RESUMO
The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.
Assuntos
Glicoproteínas da Membrana de Plaquetas , Trombina , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/metabolismo , Proteínas Quinases/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Ativação Plaquetária/fisiologia , Plaquetas/metabolismo , Endotélio/metabolismo , Prostaglandinas IRESUMO
Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation of stellate cells into myofibroblasts that drives tumour progression. To assess cooperative mechanisms in a 3D context, we generated chimeric spheroids using human and mouse cancer and stellate cells. Species-specific deconvolution of bulk-RNA sequencing data revealed cell type-specific transcriptomes underpinning invasion. This dataset highlighted stellate-specific expression of transcripts encoding the collagen-processing enzymes ADAMTS2 and ADAMTS14. Strikingly, loss of ADAMTS2 reduced, while loss of ADAMTS14 promoted, myofibroblast differentiation and invasion independently of their primary role in collagen-processing. Functional and proteomic analysis demonstrated that these two enzymes regulate myofibroblast differentiation through opposing roles in the regulation of transforming growth factor ß availability, acting on the protease-specific substrates, Serpin E2 and fibulin 2, for ADAMTS2 and ADAMTS14, respectively. Showcasing a broader complexity for these enzymes, we uncovered a novel regulatory axis governing malignant behaviour of the pancreatic cancer stroma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Miofibroblastos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Diferenciação Celular , Colágeno/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/patologia , ProteômicaRESUMO
Podocytes are highly specialized epithelial cells that surround the capillaries of the glomeruli in the kidney. Together with the glomerular endothelial cells, these postmitotic cells are responsible for regulating filtrate from the circulating blood with their organized network of interdigitating foot processes that wrap around the glomerular basement membrane. Although podocyte injury and subsequent loss is the hallmark of many glomerular diseases, recent evidence suggests that the cell-cell communication between podocytes and other glomerular and nonglomerular cells is critical for the development and progression of kidney disease. In this review, we highlight these key cellular pathways of communication and how they might be a potential target for therapy in glomerular disease. We also postulate that podocytes might serve as a central hub for communication in the kidney under basal conditions and in response to cellular stress, which may have implications for the development and progression of glomerular diseases.
Assuntos
Nefropatias , Podócitos , Humanos , Podócitos/metabolismo , Células Endoteliais , Nefropatias/metabolismo , Rim , Membrana Basal Glomerular/metabolismoRESUMO
BACKGROUND & AIMS: While immune checkpoint blockade (ICB) has shown promise in patients with hepatocellular carcinoma (HCC), it is associated with modest response rates and immune-related adverse events (irAEs) are common. In this study, we aimed to decipher immune trajectories and mechanisms of response and/or irAEs in patients with HCC receiving anti-programmed cell death 1 (anti-PD-1) therapy. METHODS: Pre- and on-treatment peripheral blood samples (n = 60) obtained from 32 patients with HCC (Singapore cohort) were analysed by cytometry by time-of-flight and single-cell RNA sequencing, with flow cytometric validation in an independent Korean cohort (n = 29). Mechanistic validation was conducted by bulk RNA sequencing of 20 pre- and on-treatment tumour biopsies and using a murine HCC model treated with different immunotherapeutic combinations. RESULTS: Single-cell analyses identified CXCR3+CD8+ effector memory T (TEM) cells and CD11c+ antigen-presenting cells (APC) as associated with response (p = 0.0004 and 0.0255, respectively), progression-free survival (p = 0.00079 and 0.0015, respectively), and irAEs (p = 0.0034 and 0.0125, respectively) in anti-PD-1-treated patients with HCC. Type-1 conventional dendritic cells were identified as the specific APC associated with response, while 2 immunosuppressive CD14+ myeloid clusters were linked to reduced irAEs. Further analyses of CXCR3+CD8+ TEM cells showed cell-cell interactions specific to response vs. irAEs, from which the anti-PD-1 and anti-TNFR2 combination was harnessed to uncouple these effects, resulting in enhanced response without increased irAEs in a murine HCC model. CONCLUSIONS: This study identifies early predictors of clinical response to anti-PD-1 ICB in patients with HCC and offers mechanistic insights into the immune trajectories of these immune subsets at the interface between response and toxicity. We also propose a new combination immunotherapy for HCC to enhance response without exacerbating irAEs. CLINICAL TRIAL NUMBER: NCT03695952. LAY SUMMARY: Response rates to immune checkpoint blockade (ICB) treatment in hepatocellular carcinoma (HCC) remain modest and adverse events are common. Herein, we identified early predictors of response and gained an in-depth understanding of the immunological mechanisms behind response and adverse events in patients with HCC treated with ICB. We also proposed a new combination immunotherapy for HCC that enhances response without exacerbating adverse events.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Fatores Imunológicos/uso terapêutico , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Neoplasias Hepáticas/tratamento farmacológico , Receptor de Morte Celular Programada 1RESUMO
Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway-alone or in combination-would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.
Assuntos
Modelos Biológicos , Neoplasias/terapia , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/uso terapêutico , Animais , Comunicação Celular , Proliferação de Células , Técnicas de Cocultura , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Humanos , Conceitos Matemáticos , Neoplasias/patologia , Neoplasias/fisiopatologia , Neovascularização Patológica , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/fisiologia , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular/fisiologiaRESUMO
Proteolytic enzymes are highly relevant in different processes of cancer progression. Their interplay with other signalling molecules such as cytokines represents important regulation of multicellular cross-talk. In this review, we discuss protease regulation mechanisms of cytokine signalling in various types of cancer. Additionally, we highlight the reverse whereby cytokines have an impact on protease expression in an autocrine and paracrine manner, representing complex feedback mechanisms among multiple members of these two protein families. The relevance of the protease-cytokine axis is illustrated in glioblastoma, where interactions between normal mesenchymal stem cells and cancer cells play an important role in this very malignant form of brain cancer.
Assuntos
Comunicação Celular , Citocinas/metabolismo , Neoplasias/patologia , Peptídeo Hidrolases/metabolismo , Células Estromais/patologia , Animais , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Transdução de SinaisRESUMO
Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.
Assuntos
Macrófagos , Viroses , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Viroses/imunologia , Viroses/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismoRESUMO
Cancers have a complex relationship with the surrounding environment that regulates everything from progression to response to treatment. Cell-cell and cell-matrix interactions are heavily influenced by protease biology. Studies on the tumor microenvironment have revealed a new complexity for proteases, describing novel substrates for classic proteases, and protease-independent roles for these enzymes. The rapid expansion of 3D in vitro model systems provides excellent tools to study the intricate influence of proteases on the tumor microenvironment. Here we describe a spheroid invasion assay, providing a platform to interrogate key protease-matrix interactions in the context of early-stage breast cancer. Incorporation of pharmacological inhibition and RNAi techniques enables the elucidation of key protease-dependent pathways and can be complemented with immunofluorescence analysis to visualize matrix cleavage events and visualize cell behavior during collective cell invasion.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Proteólise , Comunicação Celular , Microambiente Tumoral , Linhagem Celular Tumoral , Esferoides Celulares/metabolismoRESUMO
Leishmania are eukaryotic parasites that have retained the ability to produce extracellular vesicles (EVs) through evolution. To date, it has been unclear if different DNA entities could be associated with Leishmania EVs and whether these could constitute a mechanism of horizontal gene transfer (HGT). Herein, we investigate the DNA content of EVs derived from drug-resistant parasites, as well as the EVs' potential to act as shuttles for DNA transfer. Next-generation sequencing and PCR assays confirm the enrichment of amplicons carrying drug-resistance genes associated with EVs. Transfer assays of drug-resistant EVs highlight a significant impact on the phenotype of recipient parasites induced by the expression of the transferred DNA. Recipient parasites display an enhanced growth and better control of oxidative stress. We provide evidence that eukaryotic EVs function as efficient mediators in HGT, thereby facilitating the transmission of drug-resistance genes and increasing the fitness of cells when encountering stressful environments.
Assuntos
Vesículas Extracelulares , Leishmania , Parasitos , Animais , Resistência a Medicamentos/genética , Eucariotos , Vesículas Extracelulares/metabolismo , Leishmania/genética , Leishmania/metabolismoRESUMO
The development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which are frequently associated with impaired TGF-ß signaling. To better understand the role of TGF-ß signaling in OFT formation, we generated zebrafish lacking the TGF-ß receptor Alk5 and found a strikingly specific dilation of the OFT: alk5-/- OFTs exhibit increased EC numbers as well as extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5-/- rescues the EC, ECM, and SMC defects. Transcriptomic analyses reveal downregulation of the ECM gene fibulin-5, which when overexpressed in ECs ameliorates OFT morphology and function. These findings reveal a new requirement for endothelial TGF-ß signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.
Assuntos
Endotélio Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Endotélio Vascular/citologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteína Smad3/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismoRESUMO
Rationale: Obesity is a risk factor for atherothrombosis and various cancers. However, the mechanisms are not yet completely clarified. Objectives: We aimed to verify whether the microparticles (MPs) released from thrombin-activated platelets differed in obese and non-obese women for number, size, and proteomics cargo and the capacity to modulate in vitro the expression of (i) genes related to the epithelial to mesenchymal transition (EMT) and the endothelial to mesenchymal transition (EndMT), and (ii) cyclooxygenase (COX)-2 involved in the production of angiogenic and inflammatory mediators. Methods and Results: MPs were obtained from thrombin activated platelets of four obese and their matched non-obese women. MPs were analyzed by cytofluorimeter and protein content by liquid chromatography-mass spectrometry. MPs from obese women were not different in number but showed increased heterogeneity in size. In obese individuals, MPs containing mitochondria (mitoMPs) expressed lower CD41 levels and increased phosphatidylserine associated with enhanced Factor V representing a signature of a prothrombotic state. Proteomics analysis identified 44 proteins downregulated and three upregulated in MPs obtained from obese vs. non-obese women. A reduction in the proteins of the α-granular membrane and those involved in mitophagy and antioxidant defenses-granular membrane was detected in the MPs of obese individuals. MPs released from platelets of obese individuals were more prone to induce the expression of marker genes of EMT and EndMT when incubated with human colorectal cancer cells (HT29) and human cardiac microvascular endothelial cells (HCMEC), respectively. A protein, highly enhanced in obese MPs, was the pro-platelet basic protein with pro-inflammatory and tumorigenic actions. Exclusively MPs from obese women induced COX-2 in HCMEC. Conclusion: Platelet-derived MPs of obese women showed higher heterogeneity in size and contained different levels of proteins relevant to thrombosis and tumorigenesis. MPs from obese individuals presented enhanced capacity to cause changes in the expression of EMT and EndMT marker genes and to induce COX-2. These effects might contribute to the increased risk for the development of thrombosis and multiple malignancies in obesity. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT01581801.
RESUMO
Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future.