Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003547

RESUMO

piRNAs are a class of small non-coding RNAs that play essential roles in modulating gene expression and abundant biological processes. To decode the piRNA-regulated larval response of western honeybees (Apis mellifera) to Ascosphaera apis infection, the expression pattern of piRNAs in Apis mellifera ligustica larval guts after A. apis inoculation was analyzed based on previously obtained high-quality small RNA-seq datasets, followed by structural characterization, target prediction, regulatory network investigation, and functional dissection. Here, 504, 657, and 587 piRNAs were respectively identified in the 4-, 5-, and 6-day-old larval guts after inoculation with A. apis, with 411 ones shared. These piRNAs shared a similar length distribution and first base bias with mammal piRNAs. Additionally, 96, 103, and 143 DEpiRNAs were detected in the 4-, 5-, and 6-day-old comparison groups. Targets of the DEpiRNAs were engaged in diverse pathways such as the phosphatidylinositol signaling system, inositol phosphate metabolism, and Wnt signaling pathway. These targets were involved in three energy metabolism-related pathways, eight development-associated signaling pathways, and seven immune-relevant pathways such as the Jak-STAT signaling pathway. The expression trends of five randomly selected DEpiRNAs were verified using a combination of RT-PCR and RT-qPCR. The effective overexpression and knockdown of piR-ame-945760 in A. apis-infected larval guts were achieved by feeding a specific mimic and inhibitor. Furthermore, piR-ame-945760 negatively regulated the expression of two target immune mRNAs, SOCS5 and ARF1, in the larval gut during the A. apis infection. These findings indicated that the overall expression level of piRNAs was increased and the expression pattern of piRNAs in larval guts was altered due to the A. apis infection, DEpiRNAs were putative regulators in the A. apis-response of A. m. ligustica worker larvae. Our data provide not only a platform for the functional investigation of piRNAs in honeybees, especially in bee larvae, but also a foundation for illuminating the piRNA-involved mechanisms underlying the host response to the A. apis infection.


Assuntos
Onygenales , RNA de Interação com Piwi , Abelhas/genética , Animais , Larva/genética , Larva/metabolismo , Via de Sinalização Wnt , Mamíferos
2.
J Invertebr Pathol ; 194: 107804, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933037

RESUMO

Ascosphaera (Eurotiomycetes: Onygenales) is a diverse genus of fungi that is exclusively found in association with bee nests and comprises both saprophytic and entomopathogenic species. To date, most genomic analyses have been focused on the honeybee pathogen A. apis, and we lack a genomic understanding of how pathogenesis evolved more broadly in the genus. To address this gap we sequenced the genomes of the leaf-cutting bee pathogen A. aggregata as well as three commensal species: A. pollenicola, A. atra and A. acerosa. De novo annotation and comparison of the assembled genomes was carried out, including the previously published genome of A. apis. To identify candidate virulence genes in the pathogenic species, we performed secondary metabolite-oriented analyses and clustering of biosynthetic gene clusters (BGCs). Additionally, we captured single copy orthologs to infer their phylogeny and created codon-aware alignments to determine orthologs under selective pressure in our pathogenic species. Our results show several shared BGCs between A. apis, A. aggregata and A. pollenicola, with antifungal resistance related genes present in the bee pathogens and commensals. Genes involved in metabolism and protein processing exhibit signatures of enrichment and positive selection under a fitted branch-site model. Additional known virulence genes in A. pollenicola, A. acerosa and A. atra are identified, supporting previous hypotheses that these commensals may be opportunistic pathogens. Finally, we discuss the importance of such genes in other fungal pathogens, suggesting a common route to evolution of pathogenicity in Ascosphaera.


Assuntos
Ascomicetos , Onygenales , Animais , Antifúngicos , Ascomicetos/genética , Abelhas , Genômica , Onygenales/genética , Filogenia
3.
J Invertebr Pathol ; 180: 107540, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516722

RESUMO

Chalkbrood infection caused by the fungus Ascosphaera apis currently has a significant impact on Australia's apicultural industry. We investigated the genetic variation of A. apis and colony and apiary level conditions to determine if an emerging, more virulent strain or specific conditions were responsible for the prevalence of the disease. We identified six genetically distinct strains of A. apis, four have been reported elsewhere and two are unique to Australia. Colonies and individual larvae were found to be infected with multiple strains of A. apis, neither individual strains, combinations of strains, or obvious colony or apiary characteristics were found to be predictive of hive infection levels. These results suggest that host genotype plays an important role in colony level resistance to chalkbrood infection in Australia.


Assuntos
Abelhas/microbiologia , Variação Genética , Onygenales/genética , Animais , Austrália , Criação de Abelhas , Abelhas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia
4.
J Invertebr Pathol ; 178: 107521, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347864

RESUMO

Beekeeping activities have increased recently in Argentina, a country that is a major consumer of honey and other products from hives. With the advancement of monoculture areas in Argentina and worldwide, beekeepers move from one area to another in search of floral resources, thus spreading diseases such as chalkbrood, caused by the fungus Ascosphaera apis. Although there are few effective antifungals for the control of chalkbrood, different natural products have been investigated in recent years. Current research is focusing on the intestinal microbiota for the prevention of different pathogens and parasites. In this work, we analyzed the in vivo probiotic effect of three lactic acid bacteria (genus Lactobacillus spp.) isolated from pollen bread from apiaries of Jujuy province on A. apis strains from Spanish and Argentine provinces. Special hives were made for the assays, and a protective effect was observed in larvae of bees fed lactic acid bacteria added to sugar syrup at 105 CFU/mL concentrations, administered from May to September in two consecutive years. The results showed that the three lactic acid bacteria reduced larval mummification by percentages greater than 80%. Therefore, this work brings a first approximation of the in vivo probiotic effect of lactic bacteria against A. apis.


Assuntos
Abelhas , Lactobacillus , Onygenales , Probióticos/farmacologia , Animais , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Microbioma Gastrointestinal , Larva/efeitos dos fármacos , Larva/microbiologia , Micoses/tratamento farmacológico , Micoses/patologia , Onygenales/efeitos dos fármacos , Onygenales/patogenicidade
5.
J Invertebr Pathol ; 176: 107475, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32976816

RESUMO

Ascosphaera apis is a widespread fungal pathogen of honeybee larvae that results in chalkbrood disease, leading to heavy losses for the beekeeping industry in China and many other countries. This work was aimed at generating a full-length transcriptome of A. apis using PacBio single-molecule real-time (SMRT) sequencing. Here, more than 23.97 Gb of clean reads was generated from long-read sequencing of A. apis mycelia, including 464,043 circular consensus sequences (CCS) and 394,142 full-length non-chimeric (FLNC) reads. In total, we identified 174,095 high-confidence transcripts covering 5141 known genes with an average length of 2728 bp. We also discovered 2405 genic loci and 11,623 isoforms that have not been annotated yet within the current reference genome. Additionally, 16,049, 10,682, 4520 and 7253 of the discovered transcripts have annotations in the Non-redundant protein (Nr), Clusters of Eukaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Moreover, 1205 long non-coding RNAs (lncRNAs) were identified, which have less exons, shorter exon and intron lengths, shorter transcript lengths, lower GC percent, lower expression levels, and fewer alternative splicing (AS) evens, compared with protein-coding transcripts. A total of 253 members from 17 transcription factor (TF) families were identified from our transcript datasets. Finally, the expression of A. apis isoforms was validated using a molecular approach. Overall, this is the first report of a full-length transcriptome of entomogenous fungi including A. apis. Our data offer a comprehensive set of reference transcripts and hence contributes to improving the genome annotation and transcriptomic study of A. apis.


Assuntos
Onygenales/genética , Transcriptoma , Animais , Abelhas/microbiologia , Proteínas Fúngicas/análise , Sequenciamento de Nucleotídeos em Larga Escala , RNA Fúngico/análise , RNA Longo não Codificante/análise , Fatores de Transcrição/análise
6.
J Invertebr Pathol ; 166: 107210, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211962

RESUMO

Chalkbrood is the most common fungal disease in honeybees. The objective of this study was to reveal immune responses in the Apis cerana cerana larval gut following Ascosphaera apis invasion. Combining a previously assembled transcriptome of A. c. cerana larval gut and the high-throughput sequencing data obtained in this study, 6152 differentially expressed genes (DEGs) were clustered into eight profiles. Trend analysis showed three significant up-regulated profiles (p ≤ 0.05) and three down-regulated profiles. Gene Ontology (GO) term analysis suggested that DEGs within significant up-regulated and down-regulated clusters were enriched in 46 and 38 functional groups, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated a majority of DEGs were involved in ribosome structure or function, carbon metabolism, biosynthesis of amino acids, and oxidative phosphorylation. In addition, 142 and 14 DEGs were annotated in the cellular immune- and humoral immune-related pathways, respectively. Further investigation indicated that DEGs up-regulated in cellular immune and humoral immune pathways outnumbered those that were down-regulated. Moreover, immune responses of A. c. cerana and Apis mellifera ligustica larvae were compared and studied to decipher resistance of eastern honeybee larvae to A. apis. These results demonstrated that a large number of genes involved in immunity-related pathways were activated by A. apis. Our findings provided valuable information for elucidating the molecular mechanisms underlying immune responses of A. c. cerana larvae to A. apis infection and pathogen-host interactions during chalkbrood infection.


Assuntos
Abelhas/imunologia , Abelhas/microbiologia , Microbioma Gastrointestinal/imunologia , Proteínas de Insetos/imunologia , Micoses/veterinária , Animais , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Onygenales/imunologia , Transcriptoma
7.
J Invertebr Pathol ; 156: 1-5, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29894727

RESUMO

Ascospheara apis is a widespread fungal pathogen that exclusively invades honeybee larvae. Thus far, non-coding RNA in A. apis has not yet been documented. In this study, we sequenced A. apis using strand specific cDNA library construction and Illumina RNA sequencing methods, and identified 379 lncRNAs, including antisense lncRNAs, lincRNAs, intronic lncRNAs and sense lncRNAs. Additionally, these lncRNAs were found to be shorter in length and have fewer exons and transcript isoforms than protein-coding genes, similar to those identified in mammals and plants. Furthermore, the existence of 15 predicted lncRNAs of A. apis was confirmed using RT-PCR and expression levels of 11 were lower than those of adjacent protein-coding genes. Our findings not only enlarge the lncRNA database for fungi, but also lay a foundation for further investigation of potential lncRNA-mediated regulation of genes in A. apis.


Assuntos
Fungos/genética , RNA Fúngico/genética , RNA Longo não Codificante/genética , Animais , Abelhas/parasitologia , RNA Fúngico/análise , RNA Longo não Codificante/análise
8.
J Invertebr Pathol ; 153: 57-64, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29453966

RESUMO

Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity.


Assuntos
Criação de Abelhas/métodos , Abelhas/parasitologia , Fungos/efeitos da radiação , Raios gama , Microsporídios/efeitos da radiação , Vírus/efeitos da radiação , Animais
9.
Insect Mol Biol ; 25(3): 239-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26991518

RESUMO

Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees.


Assuntos
Abelhas/imunologia , Resistência à Doença/genética , Animais , Abelhas/genética , Polimorfismo de Nucleotídeo Único
10.
J Evol Biol ; 28(1): 179-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25407685

RESUMO

Within-host competition is predicted to drive the evolution of virulence in parasites, but the precise outcomes of such interactions are often unpredictable due to many factors including the biology of the host and the parasite, stochastic events and co-evolutionary interactions. Here, we use a serial passage experiment (SPE) with three strains of a heterothallic fungal parasite (Ascosphaera apis) of the Honey bee (Apis mellifera) to assess how evolving under increasing competitive pressure affects parasite virulence and fitness evolution. The results show an increase in virulence after successive generations of selection and consequently faster production of spores. This faster sporulation, however, did not translate into more spores being produced during this longer window of sporulation; rather, it appeared to induce a loss of fitness in terms of total spore production. There was no evidence to suggest that a greater diversity of competing strains was a driver of this increased virulence and subsequent fitness cost, but rather that strain-specific competitive interactions influenced the evolutionary outcomes of mixed infections. It is possible that the parasite may have evolved to avoid competition with multiple strains because of its heterothallic mode of reproduction, which highlights the importance of understanding parasite biology when predicting disease dynamics.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Abelhas/microbiologia , Variação Genética , Animais , Ascomicetos/fisiologia , Aptidão Genética , Interações Hospedeiro-Patógeno/genética , Esporos Fúngicos/genética
11.
J Invertebr Pathol ; 129: 28-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25982695

RESUMO

Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens.


Assuntos
Abelhas/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Onygenales/patogenicidade , Animais , Virulência
12.
Proc Biol Sci ; 281(1779): 20132653, 2014 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-24478297

RESUMO

Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is an important field crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphaera aggregata. To test the hypothesis that some gut microbes directly or indirectly affect the growth of others, we applied four treatments to the pollen provisions of M. rotundata eggs and young larvae: antibacterials, antifungals, A. aggregata spores and a no-treatment control. We allowed the larvae to develop, and then used 454 pyrosequencing and quantitative PCR (for A. aggregata) to investigate fungal and bacterial communities in the larval gut. Antifungals lowered A. aggregata abundance but increased the diversity of surviving fungi. This suggests that A. aggregata inhibits the growth of other fungi in the gut through chemical or competitive interaction. Bacterial richness decreased under the antifungal treatment, suggesting that changes in the fungal community caused changes in the bacterial community. We found no evidence that bacteria affect fungal communities. Lactobacillus kunkeei clade bacteria were common members of the larval gut microbiota and exhibited antibiotic resistance. Further research is needed to determine the effect of gut microbes on M. rotundata health.


Assuntos
Abelhas/microbiologia , Microbiota/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Abelhas/efeitos dos fármacos , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno , Larva/efeitos dos fármacos , Larva/microbiologia , Especificidade da Espécie
13.
J Invertebr Pathol ; 120: 18-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24825460

RESUMO

We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts.


Assuntos
Ascomicetos/virologia , Abelhas/virologia , Dicistroviridae/genética , Vírus de Insetos/genética , Animais , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Front Microbiol ; 15: 1355035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650880

RESUMO

In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38564169

RESUMO

To explore the potential of probiotic candidates beneficial for honeybee health through the modulation of the gut microbiome, bee gut microbes were isolated from bumblebee (Bombus terrestris) and honeybee (Apis mellifera) using diverse media and cultural conditions. A total of 77 bee gut bacteria, classified under the phyla Proteobacteria, Firmicutes, and Actinobacteria, were identified. The antagonistic activity of the isolates against Ascosphaera apis, a fungal pathogen responsible for chalkbrood disease in honeybee larvae, was investigated. The highest growth inhibition percentage against A. apis was demonstrated by Bacillus subtilis strain I3 among the bacterial strains. The presence of antimicrobial peptide genes in the I3 strain was detected using PCR amplification of gene fragments encoding surfactin and fengycin utilizing specific primers. The export of antimicrobial peptides by the I3 strain into growth medium was verified using liquid chromatography coupled with mass spectroscopy. Furthermore, the strain's capabilities for degrading pesticides, used for controlling varroa mites, and its spent growth medium antioxidant activity were substantiated. The survival rate of honeybees infected with (A) apis was investigated after feeding larvae with only medium (fructose + glucose + yeast extract + royal jelly), (B) subtilis I3 strain, A. apis with medium and I3 strain + A. apis with medium. Honeybees receiving the I3 strain + A. apis exhibited a 50% reduction in mortality rate due to I3 strain supplementation under experimental conditions, compared to the control group. In silico molecular docking revealed that fengycin hydrolase from I3 strain effectively interacted with tau-fluvalinate, suggesting its potential in bee health and environmental protection. Further studies are needed to confirm the effects of the I3 strain in different populations of honey bees across several regions to account for genetic and environmental variations.

16.
J Apic Res ; 52(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198438

RESUMO

Chalkbrood and stonebrood are two fungal diseases associated with honey bee brood. Chalkbrood, caused by Ascosphaera apis, is a common and widespread disease that can result in severe reduction of emerging worker bees and thus overall colony productivity. Stonebrood is caused by Aspergillus spp. that are rarely observed, so the impact on colony health is not very well understood. A major concern with the presence of Aspergillus in honey bees is the production of airborne conidia, which can lead to allergic bronchopulmonary aspergillosis, pulmonary aspergilloma, or even invasive aspergillosis in lung tissues upon inhalation by humans. In the current chapter we describe the honey bee disease symptoms of these fungal pathogens. In addition, we provide research methodologies and protocols for isolating and culturing, in vivo and in vitro assays that are commonly used to study these host pathogen interactions. We give guidelines on the preferred methods used in current research and the application of molecular techniques. We have added photographs, drawings and illustrations to assist bee-extension personnel and bee scientists in the control of these two diseases.

17.
Pathogens ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242403

RESUMO

The declining honeybee populations are a significant risk to the productivity and security of agriculture worldwide. Although there are many causes of these declines, parasites are a significant one. Disease glitches in honeybees have been identified in recent years and increasing attention has been paid to addressing the issue. Between 30% and 40% of all managed honeybee colonies in the USA have perished annually over the past few years. American foulbrood (AFB) and European foulbrood (EFB) have been reported as bacterial diseases, Nosema as a protozoan disease, and Chalkbrood and Stonebrood as fungal diseases. The study aims to compare the bacterial community related to the Nosema ceranae and Ascosphaera apis infection on the gut of the honeybee and compare it with the weakly active honeybees. The Nosema-infected honeybees contain the phyla Proteobacteria as the significantly dominant bacterial phyla, similar to the weakly active honeybees. In contrast, the Ascosphaera (Chalkbrood) infected honeybee contains large amounts of Firmicutes rather than Proteobacteria.

18.
J Econ Entomol ; 116(3): 662-673, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36930576

RESUMO

Pollen is an essential component of bee diets, and rearing bumble bees (Bombus spp.) for commercial use necessitates feeding pollen in mass quantities. This pollen is collected from honey bee (Apis mellifera L.) colonies because neither an artificial diet nor an economical, large-scale pollen collection process from flowers is available. The provenance of honey bee-collected pollen is often unknown, and in some cases has crossed international borders. Both deformed wing virus (DWV) and the fungal pathogen Ascosphaera apis (Claussen) Olive & Spiltoir (cause of chalkbrood disease); occur in honey bee-collected pollen, and infections have been observed in bumble bees. We used these pathogens as general surrogates for viruses and spore-forming fungal diseases to test the efficacy of 3 sterilization methods, and assessed whether treatment altered pollen quality for the bumble bee. Using honey bee-collected pollen spiked with known doses of DWV and A. apis, we compared gamma irradiation (GI), ozone fumigation (OZ), and ethylene oxide fumigation (EO) against an untreated positive control and a negative control. Following sterilization treatments, we tested A. apis spore viability, detected viral presence with PCR, and tested palatability to the bumble bee Bombus impatiens Cresson. We also measured bacterial growth from pollens treated with EO and GI. GI and EO outperformed OZ treatment in pathogen suppression. EO had the highest sterilizing properties under commercial conditions and retained palatability and supported bee development better than other treatments. These results suggest that EO sterilization reduces pathogen risks while retaining pollen quality as a food source for rearing bumble bees.


Assuntos
Vírus de RNA , Abelhas , Animais , Vírus de RNA/genética , Reação em Cadeia da Polimerase , Pólen , Dieta
19.
Antioxidants (Basel) ; 12(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36671067

RESUMO

Ascosphaera apis infects exclusively bee larvae and causes chalkbrood, a lethal fungal disease that results in a sharp reduction in adult bees and colony productivity. However, little is known about the effect of A. apis infestation on the activities of antioxidant enzymes in bee larvae. Here, A. apis spores were purified and used to inoculate Asian honey bee (Apis cerana) larvae, followed by the detection of the host survival rate and an evaluation of the activities of four major antioxidant enzymes. At 6 days after inoculation (dpi) with A. apis spores, obvious symptoms of chalkbrood disease similar to what occurs in Apis mellifera larvae were observed. PCR identification verified the A. apis infection of A. cerana larvae. Additionally, the survival rate of larvae inoculated with A. apis was high at 1−2 dpi, which sharply decreased to 4.16% at 4 dpi and which reached 0% at 5 dpi, whereas that of uninoculated larvae was always high at 1~8 dpi, with an average survival rate of 95.37%, indicating the negative impact of A. apis infection on larval survival. As compared with those in the corresponding uninoculated groups, the superoxide dismutase (SOD) and catalase (CAT) activities in the 5- and 6-day-old larval guts in the A. apis−inoculated groups were significantly decreased (p < 0.05) and the glutathione S-transferase (GST) activity in the 4- and 5-day-old larval guts was significantly increased (p < 0.05), which suggests that the inhibition of SOD and CAT activities and the activation of GST activity in the larval guts was caused by A. apis infestation. In comparison with that in the corresponding uninoculated groups, the polyphenol oxidase (PPO) activity was significantly increased (p < 0.05) in the 5-day-old larval gut but significantly reduced (p < 0.01) in the 6-day-old larval gut, indicating that the PPO activity in the larval guts was first enhanced and then suppressed. Our findings not only unravel the response of A. cerana larvae to A. apis infestation from a biochemical perspective but also offer a valuable insight into the interaction between Asian honey bee larvae and A. apis.

20.
Front Microbiol ; 13: 843842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495671

RESUMO

Ascosphaera apis and some Aspergillus species are the main pathogenic fungi of honey bee, and A. apis is the pathogen of chalkbrood disease. However, the infection mechanism of them is incompletely known and it is still unclear whether other factors impact their pathogenesis. In this study, Aspergillus tubingensis were obtained from the chalkbrood bee samples for the first time. Our results showed that A. tubingensis could promote the accumulation of the spores of A. apis. Pathogenicity test found that inoculation of the spores of the two fungi alone or their combination could induce disease characterization of chalkbrood and stonebrood but the extent was less than those in field. To further identify other pathogens impacted the pathogenesis, we found several honey bee viruses presented in the pathogenic fungi A. apis and A. tubingensis, which were different from previous reported. Our results indicated that acute bee paralysis virus (ABPV) and chronic bee paralysis virus (CBPV) could replicate in these two fungi and increased in titer with the going of cultivation time. In addition, CBPV could not only transmit vertically to the next generation by spores, but also spread horizontally to different fungi through hyphal anastomosis. These results suggested that the honey bee chalkbrood contained the other pathogenic fungi besides A. apis, the interactions between different pathogens of chalkbrood microbial communities may influence the prevalence of chalkbrood. Moreover, the discovery of honey bee viruses and their transmission mode in these two fungi enhanced the potential of exploring fungi virus as valuable factors that cause fungal disease outbreak.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA