia Crioeletrônica , Receptor CB1 de Canabinoide , Transdução de Sinais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/química , Animais , Regulação Alostérica/efeitos dos fármacos , Camundongos , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Relação Estrutura-Atividade , Dronabinol/farmacologia , Dronabinol/química , Dronabinol/análogos & derivados , Cannabis/química , Cannabis/metabolismo
7.
J Cell Sci ; 137(11)2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864427

RESUMO

Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism. Here, we show in rat primary neuronal cultures that the H9 domain binds to the endocytic adaptor protein SGIP1 to promote CB1R expression in the axonal membrane. Overexpression of SGIP1 increases CB1R axonal surface localisation but has no effect on CB1R lacking the H9 domain (CB1RΔH9). Conversely, SGIP1 knockdown reduces axonal surface expression of CB1R but does not affect CB1RΔH9. Furthermore, SGIP1 knockdown diminishes CB1R-mediated inhibition of presynaptic Ca2+ influx in response to neuronal activity. Taken together, these data advance mechanistic understanding of endocannabinoid signalling by demonstrating that SGIP1 interaction with the H9 domain underpins axonal CB1R surface expression to regulate presynaptic responsiveness.


Assuntos
Axônios , Ligação Proteica , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Axônios/metabolismo , Ratos , Domínios Proteicos , Humanos , Células Cultivadas , Neurônios/metabolismo , Ratos Sprague-Dawley , Membrana Celular/metabolismo
8.
Exp Cell Res ; 435(1): 113908, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163565

RESUMO

The endocannabinoid anandamide (AEA) stimulates adipogenesis via the cannabinoid receptor CB1 in adipose stromal cells (ASCs). However, AEA interacts also with nonclassical cannabinoid receptors, including transient receptor potential cation channel (TRPV)1 and G protein-coupled receptor (GPR)55. Their roles in AEA mediated adipogenesis of human ASCs have not been investigated. We examined the receptor-expressions by immunostaining on human ASCs and tested their functionality by measuring the expression of immediate early genes (IEGs) related to the transcription factor-complex AP-1 upon exposition to receptor agonists. Cells were stimulated with increasing concentrations of specific ligands to investigate the effects on ASC viability (proliferation and metabolic activity), secretory activity, and AEA mediated differentiation. ASCs expressed both receptors, and their activation suppressed IEG expression. TRPV1 did not affect viability or cytokine secretion. GPR55 decreased proliferation, and it inhibited the release of hepatocyte growth factor. Blocking GPR55 increased the pro-adipogenic activity of AEA. These data suggest that GPR55 functions as negative regulator of cannabinoid mediated pro-adipogenic capacity in ASCs.


Assuntos
Adipogenia , Ácidos Araquidônicos , Endocanabinoides , Humanos , Endocanabinoides/farmacologia , Receptores de Canabinoides , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Células Estromais/metabolismo
9.
Diabetologia ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864887

RESUMO

AIMS/HYPOTHESIS: Insulitis, a hallmark of inflammation preceding autoimmune type 1 diabetes, leads to the eventual loss of functional beta cells. However, functional beta cells can persist even in the face of continuous insulitis. Despite advances in immunosuppressive treatments, maintaining functional beta cells to prevent insulitis progression and hyperglycaemia remains a challenge. The cannabinoid type 1 receptor (CB1R), present in immune cells and beta cells, regulates inflammation and beta cell function. Here, we pioneer an ex vivo model mirroring human insulitis to investigate the role of CB1R in this process. METHODS: CD4+ T lymphocytes were isolated from peripheral blood mononuclear cells (PBMCs) from male and female individuals at the onset of type 1 diabetes and from non-diabetic individuals, RNA was extracted and mRNA expression was analysed by real-time PCR. Single beta cell expression from donors with type 1 diabetes was obtained from data mining. Patient-derived human islets from male and female cadaveric donors were 3D-cultured in solubilised extracellular matrix gel in co-culture with the same donor PBMCs, and incubated with cytokines (IL-1ß, TNF-α, IFN-γ) for 24-48 h in the presence of vehicle or increasing concentrations of the CB1R blocker JD-5037. Expression of CNR1 (encoding for CB1R) was ablated using CRISPR/Cas9 technology. Viability, intracellular stress and signalling were assayed by live-cell probing and real-time PCR. The islet function measured as glucose-stimulated insulin secretion was determined in a perifusion system. Infiltration of immune cells into the islets was monitored by microscopy. Non-obese diabetic mice aged 7 weeks were treated for 1 week with JD-5037, then euthanised. Profiling of immune cells infiltrated in the islets was performed by flow cytometry. RESULTS: CNR1 expression was upregulated in circulating CD4+ T cells from individuals at type 1 diabetes onset (6.9-fold higher vs healthy individuals) and in sorted islet beta cells from donors with type 1 diabetes (3.6-fold higher vs healthy counterparts). The peripherally restricted CB1R inverse agonist JD-5037 arrested the initiation of insulitis in humans and mice. Mechanistically, CB1R blockade prevented islet NO production and ameliorated the ATF6 arm of the unfolded protein response. Consequently, cyto/chemokine expression decreased in human islets, leading to sustained islet cell viability and function. CONCLUSIONS/INTERPRETATION: These results suggest that CB1R could be an interesting target for type 1 diabetes while highlighting the regulatory mechanisms of insulitis. Moreover, these findings may apply to type 2 diabetes where islet inflammation is also a pathophysiological factor. DATA AVAILABILITY: Transcriptomic analysis of sorted human beta cells are from Gene Expression Omnibus database, accession no. GSE121863, available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3448161 .

10.
Physiol Genomics ; 56(4): 327-342, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314698

RESUMO

This study investigated the interaction between genetic differences in stress reactivity/coping and environmental challenges, such as acute stress during adolescence on adult contextual fear memory and anxiety-like behaviors. Fischer 344 (F344) and the inbred F344;WKY-Stresp3/Eer congenic strain (congenic), in which chromosomal regions from the Wistar-Kyoto (WKY) strain were introgressed into the F344 background, were exposed to a modified forced swim test during adolescence, while controls were undisturbed. In adulthood, fear learning and memory, assessed by contextual fear conditioning, were significantly greater in congenic animals compared with F344 animals, and stress during adolescence increased them even further in males of both strains. Anxiety-like behavior, measured by the open field test, was also greater in congenic than F344 animals, and stress during adolescence increased it further in both strains of adult males. Whole genome sequencing of the F344;WKY-Stresp3/Eer strain revealed an enrichment of WKY genotypes in chromosomes 9, 14, and 15. An example of functional WKY sequence variations in the congenic strain, cannabinoid receptor interacting protein 1 (Cnrip1) had a Cnrip1 transcript isoform that lacked two exons. Although the original hypothesis that the genetic predisposition to increased anxiety of the WKY donor strain would exaggerate fear memory relative to the background strain was confirmed, the consequences of adolescent stress were strain independent but sex dependent in adulthood. Molecular genomic approaches combined with genetic mapping of WKY sequence variations in chromosomes 9, 14, and 15 could aid in finding quantitative trait genes contributing to the variation in fear memory.NEW & NOTEWORTHY This study found that 1) whole genome sequencing of congenic strains should be a criterion for their recognition; 2) sequence variations between Wistar-Kyoto and Fischer 344 strains at regions of chromosomes 9, 14, and 15 contribute to differences in contextual fear memory and anxiety-like behaviors; and 3) stress during adolescence affects these behaviors in males, but not females, and is independent of strain.


Assuntos
Ansiedade , Medo , Masculino , Ratos , Animais , Ratos Endogâmicos WKY , Ratos Endogâmicos F344 , Ansiedade/genética , Cromossomos , Animais Congênicos , Proteínas de Transporte/genética
11.
Circulation ; 147(2): 158-174, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36448459

RESUMO

BACKGROUND: Diabetic heart dysfunction is a common complication of diabetes. Cell death is a core event that leads to diabetic heart dysfunction. However, the time sequence of cell death pathways and the precise time to intervene of particular cell death type remain largely unknown in the diabetic heart. This study aims to identify the particular cell death type that is responsible for diabetic heart dysfunction and to propose a promising therapeutic strategy by intervening in the cell death pathway. METHODS: Type 2 diabetes models were established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. The type 1 diabetes model was established in streptozotocin-induced mice. Apoptosis and programmed cell necrosis (necroptosis) were detected in diabetic mouse hearts at different ages. G protein-coupled receptor-targeted drug library was searched to identify potential receptors regulating the key cell death pathway. Pharmacological and genetic approaches that modulate the expression of targets were used. Stable cell lines and a homemade phosphorylation antibody were prepared to conduct mechanistic studies. RESULTS: Necroptosis was activated after apoptosis at later stages of diabetes and was functionally responsible for cardiac dysfunction. Cannabinoid receptor 2 (CB2R) was a key regulator of necroptosis. Mechanically, during normal glucose levels, CB2R inhibited S6 kinase-mediated phosphorylation of BACH2 at serine 520, thereby leading to BACH2 translocation to the nucleus, where BACH2 transcriptionally repressed the necroptosis genes Rip1, Rip3, and Mlkl. Under hyperglycemic conditions, high glucose induced CB2R internalization in a ß-arrestin 2-dependent manner; thereafter, MLKL (mixed lineage kinase domain-like), but not receptor-interacting protein kinase 1 or 3, phosphorylated CB2R at serine 352 and promoted CB2R degradation by ubiquitin modification. Cardiac re-expression of CB2R rescued diabetes-induced cardiomyocyte necroptosis and heart dysfunction, whereas cardiac knockout of Bach2 diminished CB2R-mediated beneficial effects. In human diabetic hearts, both CB2R and BACH2 were negatively associated with diabetes-induced myocardial injuries. CONCLUSIONS: CB2R transcriptionally repressed necroptosis through interaction with BACH2; in turn, MLKL formed a negative feedback to phosphorylate CB2R. Our study provides the integrative view of a novel molecular mechanism loop for regulation of necroptosis centered by CB2R, which represents a promising alternative strategy for controlling diabetic heart dysfunction.


Assuntos
Cardiomiopatias , Diabetes Mellitus Tipo 2 , Traumatismos Cardíacos , Camundongos , Humanos , Animais , Necroptose , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Retroalimentação , Estreptozocina , Apoptose , Necrose , Receptores de Canabinoides/metabolismo , Glucose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
12.
Annu Rev Pharmacol Toxicol ; 61: 441-463, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32867595

RESUMO

Inspired by the medicinal properties of the plant Cannabis sativa and its principal component (-)-trans-Δ9-tetrahydrocannabinol (THC), researchers have developed a variety of compounds to modulate the endocannabinoid system in the human brain. Inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which are the enzymes responsible for the inactivation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, respectively, may exert therapeutic effects without inducing the adverse side effects associated with direct cannabinoid CB1 receptor stimulation by THC. Here we review the FAAH and MAGL inhibitors that have reached clinical trials, discuss potential caveats, and provide an outlook on where the field is headed.


Assuntos
Endocanabinoides , Inibidores Enzimáticos , Amidoidrolases , Humanos , Lipase
13.
J Neuroinflammation ; 21(1): 206, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160534

RESUMO

Since its detection in the brain, the cannabinoid receptor type 2 (CB2) has been considered a promising therapeutic target for various neurological and psychiatric disorders. However, precise brain mapping of its expression is still lacking. Using magnetic cell sorting, calibrated RT-qPCR and single-nucleus RNAseq, we show that CB2 is expressed at a low level in all brain regions studied, mainly by few microglial cells, and by neurons in an even lower proportion. Upon lipopolysaccharide stimulation, modeling neuroinflammation in non-sterile conditions, we demonstrate that the inflammatory response is associated with a transient reduction in CB2 mRNA levels in brain tissue, particularly in microglial cells. This result, confirmed in the BV2 microglial cell line, contrasts with the positive correlation observed between CB2 mRNA levels and the inflammatory response upon stimulation by interferon-gamma, modeling neuroinflammation in sterile condition. Discrete brain CB2 expression might thus be up- or down-regulated depending on the inflammatory context.


Assuntos
Encéfalo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia , Receptor CB2 de Canabinoide , Animais , Microglia/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/biossíntese , Camundongos , Encéfalo/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Doenças Neuroinflamatórias/metabolismo
14.
J Autoimmun ; 147: 103233, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797049

RESUMO

Systemic sclerosis (SSc) poses a significant challenge in autoimmunology, characterized by the development of debilitating fibrosis of skin and internal organs. The pivotal role of dysregulated T cells, notably the skewed polarization toward Th2 cells, has been implicated in the vascular damage and progressive fibrosis observed in SSc. In this study, we explored the underlying mechanisms by which cannabinoid receptor 2 (CB2) highly selective agonist HU-308 restores the imbalance of T cells to alleviate SSc. Using a bleomycin-induced SSc (BLM-SSc) mouse model, we demonstrated that HU-308 effectively attenuates skin and lung fibrosis by specifically activating CB2 on CD4+ T cells to inhibit the polarization of Th2 cells in BLM-SSc mice, which was validated by Cnr2-specific-deficient mice. Different from classical signaling downstream of G protein-coupled receptors (GPCRs), HU-308 facilitates the expression of SOCS3 protein and subsequently impedes the IL2/STAT5 signaling pathway during Th2 differentiation. The deficiency of SOCS3 partially mitigated the impact of HU-308. Analysis of a cohort comprising 80 SSc patients and 82 healthy controls revealed an abnormal elevation in the Th2/Th1 ratio in SSc patients. The proportion of Th2 cells showed a significant positive correlation with mRSS score and positivity of anti-Scl-70. Administration of HU-308 to PBMCs and peripheral CD4+ T cells from SSc patients led to the upregulation of SOCS3, which effectively suppressed the aberrantly activated STAT5 signaling pathway and the proportion of CD4+IL4+ T cells. In conclusion, our findings unveil a novel mechanism by which the CB2 agonist HU-308 ameliorates fibrosis in SSc by targeting and reducing Th2 responses. These insights provide a foundation for future therapeutic approaches in SSc by modulating Th2 responses.


Assuntos
Diferenciação Celular , Modelos Animais de Doenças , Receptor CB2 de Canabinoide , Escleroderma Sistêmico , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Células Th2 , Animais , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/patologia , Células Th2/imunologia , Camundongos , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Feminino , Janus Quinases/metabolismo , Masculino , Camundongos Knockout , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Bleomicina , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Pessoa de Meia-Idade
15.
Toxicol Appl Pharmacol ; : 117081, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216835

RESUMO

The endocannabinoid system plays an important role in the regulation of metabolism, growth and regeneration of peripheral tissues, including liver, adipose and muscle tissue. Studies in cells, rodents and humans showed that cannabinoid receptor 1 (CB1) antagonist treatment is an effective strategy to improve features of metabolic health such as substrate metabolism, at least in models of metabolic dysregulation. However, acute signaling events that might induce these metabolic adaptations are not understood. It is not clear whether, and to which extent, a single treatment with a CB1 antagonist induces acute effects in peripheral, metabolic tissues. Therefore, the present study compared the phosphorylation status of signaling pathways and metabolic markers in liver, adipose and muscle tissue of mice treated with the peripherally restricted CB1 antagonist AM6545 and vehicle-treated mice. Protein kinase A phosphorylation was downregulated in white and brown adipose tissue, whereas the mitogen-activated protein kinase, phospho-extracellular signal-regulated kinase, was higher in liver, white adipose and muscle tissue of AM6545-treated mice. Additionally, Akt-mammalian target of rapamycin activation was higher in all tissues of AM6545-treated mice, whereas the phosphorylation status of metabolic markers remained unaffected. These data indicate that acute CB1 antagonism is effective to induce phosphorylation events of signaling cascades and metabolic markers in metabolic tissues of healthy, lean mice within a 90-min time window. The observed adaptations to AM6545 treatment do not fully align with earlier in vitro and in vivo findings, which could be ascribed to differences in cell type, exposure intensity (dose and time), health status and species.

16.
Clin Sci (Lond) ; 138(6): 413-434, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38505994

RESUMO

Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.


Assuntos
Canabinoides , Cardiotoxicidade , Humanos , Receptores de Canabinoides/fisiologia , Agonistas de Receptores de Canabinoides/efeitos adversos , Canabinoides/efeitos adversos , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide
17.
Neurochem Res ; 49(9): 2423-2439, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38847909

RESUMO

Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.


Assuntos
Ácidos Araquidônicos , Caenorhabditis elegans , Endocanabinoides , Alcamidas Poli-Insaturadas , Canais de Cátion TRPV , Animais , Caenorhabditis elegans/metabolismo , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Canais de Cátion TRPV/metabolismo , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Receptores de Canabinoides/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Temperatura Alta , Analgésicos/farmacologia
18.
BMC Infect Dis ; 24(1): 398, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609845

RESUMO

BACKGROUND: This study aims to explore the potential of utilizing the expression levels of cannabinoid receptor 2 (CB2), µ-opioid receptor (MOR), MCP-1, IL-17, IFN-γ, and osteopontin as predictors for the severity of SARS-CoV-2 infection. The overarching goal is to delineate the pathogenic mechanisms associated with SARS-CoV-2. METHODS: Using quantitative Real-time PCR, we analyzed the gene expression levels of CB2 and MOR in nasopharynx specimens obtained from patients diagnosed with SARS-CoV-2 infection, with 46 individuals classified as having severe symptoms and 46 as non-severe. Additionally, we measured the circulating levels of MCP-1, IL-17, IFN-γ, and osteopontin using an ELISA assay. We examined the predictive capabilities of these variables and explored their correlations across all patient groups. RESULTS: Our results demonstrated a significant increase in MOR gene expression in the epithelium of patients with severe infection. The expression of CB2 receptor was also elevated in both male and female patients with severe symptoms. Furthermore, we observed concurrent rises in MCP-1, IL-17, IFN-γ, and osteopontin levels in patients, which were linked to disease severity. CB2, MOR, MCP-1, IL-17, IFN-γ, and osteopontin showed strong predictive abilities in distinguishing between patients with varying degrees of SARS-CoV-2 severity. Moreover, we identified a significant correlation between CB2 expression and the levels of MOR, MCP-1, osteopontin, and IFN-γ. CONCLUSIONS: These results underline the interconnected nature of molecular mediators in a sequential manner, suggesting that their overexpression may play a role in the development of SARS-CoV-2 infections.


Assuntos
COVID-19 , Humanos , Feminino , Masculino , Prognóstico , COVID-19/diagnóstico , Receptores de Canabinoides , Analgésicos Opioides , Interleucina-17 , Osteopontina , SARS-CoV-2 , Fatores Imunológicos
19.
Addict Biol ; 29(8): e13429, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109814

RESUMO

The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators. We hypothesized that negative allosteric modulation of CB1R signalling would reduce the reinforcing properties of morphine and decrease behaviours associated with opioid misuse. By employing intravenous self-administration in mice, we studied the effects of GAT358, a functionally-biased CB1R negative allosteric modulator (NAM), on morphine intake, relapse-like behaviour and motivation to work for morphine infusions. GAT358 reduced morphine infusion intake during the maintenance phase of morphine self-administration under a fixed ratio 1 schedule of reinforcement. GAT358 also decreased morphine-seeking behaviour after forced abstinence. Moreover, GAT358 dose dependently decreased the motivation to obtain morphine infusions under a progressive ratio schedule of reinforcement. Strikingly, GAT358 did not affect the motivation to work for food rewards in an identical progressive ratio task, suggesting that the effect of GAT358 in decreasing opioid self-administration was reward specific. Furthermore, GAT58 did not produce motor ataxia in the rotarod test. Our results suggest that CB1R NAMs reduced the reinforcing properties of morphine and could represent a viable therapeutic route to safely decrease misuse of opioids.


Assuntos
Morfina , Receptor CB1 de Canabinoide , Autoadministração , Animais , Morfina/farmacologia , Morfina/administração & dosagem , Receptor CB1 de Canabinoide/efeitos dos fármacos , Camundongos , Regulação Alostérica/efeitos dos fármacos , Masculino , Comportamento de Procura de Droga/efeitos dos fármacos , Recidiva , Reforço Psicológico , Motivação/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Administração Intravenosa , Condicionamento Operante/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782458

RESUMO

While cannabis is among the most used recreational drugs during pregnancy, the impact of maternal cannabis use (mCB) on fetal and child development remains unclear. Here, we assessed the effects of mCB on psychosocial and physiological measures in young children along with the potential relevance of the in utero environment reflected in the placental transcriptome. Children (∼3 to 6 y) were assessed for hair hormone levels, neurobehavioral traits on the Behavioral Assessment System for Children (BASC-2) survey, and heart rate variability (HRV) at rest and during auditory startle. For a subset of children with behavioral assessments, placental specimens collected at birth were processed for RNA sequencing. Hair hormone analysis revealed increased cortisol levels in mCB children. In addition, mCB was associated with greater anxiety, aggression, and hyperactivity. Children with mCB also showed a reduction in the high-frequency component of HRV at baseline, reflecting reduced vagal tone. In the placenta, there was reduced expression of many genes involved in immune system function including type I interferon, neutrophil, and cytokine-signaling pathways. Finally, several of these mCB-linked immune genes organized into coexpression networks that correlated with child anxiety and hyperactivity. Overall, our findings reveal a relationship between mCB and immune response gene networks in the placenta as a potential mediator of risk for anxiety-related problems in early childhood.


Assuntos
Ansiedade , Cannabis/genética , Redes Reguladoras de Genes , Fenótipo , Placenta/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Hidrocortisona , Sistema Imunitário , Masculino , Gravidez , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA