Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992120

RESUMO

Fecal microbiota transplant (FMT) is becoming as a promising area of interest for treating refractory diseases. In this study, we investigated the effects of FMT on diabetes-associated cognitive defects in mice as well as the underlying mechanisms. Fecal microbiota was prepared from 8-week-aged healthy mice. Late-stage type 1 diabetics (T1D) mice with a 30-week history of streptozotocin-induced diabetics were treated with antibiotics for 7 days, and then were transplanted with bacterial suspension (100 µL, i.g.) once a day for 14 days. We found that FMT from healthy young mice significantly alleviated cognitive defects of late-stage T1D mice assessed in Morris water maze test. We revealed that FMT significantly reduced the relative abundance of Gram-negative bacteria in the gut microbiota and enhanced intestinal barrier integrity, mitigating LPS translocation into the bloodstream and NLRP3 inflammasome activation in the hippocampus, thereby reducing T1D-induced neuronal loss and astrocytic proliferation. FMT also reshaped the metabolic phenotypes in the hippocampus of T1D mice especially for alanine, aspartate and glutamate metabolism. Moreover, we showed that application of aspartate (0.1 mM) significantly inhibited NLRP3 inflammasome activation and IL-1ß production in BV2 cells under a HG/LPS condition. We conclude that FMT can effectively relieve T1D-associated cognitive decline via reducing the gut-brain metabolic disorders and neuroinflammation, providing a potential therapeutic approach for diabetes-related brain disorders in clinic.

2.
Acta Pharmacol Sin ; 42(3): 361-369, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32694754

RESUMO

Intrauterine hypoxia (IUH) affects the growth and development of offspring. It remains unclear that how long the impact of IUH on cognitive function lasts and whether sexual differences exist. Spermidine (SPD) has shown to improve cognition, but its effect on the cognitive function of IUH offspring remains unknown. In the present study we investigated the influence of IUH on body weight and neurological, motor and cognitive function and the expression of APP, BACE1 and Tau5 proteins in brain tissues in 2- and 4-month-old IUH rat offspring, as well as the effects of SPD intervention on these parameters. IUH rat model was established by treating pregnant rats with intermittent hypoxia on gestational days 15-21, meanwhile pregnant rats were administered SPD (5 mg·kg-1·d-1;ip) for 7 days. Neurological deficits were assessed in the Longa scoring test; motor and cognitive functions were evaluated in coat hanger test and active avoidance test, respectively. We found that IUH decreased the body weight of rats in both sexes but merely impaired motor and cognitive function in female rats without changing neurological function in the rat offspring of either sex at 2 months of age. For 4-month-old offspring, IUH decreased body weight in males and impaired neurological function and increased cognitive function in both sexes. IUH did not affect APP, BACE1 or Tau5 protein expression in either the hippocampus or cortex of all offspring; however, it increased the cortical Tau5 level in 2-month-old female offspring. Surprisingly, SPD intervention prevented weight loss. SPD intervention reversed the motor and cognitive decline caused by IUH in 2-month-old female rat offspring. Taken together, IUH-induced cognitive decline in rat offspring is sex-dependent during puberty and can be recovered in adult rats. SPD intervention improves IUH-induced cognitive and neural function decline.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Hipóxia/fisiopatologia , Espermidina/uso terapêutico , Útero/fisiopatologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Feminino , Hipóxia/complicações , Masculino , Gravidez , Ratos Wistar , Fatores Sexuais , Proteínas tau/metabolismo
3.
Crit Rev Toxicol ; 50(1): 28-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073339

RESUMO

Although actively disputed and questioned, it has been proposed that chronic exposure to inorganic fluoride (F-) is toxic for brain. The major question for this review was whether an excessive F- intake is causally related to adverse neurological and cognitive health conditions in human beings and animals. The paper systematically and critically summarizes the findings of the studies showing positive associations between F- intoxication and various intellectual defects, as well as of those which attempted to clarify the nature of F- neurotoxicity. Many works provide support for a link between pre- and postnatal F- exposure and structural and functional changes in the central nervous system responsible for neurological and cognitive disorders. The mechanisms suggested to underlie F- neurotoxicity include the disturbances in synaptic transmission and synaptic plasticity, premature death of neurons, altered activities of components of intracellular signaling cascades, impaired protein synthesis, deficit of neurotrophic and transcriptional factors, oxidative stress, metabolic changes, inflammatory processes. However, the majority of works have been performed on laboratory rodents using such F- doses which are never exist in the nature even in the regions of endemic fluorosis. Thus, this kind of treatment is hardly comparable with human exposure even taking into account the higher rate of F- clearance in animals. Of special importance are the data collected on humans chronically consuming excessive F- doses in the regions of endemic fluorosis or contacting with toxic F- compounds at industrial sites, but those works are scarce and often criticized due to low quality. New, expertly performed studies with repeated exposure assessment in independent populations are needed to prove an ability of F- to impair neurological and intellectual development of human beings and to understand the molecular mechanisms implicated in F--induced neurotoxicity.


Assuntos
Encéfalo/efeitos dos fármacos , Fluoretos/toxicidade , Substâncias Perigosas/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Humanos
5.
Neurol Sci ; 39(1): 161-164, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29124442

RESUMO

Phenylketonuria (PKU) is a disorder caused by an inborn error of metabolism, causing cognitive and behavioral disorders when not treated. Heterozygotes (i.e., patients' parents) were described with low verbal intelligence quotient, but no study systematically investigated cognitive functions in PKU parents. To obtain a neuropsychological profile in heterozygotes, we compared cognitive performance of heterozygotes and healthy controls (HC) on cognitive battery. Twelve heterozygotes and 14 HCs underwent standardized neuropsychological tasks assessing frontal/executive functions, memory, and visuospatial abilities. No significant difference between heterozygotes and HC was found on demographic aspects. Heterozygotes performed worse than HC on immediate verbal recall, on test assessing set-shifting, divided attention, and sensitivity to processing speed. No difference was found on the remaining cognitive tests.In conclusions, we observed less efficient control/executive functions in heterozygotes when compared to HCs. Further studies in large sample of heterozygotes should be performed to confirm our results.


Assuntos
Fenilcetonúrias/psicologia , Idoso , Cognição , Função Executiva , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fenilcetonúrias/genética
6.
Bratisl Lek Listy ; 117(5): 251-3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27215959

RESUMO

Various margarines containing trans-fatty acids were marketed as being healthier because of the absence of cholesterol, suggesting to use margarine instead of butter. Fifteen years ago, research documented the grave health risk of trans-fats (T-fat). US FDA in 2015 finalized its decision that T-fat is not safe and set a three-year time limit for complete removal of T-fat from all foods. The greatest danger from T-fat lies in its capacity to distort the cell membranes. The primary health risk identified for T-fat consumption is an elevated risk of coronary heart disease. T-fats have an adverse effect on the brain and nervous system. T-fat from the diet is incorporated into brain cell membranes and alter the ability of neurons to communicate. This can diminish mental performance. Relationship between T-fat intake and depression risk was observed. There is growing evidence for a possible role of T-fat in the development of Alzheimer´s disease and cognitive decline with age.


Assuntos
Doença de Alzheimer/epidemiologia , Envelhecimento Cognitivo , Doença das Coronárias/epidemiologia , Depressão/epidemiologia , Gorduras na Dieta , Ácidos Graxos trans/efeitos adversos , Membrana Celular/metabolismo , Colesterol , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Hidrogenação , Margarina , Neurônios/metabolismo , Obesidade/epidemiologia , Óleos de Plantas , Fatores de Risco , Ácidos Graxos trans/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38774717

RESUMO

Prostate cancer (PCa) is one of the most prevalent malignancies affecting males worldwide. Despite reductions in mortality rates due to advances in early identification and treatment methods, PCa remains a major health concern. Recent research has shed light on a possible link between PCa and Alzheimer's disease (AD), which is a significant neurological ailment that affects older males all over the world. Androgen deprivation therapy (ADT), a cornerstone therapeutic method used in conjunction with radiation and palliative care in advanced metastatic PCa cases, is critical for disease management. Evidence reveals a relationship between ADT and cognitive impairment. Hormonal manipulation may cause long-term cognitive problems through processes such as amyloid beta (Aß) aggregation and neurofibrillary tangles (NFTs). Fluctuations in basal androgen levels can upset the delicate balance of genes that are sensitive to androgen levels, contributing to cognitive impairment. This detailed review dives into the various aspects of PCa aetiology and its relationship with cognitive decline. It investigates the discovery of particular biomarkers, as well as microRNAs (miRNAs), which play important roles in pathogenic progression. The review attempts to identify potential biomarkers associated with ADT-induced cerebral changes, including Aß oligomer buildup, NFT formation, and tauopathy, which can contribute to early-onset dementia and cognitive impairment. Besides it further aims to provide insights into innovative diagnostic and therapeutic avenues for alleviating PCa and ADT-related cognitive sequelae by unravelling these complicated pathways and molecular mechanisms.

8.
Redox Biol ; 73: 103196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772149

RESUMO

Hippocampal neural stem/progenitor cells (NSPCs) are highly vulnerable to different stress stimuli, resulting in adult neurogenesis decline and eventual cognitive defects. Our previous study demonstrated that NOD-like receptor family pyrin domain-containing 6 (Nlrp6) highly expressed in NSPCs played a critical role in sustaining hippocampal neurogenesis to resist stress-induced depression, but the underlying mechnistms are still unclear. Here, we found that Nlrp6 depletion led to cognitive defects and hippocampal NSPC loss in mice. RNA-sequencing analysis of the primary NSPCs revealed that Nlrp6 deficiency altered gene expression profiles of mitochondrial energy generation and ferroptotic process. Upon siNlrp6 transfection, as well as corticosterone (CORT) exposure, downregulation of Nlrp6 suppressed retinoic acid-inducible gene I (RIG-1)/mitochondrial antiviral signaling proteins (MAVS)-mediated autophagy, but drove NSPC ferroptotic death. More interesting, short chain fatty acids (SCFAs) upregulated Nlrp6 expression and promoted RIG-1/MAVS-mediated mitophagy, preventing CORT-induced NSPC ferroptosis. Our study further demonstrates that Nlrp6 should be a sensor for RIG-1/MAVS-mediated mitophagy and play a critical role in maintain mitochondrial homeostasis of hippocampal NSPCs. These results suggests that Nlrp6 should be a potential drug target to combat neurodegenerative diseases relative with chronic stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Corticosterona , Proteína DEAD-box 58 , Ferroptose , Mitofagia , Células-Tronco Neurais , Animais , Camundongos , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Corticosterona/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células-Tronco Neurais/metabolismo , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Receptores de Superfície Celular
9.
Aging Cell ; : e14187, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716507

RESUMO

Behavioral changes or neuropsychiatric symptoms (NPSs) are common features in dementia and are associated with accelerated cognitive impairment and earlier deaths. However, how NPSs are intertwined with cognitive decline remains elusive. In this study, we identify that the basolateral amygdala (BLA) is a key brain region that is associated with mood disorders and memory decline in the AD course. During the process from pre- to post-onset in AD, the dysfunction of parvalbumin (PV) interneurons and pyramidal neurons in the amygdala leads to hyperactivity of pyramidal neurons in the basal state and insensitivity to external stimuli. We further demonstrate that serotonin (5-HT) receptors in distinct neurons synergistically regulate the BLA microcircuit of AD rather than 5-HT levels, in which both restrained inhibitory inputs by excessive 5-HT1AR signaling in PV interneurons and depolarized pyramidal neurons via upregulated 5-HT2AR contribute to aberrant neuronal hyperactivity. Downregulation of these two 5-HT receptors simultaneously enables neurons to resist ß-amyloid peptides (Aß) neurotoxicity and ameliorates the mood and cognitive defects. Therefore, our study reveals a crucial role of 5-HT receptors for regulating neuronal homeostasis in AD pathogenesis, and this would provide early intervention and potential targets for AD cognitive decline.

10.
Toxics ; 10(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36006156

RESUMO

Dichlorvos (2,3-dichlorovinyl dimethyl phosphate or DDVP), is a popular organophosphate (OP) with several domestic, industrial, and agricultural uses and applications in developing countries [...].

11.
Neuron ; 108(5): 887-904.e12, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33027640

RESUMO

Microglia are brain-resident immune cells and regulate mechanisms essential for cognitive functions. Down syndrome (DS), the most frequent cause of genetic intellectual disability, is caused by a supernumerary chromosome 21, containing also genes related to the immune system. In the hippocampus of the Dp(16) mouse model of DS and DS individuals, we found activated microglia, as assessed by their morphology; activation markers; and, for DS mice, electrophysiological profile. Accordingly, we found increased pro-inflammatory cytokine levels and altered interferon signaling in Dp(16) hippocampi. DS mice also showed decreased spine density and activity of hippocampal neurons and hippocampus-dependent cognitive behavioral deficits. Depletion of defective microglia or treatment with a commonly used anti-inflammatory drug rescued the neuronal spine and activity impairments and cognitive deficits in juvenile Dp(16) mice. Our results suggest an involvement of microglia in Dp(16)-mouse cognitive deficits and identify a new potential therapeutic approach for cognitive disabilities in DS individuals.


Assuntos
Cognição/fisiologia , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/fisiopatologia , Microglia/fisiologia , Adulto , Fatores Etários , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Cognição/efeitos dos fármacos , Síndrome de Down/tratamento farmacológico , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Pirróis/farmacologia , Pirróis/uso terapêutico
12.
Adv Pharm Bull ; 9(2): 294-301, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31380256

RESUMO

Purpose: Manganese (Mn) is a neurotoxic chemical which induces a wide range of complications in the brain tissue. Impaired locomotor activity and cognitive dysfunction are associated with high brain Mn content. At the cellular level, mitochondria are potential targets for Mn toxicity. Carnosine is a dipeptide abundantly found in human brain. Several pharmacological properties including mitochondrial protecting and antioxidative effects have been attributed to carnosine. The current study aimed to evaluate the effect of carnosine treatment on Mn-induced mitochondrial dysfunction in isolated brain mitochondria. Methods: Mice brain mitochondria were isolated based on the differential centrifugation method and exposed to increasing concentrations of Mn (10 µM-10 mM). Carnosine (1 mM) was added as the protective agent. Mitochondrial indices including mitochondrial depolarization, reactive oxygen species (ROS) formation, mitochondrial dehydrogenases activity, ATP content, and mitochondrial swelling and permeabilization were assessed. Results: Significant deterioration in mitochondrial indices were evident in Mn-exposed brain mitochondria. On the other hand, it was found that carnosine (1 mM) treatment efficiently prevented Mn-induced mitochondrial impairment. Conclusion: These data propose mitochondrial protection as a fundamental mechanism for the effects of carnosine against Mn toxicity. Hence, this peptide might be applicable against Mn neurotoxicity with different etiologies (e.g., in cirrhotic patients).

13.
EBioMedicine ; 45: 408-421, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31257146

RESUMO

BACKGROUND: Dominant deafness-onychodystrophy (DDOD) syndrome is a rare disorder mainly characterized by severe deafness, onychodystrophy and brachydactyly. We previously identified c.1516C > T (p.Arg506X) in ATP6V1B2 as cause of DDOD syndrome, accounting for all cases of this genetic disorder. Clinical follow-up of DDOD syndrome patients with cochlear implantation revealed the language rehabilitation was unsatisfactory although the implanted cochlea worked well, which indicates there might be learning and memory problems in DDOD syndrome patients. However, the underlying mechanisms were unknown. METHODS: atp6v1b2 knockdown zebrafish and Atp6v1b2 c.1516C > T knockin mice were constructed to explore the phenotypes and related mechanism. In mutant mice, auditory brainstem response test and cochlear morphology analysis were performed to evaluate the auditory function. Behavioral tests were used to investigate various behavioral and cognitive domains. Resting-state functional magnetic resonance imaging was used to evaluate functional connectivity in the mouse brain. Immunofluorescence, Western blot, and co-immunoprecipitation were performed to examine the expression and interactions between the subunits of V-ATPases. FINDINGS: atp6v1b2 knockdown zebrafish showed developmental defects in multiple organs and systems. However, Atp6v1b2 c.1516C > T knockin mice displayed obvious cognitive defects but normal hearing and cochlear morphology. Impaired hippocampal CA1 region and weaker interaction between the V1E and B2 subunits in Atp6v1b2Arg506X//Arg506X mice were observed. INTERPRETATION: Our study extends the phenotypic range of DDOD syndrome. The impaired hippocampal CA1 region may be the pathological basis of the behavioral defects in mutant mice. The molecular mechanism underlying V-ATPases dysfunction involves a weak interaction between subunits, although the assembly of V-ATPases can still take place.


Assuntos
Surdez/genética , Deficiência Intelectual/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adulto , Animais , Cóclea , Surdez/fisiopatologia , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Lactente , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo , Peixe-Zebra/genética
14.
Oncotarget ; 8(56): 95780-95790, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221166

RESUMO

Although increasing evidences suggest a relationship between hypertension and brain function for years, it is still unclear whether hypertension constitutes a risk factor for cognitive decline and its underlying mechanism. In the present study, an experimental animal model of hypertension simply by feeding rats with high salt diet was employed. We found that long-term high salt intake caused a marked increase of systolic blood pressure linked to a declined regional cerebral blood flow. Fear conditioning and morris water maze behavioral test revealed that high salt diet induced hippocampal dependent spatial reference memory deficits, while a decreased synaptogenesis without neuronal loss in hippocampus was observed in high salt treated rats. Furthermore, we found that high salt induced a decrease of intracellular calcium, which inactivated CaMK II and resulted in dephosphorylation of CREB at Ser133. These findings suggest a novel etiopathogenic mechanism of cognitive deficit induced by hypertension, which is initiated by high salt diet.

15.
Neurosci Biobehav Rev ; 46 Pt 2: 326-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24661984

RESUMO

The number of genes known to cause human monogenic diseases is increasing rapidly. For the extremely large, genetically and phenotypically heterogeneous group of intellectual disability (ID) disorders, more than 600 causative genes have been identified to date. However, knowledge about the molecular mechanisms and networks disrupted by these genetic aberrations is lagging behind. The fruit fly Drosophila has emerged as a powerful model organism to close this knowledge gap. This review summarizes recent achievements that have been made in this model and envisions its future contribution to our understanding of ID genetics and neuropathology. The available resources and efficiency of Drosophila place it in a position to tackle the main challenges in the field: mapping functional modules of ID genes to provide conceptually novel insights into the genetic control of cognition, tailored functional studies to improve 'next-generation' diagnostics, and identification of reversible ID phenotypes and medication. Drosophila's behavioral repertoire and powerful genetics also open up perspectives for modeling genetically complex forms of ID and neuropsychiatric disorders, which overlap in their genetic etiologies. In conclusion, Drosophila provides many opportunities to advance future medical genomics of early onset cognitive disorders.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Terapia de Alvo Molecular/métodos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA