Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(1-2): 43-55.e13, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30528430

RESUMO

Chemotherapy results in a frequent yet poorly understood syndrome of long-term neurological deficits. Neural precursor cell dysfunction and white matter dysfunction are thought to contribute to this debilitating syndrome. Here, we demonstrate persistent depletion of oligodendrocyte lineage cells in humans who received chemotherapy. Developing a mouse model of methotrexate chemotherapy-induced neurological dysfunction, we find a similar depletion of white matter OPCs, increased but incomplete OPC differentiation, and a persistent deficit in myelination. OPCs from chemotherapy-naive mice similarly exhibit increased differentiation when transplanted into the microenvironment of previously methotrexate-exposed brains, indicating an underlying microenvironmental perturbation. Methotrexate results in persistent activation of microglia and subsequent astrocyte activation that is dependent on inflammatory microglia. Microglial depletion normalizes oligodendroglial lineage dynamics, myelin microstructure, and cognitive behavior after methotrexate chemotherapy. These findings indicate that methotrexate chemotherapy exposure is associated with persistent tri-glial dysregulation and identify inflammatory microglia as a therapeutic target to abrogate chemotherapy-related cognitive impairment. VIDEO ABSTRACT.


Assuntos
Disfunção Cognitiva/induzido quimicamente , Metotrexato/efeitos adversos , Oligodendroglia/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem da Célula , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Tratamento Farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Metotrexato/farmacologia , Camundongos , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Oligodendroglia/metabolismo , Substância Branca/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(28): e2206415119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867768

RESUMO

Chemotherapy-induced cognitive impairment (CICI) has emerged as a significant medical problem without therapeutic options. Using the platinum-based chemotherapy cisplatin to model CICI, we revealed robust elevations in the adenosine A2A receptor (A2AR) and its downstream effectors, cAMP and CREB, by cisplatin in the adult mouse hippocampus, a critical brain structure for learning and memory. Notably, A2AR inhibition by the Food and Drug Administration-approved A2AR antagonist KW-6002 prevented cisplatin-induced impairments in neural progenitor proliferation and dendrite morphogenesis of adult-born neurons, while improving memory and anxiety-like behavior, without affecting tumor growth or cisplatin's antitumor activity. Collectively, our study identifies A2AR signaling as a key pathway that can be therapeutically targeted to prevent cisplatin-induced cognitive impairments.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antineoplásicos , Comprometimento Cognitivo Relacionado à Quimioterapia , Cisplatino , Neurogênese , Purinas , Receptor A2A de Adenosina , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Comprometimento Cognitivo Relacionado à Quimioterapia/prevenção & controle , Cisplatino/efeitos adversos , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Neurogênese/efeitos dos fármacos , Purinas/administração & dosagem , Purinas/uso terapêutico , Receptor A2A de Adenosina/metabolismo
3.
Med Res Rev ; 44(1): 5-22, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37265248

RESUMO

Cancer treatment brings about a phenomenon not fully clarified yet, termed chemobrain. Its strong negative impact on patients' well-being makes it a trending topic in current research, interconnecting many disciplines from clinical oncology to neuroscience. Clinical and animal studies have often reported elevated concentrations of proinflammatory cytokines in various types of blood cancers. This inflammatory burst could be the background for chemotherapy-induced cognitive deficit in patients with blood cancers. Cancer environment is a dynamic interacting system. The review puts into close relationship the inflammatory dysbalance and oxidative/nitrosative stress with disruption of the blood-brain barrier (BBB). The BBB breakdown leads to neuroinflammation, followed by neurotoxicity and neurodegeneration. High levels of intracellular reactive oxygen species (ROS) induce the progression of cancer resulting in increased mutagenesis, conversion of protooncogenes to oncogenes, and inactivation of tumor suppression genes to trigger cancer cell growth. These cell alterations may change brain functionality, as well as morphology. Multidrug chemotherapy is not without consequences to healthy tissue and could even be toxic. Specific treatment impacts brain function and morphology, functions of the immune system, and metabolism in a unique mixture. In general, a chemo-drug's effects on cognition in cancer are not direct and/or in-direct, usually a combination of effects is more probable. Last but not least, chemotherapy strongly impacts the immune system and could contribute to BBB disruption. This review points out inflammation as a possible mechanism of brain damage during blood cancers and discusses chemotherapy-induced cognitive impairment.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Neoplasias Hematológicas , Neoplasias , Animais , Humanos , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Comprometimento Cognitivo Relacionado à Quimioterapia/patologia , Neoplasias/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Encéfalo/metabolismo , Sistema Imunitário
4.
Toxicol Appl Pharmacol ; 485: 116875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437957

RESUMO

Cisplatin is an effective and commonly used chemotherapeutic drug; however, its use is accompanied by several adverse effects, including chemobrain. Ondansetron is a 5-HT3 antagonist, commonly used in prophylactic against chemotherapy-induced nausea and vomiting. Moreover, it has been identified as a novel neuroprotective agent in different animal models. However, its protective role against chemotherapy-induced chemobrain has not been investigated. The current study was the first study that explored the potential neuroprotective effect of ondansetron against cisplatin-induced chemobrain in rats. Cisplatin (5 mg/Kg) was injected intraperitoneally, once weekly, for 4 weeks with the daily administration of ondansetron (0.5 and 1 mg/Kg). Compared to the cisplatin-treated group, ondansetron administration showed a significant decrease in the latency time and a significant increase in ambulation, rearing, and grooming frequency in the open field test (OFT). Moreover, a significant improvement in the latency time in the rotarod and passive avoidance tests, following ondansetron administration. In addition, ondansetron treatment increased the percentage of alternation in the Y-maze test. Also, ondansetron showed a remarkable enhancement in the biochemical parameters in the hippocampus. It increased the acetylcholine (Ach) level and decreased the level of the acetylcholine esterase enzyme (AchE). Ondansetron significantly decreased interleukin-1ß (Il-1ß), tumor necrosis factor-alpha (TNF-α), toll-like receptor-4 (TLR-4), NOD-like receptor-3 (NLRP3) inflammasome as well as caspase-1 and caspase-3 levels. Furthermore, ondansetron significantly decreased the levels of copper transporter-1(CTR1) expression in the hippocampus. Collectively, these findings suggest that ondansetron may exhibit a neuroprotective and therapeutic activity against cisplatin-induced chemobrain.


Assuntos
Comportamento Animal , Cisplatino , Inflamassomos , Ondansetron , Animais , Ondansetron/farmacologia , Cisplatino/toxicidade , Masculino , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ratos , Regulação para Baixo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Wistar , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Antineoplásicos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico
5.
Brain Behav Immun ; 115: 13-25, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757978

RESUMO

The gastrointestinal microbiota has received increasing recognition as a key mediator of neurological conditions with neuroinflammatory features, through its production of the bioactive metabolites, short-chain fatty acids (SCFAs). Although neuroinflammation is a hallmark shared by the neuropsychological complications of chemotherapy (including cognitive impairment, fatigue and depression), the use of microbial-based therapeutics has not previously been studied in this setting. Therefore, we aimed to investigate the effect of a high fibre diet known to modulate the microbiota, and its associated metabolome, on neuroinflammation caused by the common chemotherapeutic agent 5-fluorouracil (5-FU). Twenty-four female C57Bl/6 mice were treated with 5-FU (400 mg/kg, intraperitoneal, i.p.) or vehicle control, with or without a high fibre diet (constituting amylose starch; 4.7 % crude fibre content), given one week prior to 5-FU and until study completion (16 days after 5-FU). Faecal pellets were collected longitudinally for 16S rRNA gene sequencing and terminal SCFA concentrations of the caecal contents were quantified using gas chromatography-mass spectrometry (GC-MS). Neuroinflammation was determined by immunofluorescent analysis of astrocyte density (GFAP). The high fibre diet significantly altered gut microbiota composition, increasing the abundance of Bacteroidaceae and Akkermansiaceae (p < 0.0001 and p = 0.0179) whilst increasing the production of propionate (p = 0.0097). In the context of 5-FU, the diet reduced GFAP expression in the CA1 region of the hippocampus (p < 0.0001) as well as the midbrain (p = 0.0216). Astrocyte density negatively correlated with propionate concentrations and the abundance of Bacteroidaceae and Akkermansiaceae, suggesting a relationship between neuroinflammatory and gastrointestinal markers in this model. This study provides the first evidence of the neuroprotective effects of fibre via dietary intake in alleviating the neuroimmune changes seen in response to systemically administered 5-FU, indicating that the microbiota-gut-brain axis is a targetable mediator to reduce the neurotoxic effects of chemotherapy treatment.


Assuntos
Doenças Neuroinflamatórias , Propionatos , Feminino , Animais , Camundongos , RNA Ribossômico 16S , Dieta , Fluoruracila
6.
Mol Biol Rep ; 51(1): 930, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174728

RESUMO

BACKGROUND: Among the three most used anticancer drugs, cyclophosphamide, Adriamycin, and 5-Fluorouracil (CAF), the most significant outcome is chemobrain, caused by increased oxidative stress, inflammatory insult, and mitochondrial dysfunction. OBJECTIVE: In this study, endogenous antioxidant coenzyme Q10 (CoQ10) was evaluated for its neuroprotective effects in CICI. MATERIALS AND METHODS: The chemobrain was induced in Swiss albino female mice by administering CAF (40 + 4 + 25 mg/kg) intraperitoneal (i.p.) in three cycles (single injection per week) followed by treatment with CoQ10 (40 mg/kg; p.o.) for up to 3 weeks followed by behavioral, biochemical, molecular and histopathological analysis. RESULTS: Treatment with CoQ10 significantly improved cognition by improving exploring time in novel objects recognition test followed by increasing the time spent in the target quadrant in MWM test as compared to CAF-treated animals. Moreover, CoQ10 demonstrated antioxidant properties by reducing the expression of LPO while increasing levels of GSH, SOD, and catalase as compared to CAF-treated animals. While the levels of AChEs were significantly reduced after CoQ10 treatment in CAF-treated animals. In terms of its mechanism, it effectively counteracted the pro-inflammatory substances (TNF-α and IL-1ß) triggered by CAF while also enhancing the levels of anti-inflammatory markers (IL-10 and Nrf2). Moreover, CoQ10 showed mitochondrial enhancers and it improved the level of Complex (I, II, and IV). Besides that, mitochondrial morphological analysis was done by TEM, and neuronal morphology along with quantification analysis was performed by H&E staining using Image J software to confirm the neuroprotective effect of CoQ10 over CAF-induced cognitive impairment. CONCLUSION: This study suggests CoQ10 can protect the mitochondria by imposing antioxidant, and anti-inflammatory properties, which could be a potential therapy for CICI.


Assuntos
Antioxidantes , Estresse Oxidativo , Ubiquinona , Animais , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Camundongos , Feminino , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doxorrubicina/efeitos adversos , Fluoruracila/efeitos adversos , Fluoruracila/farmacologia , Modelos Animais de Doenças , Antineoplásicos/farmacologia , Antineoplásicos/efeitos adversos , Ciclofosfamida/efeitos adversos , Ciclofosfamida/farmacologia
7.
BMC Womens Health ; 24(1): 406, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020328

RESUMO

OBJECTIVE: To study the effects of chemotherapy on cognitive function in breast cancer patients, and to investigate the relationship of MemTrax test of memory and related functions to the FACT-Cog functional self-assessment for the evaluation and management of chemobrain. METHODS: In this prospective cohort study, clinical information of pathologically confirmed female breast cancer patients who decided to receive chemotherapy were collected in a questionnaire which was developed for this study and provided as a supplementary file. The FACT-Cog self-assessment and MemTrax test were administered before and after the chemotherapy treatments. Patients with chemobrain were identified using published criteria based on FACT-Cog scores, and MemTrax scores from chemobrain patients were analyzed. RESULTS: Fifty-six patients participated in this study, of which 41 participants completed 4 or more cycles of chemotherapy and were included in the final analyses here. Using the reported high end of minimal clinical differences (10.6 points) of FACT-Cog before and after chemotherapy, 18 patients suffered from chemobrain in this study. In these 18 chemobrain patients, no cognitive impairments were detected by MemTrax, which paradoxically demonstrated an improvement in the normal cognitive range. CONCLUSION: The cognitive impairment induced by chemotherapy in breast cancer patients is detectable by the FACT-Cog in a Chinese cohort but is not detected by the MemTrax memory test. The fact that the more objective MemTrax could not detect the impairment could alleviate patients' concerns which in turn would be beneficial for patients' mental health.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/psicologia , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Testes Neuropsicológicos/estatística & dados numéricos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Idoso , Memória/efeitos dos fármacos , Inquéritos e Questionários , Estudos de Coortes
8.
Neurochem Res ; 48(8): 2476-2489, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37017891

RESUMO

Chemotherapy-induced cognitive impairment (CICI) is a common complication associated with the use of chemotherapeutics. Doxorubicin (DOX) is a reactive oxygen species (ROS) producing anticancer agent capable of causing potential neurotoxic effects via cytokine-induced oxidative and nitrosative damage to brain tissues. On the other hand, alpha-lipoic acid (ALA), a nutritional supplement, is reputable for its excellent antioxidant, anti-inflammatory, and anti-apoptotic activities. Consequently, the objective of the current investigation was to examine any potential neuroprotective and memory-improving benefits of ALA against DOX-induced behavioral and neurological anomalies. DOX (2 mg/kg/week, i.p.) was administrated for 4 weeks to Sprague-Dawley rats. ALA (50, 100, and 200 mg/kg) was administered for 4 weeks. The Morris water maze (MWM) and novel objective recognition task (NORT) tests were used to assess memory function. Biochemical assays with UV-visible spectrophotometry were used to analyze oxidative stress markers [malondialdehyde (MDA), protein carbonylation (PCO)], endogenous antioxidants [reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)] and acetylcholinesterase (AChE) activity in hippocampal tissue. Inflammatory markers [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nuclear factor kappa B (NF-κB)], nuclear factor erythroid 2-related factor-2 (NRF-2) and hemeoxygenase-1 (HO-1) levels were estimated using enzyme-linked immunosorbent assay (ELISA). In addition, reactive oxygen species (ROS) levels were measured in hippocampus tissue using 2-7-dichlorofluorescein-diacetate (DCFH-DA) assay with fluorimetry. ALA treatment significantly protected against DOX-induced memory impairment. Furthermore, ALA restored hippocampal antioxidants, halted DOX-induced oxidative and inflammatory insults via upregulation of NRF-2/HO-1 levels, and alleviated the increase in NF-κB expression. These results indicate that ALA offers neuroprotection against DOX-induced cognitive impairment, which could be attributed to its antioxidant potential via the NRF-2/HO-1 signaling pathway.


Assuntos
Disfunção Cognitiva , Ácido Tióctico , Animais , Ratos , Acetilcolinesterase/metabolismo , Antioxidantes , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Doxorrubicina/toxicidade , Hipocampo/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
J Neurooncol ; 165(3): 561-568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38108984

RESUMO

PURPOSE: starting from a lack of precise and coherent data in literature, aim of this work is to retrospectively study the influence of chemotherapy with Temozolomide (TMZ) on a wide series of neuropsychological functions in a population of adult high-grade glioma patients. METHODS: an extensive neuropsychological battery was administered pre-operatively (T0) and after 6 (T1) and 12 months (T2) from surgery. After full recovery from surgery, TMZ was delivered concomitant to radiotherapy and, subsequently, adjuvantly for 5-day cycles per month. Parametric and non-parametric analyses were conducted to verify the influence of several aspects of chemotherapy on the adjusted scores of each cognitive test at the two post-operative follow-ups. RESULTS: Sixty-one patients were included at T0; patients with a lower adjuvant TMZ dosage reported a better performance at the visual attention test at T1, and at the deductive reasoning test at T2. Undergoing more than 8 cycles of adjuvant therapy was slightly associated with a better performance at the long-term verbal memory tasks at T2. No other associations were found with the other cognitive tests and autonomy scales administered. CONCLUSIONS: TMZ proved to be a secure treatment with no negative side effects on cognition and on level of daily autonomy, even at the highest dosage used. This is a positive finding which enables clinicians to reassure patients about the absence of significant negative effects of TMZ on their daily life functioning. In this view, eventual cognitive changes during treatment might not be attributed to chemotherapy but to other events such as tumour relapse.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Temozolomida/uso terapêutico , Estudos Retrospectivos , Dacarbazina/efeitos adversos , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/patologia , Antineoplásicos Alquilantes/efeitos adversos
10.
Support Care Cancer ; 31(9): 532, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606711

RESUMO

PURPOSE: To examine children's experiences of chemotherapy-induced cognitive impairment--colloquially "chemobrain"--and the impact on children's social, academic, and daily living skills via a qualitative systematic review. Experiencing chemotherapy as a child, when the brain is still developing, may cause lifelong detriment to survivors' lives. There is a significant gap in understanding their lived experience, including the self-identified barriers that children face following treatment. Such a gap can only be fully bridged by listening to the child's own voice and/or parent proxy report through an exploration of the qualitative research literature. METHODS: A search of MEDLINE, Embase, PsycINFO, and CINAHL databases was conducted. Inclusion criteria were qualitative studies with a focus on children (0-18 years) during and/or following chemotherapy treatment and explored children's experiences of chemobrain. RESULTS: Two synthesized findings were identified from six studies. (1) Chemobrain has an academic and psychosocial impact, which may not be understood by education providers. (2) Children and their parents have concerns about their reintegration and adaptation to school, social lives, and their future selves as independent members of society. Children's experiences primarily related to changes in their academic and social functioning. CONCLUSION: This review highlights two important considerations: (1) the lived experiences of pediatric childhood cancer survivors guiding where future interventions should be targeted, and (2) a need to perform more qualitative research studies in this area, as well as to improve the quality of reporting among the existing literature, given that this is a current gap in the field.


Assuntos
Sobreviventes de Câncer , Comprometimento Cognitivo Relacionado à Quimioterapia , Disfunção Cognitiva , Neoplasias , Criança , Humanos , Neoplasias/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Sobreviventes
11.
Immun Ageing ; 20(1): 5, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698170

RESUMO

BACKGROUND: There is increasing concern that cancer and cancer treatment accelerate aging and the associated cognitive decline. We showed recently that treatment of 9-month-old male mice with cisplatin causes cognitive deficits that are associated with formation of tau deposits in the hippocampus. Here we explored the capacity of mesenchymal stem cells (MSC) given via the nose to prevent age-related brain tau deposits. Moreover, we more closely examined the cellular distribution of this hallmark of accelerated brain aging in response to treatment of 9-month-old female and male mice with cisplatin. RESULTS: We show that cisplatin induces tau deposits in the entorhinal cortex and hippocampus in both sexes. The tau deposits colocalize with syndecan-2. Astrocytes surrounding tau deposits have increased glial fibrillary acidic protein glial fibrillary acidic protein (GFAP) expression. Most of the cisplatin-induced tau deposits were located in microtubule associated protein-2 (MAP-2)+ neurons that were surrounded by aquaporin 4+ (AQP4)+ neuron-facing membrane domains of astrocytes. In addition, some tau deposits were detected in the perinuclear region of GFAP+ astrocytes and in CD31+ endothelial cells. There were no morphological signs of activation of ionized calcium binding adaptor molecule-1+ (Iba-1)+ microglia and no increases in brain cytokine production. Nasal administration of MSC at 48 and 96 hours after cisplatin prevented formation of tau deposits and normalized syndecan-2 and GFAP expression. Behaviorally, cisplatin-induced tau cluster formation was associated with reduced executive functioning and working/spatial memory and nasal administration of MSC at 48 and 96 hours after cisplatin prevented these cognitive deficits. Notably, delayed MSC administration (1 month after cisplatin) also prevented tau cluster formation and cognitive deficits, in both sexes. CONCLUSION: In summary, nasal administration of MSC to older mice at 2 days or 1 month after completion of cisplatin treatment prevents the accelerated development of tau deposits in entorhinal cortex and hippocampus and the associated cognitive deficits. Since MSC are already in clinical use for many other clinical indications, developing nasal MSC administration for treatment of accelerated brain aging and cognitive deficits in cancer survivors should be feasible and would greatly improve their quality of life.

12.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511623

RESUMO

Neurotoxic side effects of chemotherapy include deficits in attention, memory, and executive functioning. Currently, there are no FDA-approved therapies. In mice, cisplatin causes long-term cognitive deficits, white matter damage, mitochondrial dysfunction, and loss of synaptic integrity. We hypothesized that MSC-derived small extracellular vesicles (sEVs) could restore cisplatin-induced cognitive impairments and brain damage. Animals were injected with cisplatin intraperitoneally and treated with MSC-derived sEVs intranasally 48 and 96 h after the last cisplatin injection. The puzzle box test (PBT) and the novel object place recognition test (NOPRT) were used to determine cognitive deficits. Synaptosomal mitochondrial morphology was analyzed by transmission electron microscopy. Immunohistochemistry using antibodies against synaptophysin and PSD95 was applied to assess synaptic loss. Black-Gold II staining was used to quantify white matter integrity. Our data show that sEVs enter the brain in 30 min and reverse the cisplatin-induced deficits in executive functioning and working and spatial memory. Abnormalities in mitochondrial morphology, loss of white matter, and synaptic integrity in the hippocampus were restored as well. Transcriptomic analysis revealed upregulation of regenerative functions after treatment with sEVs, pointing to a possible role of axonal guidance signaling, netrin signaling, and Wnt/Ca2+ signaling in recovery. Our data suggest that intranasal sEV treatment could become a novel therapeutic approach for the treatment of chemobrain.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Vesículas Extracelulares , Camundongos , Animais , Cisplatino/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/terapia , Encéfalo , Transtornos Cognitivos/induzido quimicamente
13.
Encephale ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38040507

RESUMO

OBJECTIVES: Chemobrain is a well-established clinical syndrome that has become an increasing concern because of the growing number of long-term cancer survivors. It refers to the post-chemotherapy related cognitive dysfunction. The aim of this study was to objectively assess the impact of cancer treatment on the cognition of cancer patients. METHODS: This was a convenience sample comparative study conducted at the Hematology and Oncology Department of Hôtel Dieu de France University Hospital in Beirut, Lebanon. It included cancer patients (G1) aged under 65 years who had already been treated for cancer compared to two control groups. The first control group (G2) consisted of treatment-naïve cancer patients aged under 65, and the second group (G3) was recruited from a pool of healthy controls aged between 40 and 65 years. All participants were asked to complete the part B of the trail making test (TMT) and the digital symbolic substitution test (DSST). RESULTS: In the bivariate analysis, patients in G1 had significantly higher scores than patients in G2 (P=0.017) and G3 (P<0.001) on the TMT-B. However, patients in G1 only had lower scores on DSST when compared with G3 (P=0.017). In the logistic regression taking different groups two-by-two as the dependent variable, the only significant difference was found in the comparison between G2 and G3 with higher TMT-B scores more in favor of belonging to G2 (OR=0.946; P=0.003). CONCLUSIONS: Our results suggest that, after controlling for anxiety and depression symptoms, patients treated with chemotherapy have significantly poorer outcomes on the DSST and TMT-B than treatment-naïve cancer patients and healthy controls. However, when taking confounding factors into account, the difference only persisted between patients undergoing chemotherapy and healthy controls. These findings are in favor of a multifactor cognitive impairment in patients with cancer partially related to chemotherapeutic treatment.

14.
BMC Neurol ; 22(1): 288, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922754

RESUMO

BACKGROUND: The objective of this report is to share the clinicopathological features of chemotherapy-induced toxic leukoencephalopathy, which is a rare and under-recognized disease, clinically characterized by rapidly progressive cognitive loss that often leads to sudden death. CASE PRESENTATION: A 64-year-old woman and a 63-year-old man, who had both suffered from a rapid deterioration of consciousness, were autopsied under the clinical impressions of either the central nervous system graft versus host disease (CNS-GVHD), infectious encephalitis, or autoimmune encephalitis. Both patients had been treated with multiple chemotherapy regimens, including adriamycin, cytarabine arabinoside, daunorubicin, fludarabine, azacitidine, and allogeneic peripheral blood stem cell transplantation to treat hematological malignancies (acute myelogenous leukemia and myelodysplastic syndrome). Neuropathological findings at autopsy revealed rarefaction and vacuolar changes of the white matter with axonal spheroids, reactive gliosis, and foamy macrophage infiltration, predominantly in the visual pathways of the occipital and temporal lobes. Damaged axons exhibited immunoreactivity to beta-amyloid, consistent with axonopathy. However, there was no lymphocyte infiltration that suggested CNS-GVHD or any type of encephalitis. CONCLUSION: The neuropathology found in the presented cases had the characteristic features of toxic leukoencephalopathy (chemobrain). Our cases showed that toxic leukoencephalopathy can also be caused by chemotherapy drugs other than methotrexate.


Assuntos
Encefalite , Doença Enxerto-Hospedeiro , Leucoencefalopatias , Substância Branca , Encefalite/patologia , Feminino , Doença Enxerto-Hospedeiro/induzido quimicamente , Doença Enxerto-Hospedeiro/patologia , Humanos , Leucoencefalopatias/induzido quimicamente , Leucoencefalopatias/patologia , Masculino , Metotrexato/efeitos adversos , Pessoa de Meia-Idade , Substância Branca/patologia
15.
Exp Brain Res ; 240(11): 2907-2921, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36123538

RESUMO

Clinical studies suggest that chemotherapy is associated with long-term cognitive impairment in some patients. Several underlying mechanisms have been proposed; however, the etiology of chemotherapy-related cognitive dysfunction remains relatively unknown. There is evidence that oligodendrocytes and white matter tracts within the CNS may be particularly vulnerable to chemotherapy-related damage and dysfunction. Auditory brainstem responses (ABRs) have been used to detect and measure functional integrity of myelin in a variety of animal models of autoimmune disorders and demyelinating diseases. Limited evidence suggests that increases in interpeak latencies, associated with disrupted impulse conduction, can be detected in ABRs following 5-fluorouracil administration in mice. It is unknown if similar functional disruptions can be detected following treatment with other chemotherapeutic compounds and the extent to which alterations in ABR signals represent robust and long-lasting impairments associated with chemotherapy-related cognitive impairment. Thus, C57BL/6 J mice were treated every 3rd day for a total of 3 injections with low or high dose cyclophosphamide, or doxorubicin. ABRs of mice were assessed on days 1, 7, 14, 56 and 6 months following completion of chemotherapy administration. There were timing and amplitude differences in the ABRs of the doxorubicin and the high dose cyclophosphamide groups relative to the control animals. However, despite significant toxic effects as assessed by weight loss, the changes in the ABR were transient.


Assuntos
Doxorrubicina , Potenciais Evocados Auditivos do Tronco Encefálico , Animais , Camundongos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Camundongos Endogâmicos C57BL , Doxorrubicina/toxicidade , Ciclofosfamida/toxicidade , Fluoruracila
16.
Br J Anaesth ; 129(6): 909-922, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270848

RESUMO

Patients with cancer may suffer from a decline in their cognitive function after various cancer therapies, including surgery, radiation, and chemotherapy, and in some cases, this decline in cognitive function persists even years after completion of treatment. Chemobrain or chemotherapy-induced cognitive impairment, a well-established clinical syndrome, has become an increasing concern as the number of successfully treated cancer patients has increased significantly. Chemotherapy-induced cognitive impairment can originate from direct neurotoxicity, neuroinflammation, and oxidative stress, resulting in alterations in grey matter volume, white matter integrity, and brain connectivity. Surgery has been associated with exacerbating the inflammatory response associated with chemotherapy and predisposes patients to develop postoperative cognitive dysfunction. As the proportion of patients living longer after these therapies increases, the magnitude of impact and growing concern of post-treatment cognitive dysfunction in these patients has also come to the fore. We review the clinical presentation, potential mechanisms, predisposing factors, diagnostic methods, neuropsychological testing, and imaging findings of chemotherapy-induced cognitive impairment and its intersection with postoperative cognitive dysfunction.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Disfunção Cognitiva , Neoplasias , Complicações Cognitivas Pós-Operatórias , Humanos , Disfunção Cognitiva/induzido quimicamente , Testes Neuropsicológicos , Neoplasias/tratamento farmacológico , Neoplasias/complicações
17.
Jpn J Clin Oncol ; 52(11): 1253-1264, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-35946328

RESUMO

BACKGROUND: Post-chemotherapy cognitive impairment commonly known as 'chemobrain' or 'chemofog' is a well-established clinical disorder affecting various cognitive domains including attention, visuospatial working memory, executive function, etc. Although several studies have confirmed the chemobrain in recent years, scant experiments have evaluated the potential neurotoxicity of different chemotherapy regimens and agents. In this study, we aimed to evaluate the extent of attention deficits, one of the commonly affected cognitive domains, among breast cancer patients treated with different chemotherapy regimens through neuroimaging techniques. METHODS: Breast cancer patients treated with two commonly prescribed chemotherapy regimens, Adriamycin, Cyclophosphamide and Taxol and Taxotere, Adriamycin and Cyclophosphamide, and healthy volunteers were recruited. Near-infrared hemoencephalography and quantitative electroencephalography assessments were recorded for each participant at rest and during task performance to compare the functional cortical changes associated with each chemotherapy regimen. RESULTS: Although no differences were observed in hemoencephalography results across groups, the quantitative electroencephalography analysis revealed increased power of high alpha/low beta in left fronto-centro-parietal regions involved in dorsal and ventral attention networks in the Adriamycin, Cyclophosphamide and Taxol-treated group compared with the Taxotere, Adriamycin and Cyclophosphamide and control group. The Adriamycin, Cyclophosphamide and Taxol-treated cases had the highest current source density values in dorsal attention network and ventral attention network and ventral attention network-related centers in 10 and 15 Hz associated with the lowest Z-scored Fast Fourier Transform coherence in the mentioned regions. CONCLUSIONS: The negatively affected neurocognitive profile in breast cancer patients treated with the Adriamycin, Cyclophosphamide and Taxol regimen proposes presumably neurotoxic sequelae of this chemotherapy regimen as compared with the Taxotere, Adriamycin and Cyclophosphamide regimen.


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Síndromes Neurotóxicas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/psicologia , Docetaxel/uso terapêutico , Mapeamento Encefálico , Doxorrubicina/uso terapêutico , Ciclofosfamida/efeitos adversos , Paclitaxel/efeitos adversos , Síndromes Neurotóxicas/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
18.
Support Care Cancer ; 31(1): 75, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544032

RESUMO

PURPOSE: No evidence-based prevention strategies currently exist for cancer-related cognitive decline (CRCD). Although patients are often advised to engage in healthy lifestyle activities (e.g., nutritious diet), little is known about the impact of diet on preventing CRCD. This secondary analysis evaluated the association of pre-treatment diet quality indices on change in self-reported cognition during chemotherapy. METHODS: Study participants (n = 96) completed the Block Brief Food Frequency Questionnaire (FFQ) before receiving their first infusion and the PROMIS cognitive function and cognitive abilities questionnaires before infusion and again 5 days later (i.e., when symptoms were expected to be their worst). Diet quality indices included the Dietary Approaches to Stop Hypertension (DASH), Alternate Mediterranean Diet (aMED), and a low carbohydrate diet index and their components. Descriptive statistics were generated for demographic and clinical variables and diet indices. Residualized change models were computed to examine whether diet was associated with change in cognitive function and cognitive abilities, controlling for age, sex, cancer type, treatment type, depression, and fatigue. RESULTS: Study participants had a mean age of 59 ± 10.8 years and 69% were female. Although total diet index scores did not predict change in cognitive function or cognitive abilities, higher pre-treatment ratio of aMED monounsaturated/saturated fat was associated with less decline in cognitive function and cognitive abilities at 5-day post-infusion (P ≤ .001). CONCLUSIONS: Higher pre-treatment ratio of monounsaturated/saturated fat intake was associated with less CRCD early in chemotherapy. Results suggest greater monounsaturated fat and less saturated fat intake could be protective against CRCD during chemotherapy.


Assuntos
Disfunção Cognitiva , Dieta Mediterrânea , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Dieta , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle
19.
Arch Toxicol ; 96(6): 1767-1782, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306571

RESUMO

Mitoxantrone (MTX) is a topoisomerase II inhibitor used to treat a wide range of tumors and multiple sclerosis but associated with potential neurotoxic effects mediated by hitherto poorly understood mechanisms. In adult male CD-1 mice, the underlying neurotoxic pathways of a clinically relevant cumulative dose of 6 mg/kg MTX was evaluated after biweekly administration for 3 weeks and sacrifice 1 week after the last administration was undertaken. Oxidative stress, neuronal damage, apoptosis, and autophagy were analyzed in whole brain, while coronal brain sections were used for a closer look in the hippocampal formation (HF) and the prefrontal cortex (PFC), as these areas have been signaled out as the most affected in 'chemobrain'. In the whole brain, MTX-induced redox imbalance shown as increased endothelial nitric oxide synthase and reduced manganese superoxide dismutase expression, as well as a tendency to a decrease in glutathione levels. MTX also caused diminished ATP synthase ß expression, increased autophagic protein LC3 II and tended to decrease p62 expression. Postsynaptic density protein 95 expression decreased in the whole brain, while hyperphosphorylation of Tau was seen in PFC. A reduction in volume was observed in the dentate gyrus (DG) and CA1 region of the HF, while GFAP-ir astrocytes increased in all regions of the HF except in the DG. Apoptotic marker Bax increased in the PFC and in the CA3 region, whereas p53 decreased in all brain areas evaluated. MTX causes damage in the brain of adult CD-1 mice in a clinically relevant cumulative dose in areas involved in memory and cognition.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Animais , Autofagia , Masculino , Camundongos , Mitoxantrona/toxicidade , Neurônios , Estresse Oxidativo
20.
Arch Toxicol ; 96(1): 11-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725718

RESUMO

Cognitive dysfunction has been one of the most reported and studied adverse effects of cancer treatment, but, for many years, it was overlooked by the medical community. Nevertheless, the medical and scientific communities have now recognized that the cognitive deficits caused by chemotherapy have a strong impact on the morbidity of cancer treated patients. In fact, chemotherapy-induced cognitive dysfunction or 'chemobrain'  (also named also chemofog) is at present a well-recognized effect of chemotherapy that could affect up to 78% of treated patients. Nonetheless, its underlying neurotoxic mechanism is still not fully elucidated. Therefore, this work aimed to provide a comprehensive review using PubMed as a database to assess the studies published on the field and, therefore, highlight the clinical manifestations of chemobrain and the putative neurotoxicity mechanisms.In the last two decades, a great number of papers was published on the topic, mainly with clinical observations. Chemotherapy-treated patients showed that the cognitive domains most often impaired were verbal memory, psychomotor function, visual memory, visuospatial and verbal learning, memory function and attention. Chemotherapy alters the brain's metabolism, white and grey matter and functional connectivity of brain areas. Several mechanisms have been proposed to cause chemobrain but increase of proinflammatory cytokines with oxidative stress seem more relevant, not excluding the action on neurotransmission and cellular death or impaired hippocampal neurogenesis. The interplay between these mechanisms and susceptible factors makes the clinical management of chemobrain even more difficult. New studies, mainly referring to the underlying mechanisms of chemobrain and protective measures, are important in the future, as it is expected that chemobrain will have more clinical impact in the coming years, since the number of cancer survivors is steadily increasing.


Assuntos
Antineoplásicos , Comprometimento Cognitivo Relacionado à Quimioterapia , Transtornos Cognitivos , Disfunção Cognitiva , Neoplasias , Animais , Antineoplásicos/toxicidade , Encéfalo , Transtornos Cognitivos/induzido quimicamente , Disfunção Cognitiva/induzido quimicamente , Humanos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA