RESUMO
Rechargeable solid-state sodium metal batteries (SSMBs) experience growing attention owing to the increased energy density (vs Na-ion batteries) and cost-effective materials. Inorganic sulfide-based Na-ion conductors also possess significant potential as promising solid electrolytes (SEs) in SSMBs. Nevertheless, due to the highly reactive Na metal, poor interface compatibility is the biggest obstacle for inorganic sulfide solid electrolytes such as Na3SbS4 to achieve high performance in SSMBs. To address such electrochemical instability at the interface, new design of sulfide SE nanostructures and interface engineering are highly essential. In this work, a facile and straightforward approach is reported to prepare 3D sulfide-based solid composite electrolytes (SCEs), which utilize porous Na3SbS4 (NSS) as a self-templated framework and fill with a phase transition polymer. The 3D structured SCEs display obviously improved interface stability toward Na metal than pristine sulfide. The assembled SSMBs (with TiS2 or FeS2 as cathodes) deliver outstanding electrochemical cycling performance. Moreover, the cycling of high-voltage oxide cathode Na0.67Ni0.33Mn0.67O2 (NNMO) is also demonstrated in SSMBs using 3D sulfide-based SCEs. This study presents a novel design on the self-templated nanostructure of SCEs, paving the way for the advancement of high-energy sodium metal batteries.
RESUMO
The integration of the flexibility of organic polymer electrolyte and high ionic conductivity of the ceramic electrolyte is attempted in search of efficient and safer battery. Composite solid polymer electrolyte (CSPE) provides high ionic conductivity with a sustainable thin film of electrolyte having the synergistic effect of ionic liquid and active inorganic filler. The CSPE is synthesized by the solution cast technique using Na3Zr2Si2PO12 (NZSP) as ceramic and poly(vinylidene fluoride-hexafluoropropylene) with Salt-Ionic liquid as polymer electrolyte. X-ray diffraction (XRD) of CSPE includes amorphous nature due to the polymer part as well as crystalline peaks of ceramic NZSP, simultaneously. The prepared CSPE sample shows homogeneous and interconnected surface morphology is observed by Scanning electron microscopy (SEM) image. Thermogravimetric analysis (TGA) shows electrolyte is thermally stable up to 200 °C and differential scanning calorimetry (DSC) reveals decrease in degree of crystallinity due to NZSP addition in the CSPE. By complex impedance spectroscopy (CIS), room temperature ionic conductivity of the prepared CSPE is found ~1.03â mS/cm. The dielectric behaviour of the prepared electrolyte is also studied to investigate the ion dynamics within the sample. The cationic transference number is 0.53 and the electrochemical stability window (ESW) of the CSPE is 4.9â V which is suitable for sodium solid-state batteries applications.
RESUMO
Battery safety calls for solid state batteries and how to prepare solid electrolytes with excellent performance are of significant importance. In this study, hybrid solid electrolytes combined with organic PVDF-HFP and inorganic active fillers are studied. The modified active fillers of Li7-x-3yAlyLa3Zr2-xTaxO12are obtained by co-element doping with Al and Ta when LLZO is synthesized by calcination. And an high room temperature ionic conductivity of 5.357 × 10-4S cm-1is exhibited by ATLLZO ceramic sheet. The composite solid electrolyte PVDF-HFP/LiTFSI/ATLLZO (PHL-ATLLZO) is prepared by solution casting method, and its electrochemical properties are investigated. The results show that when the contents of lithium salt LiTFSI and active filler ATLLZO are controlled at 40 wt% and 10%, respectively, the ionic conductivity of the resulting composite solid electrolyte is as high as 2.686 × 10-4S cm-1at room temperature, and a wide electrochemical window of 4.75 V is exhibited. The LiFePO4/PHL-ATLLZO/Li all-solid-state battery assembled based on the composite solid-state electrolyte exhibits excellent cycling stability at room temperature. The cell assembled by casting the composite solid-state electrolyte on the cathode surface shows a discharge specific capacity of 134.3 mAh g-1and 96.2% capacity retention after 100 cycles at 0.2 C. The prepared composite solid-state electrolyte demonstrates excellent electrochemical performance.
RESUMO
Replacing liquid electrolytes with solid polymer electrolytes (SPEs) is considered as a vital approach to developing sulfur (S)-based cathodes. However, the polysulfides shuttle and the growth of lithium (Li) dendrites are still the major challenges in polyethylene oxide (PEO)-based electrolyte. Here, an all-solid-state Li metal battery with flexible PEO-Li10 Si0.3 PS6.7 Cl1.8 (LSPSCl)-C-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) composite cathode (FCC) and PEO-LSPSCl-LiTFSI composite electrolyte (S-CPE) is designed. The initial capacity of the Li|S-CPE|FCC battery is 414 mAh g-1 with 97.8% capacity retention after 100 cycles at 0.1 A g-1 . Moreover, the battery displays remarkable capacity retention of 80% after 500 cycles at 0.4 A g-1 . Cryo-transmission electron microscopy (Cryo-TEM) reveals rich large-sized Li2 CO3 particles at the Li/PEO interface blocking the Li+ transport, but the layer with rich Li2 O nanocrystals, amorphous LiF and Li2 S at the Li/S-CPE interface suppresses the growth of lithium dendrite and stabilizes the interface. In situ optical microscopy demonstrates that the excellent cyclic stability of FCC is ascribed to the reversible shuttle of P-S-P species, resulting from the movement of ether backbone in PEO. This study provides strategies to mitigate the polysulfide shuttle effect and Li dendrite formation in designing high energy density solid-state Li-S-based batteries.
RESUMO
Solid composite electrolyte-based Li battery is viewed as one of the most competitive system for the next generation batteries; however, it is still restricted by sluggish ion diffusion. Fast ion transport is a characteristic of the polyethylene oxide (PEO) amorphous phase, and the mobility of Li+ is restrained by the coordination interaction within PEO and Li+ . Herein, the design of applying functionalized carbon dots (CDs) with abundant surface features as fillers is proposed. High ionic conductivity is achieved in the CD-based composite electrolytes resulting from enhanced ion migration ability of polymer segments and mobility of Li+ . Specially, the optimum effect with nitrogen and sulfur co-doped carbon dots (NS-CD) is a consequence of strong interaction between edge-nitrogen/sulfur in NS-CD and Li+ . Solid-state nuclear magnetic resonance results confirm that more mobile Li+ is generated. Moreover, it is observed that lithium dendrite is suppressed compared to PEO electrolyte associated with reinforced mechanical properties and high transference number. The corresponding all-solid-state batteries, with the cathode of LiFePO4 or high voltage NCM523, exhibit long cycling life and excellent rate performances. It is a novel strategy to achieve high ionic conductivity composite electrolyte with uniform lithium deposition and provides a new direction to the mechanism of fast Li+ movement.
RESUMO
The integration of Li2 S6 within a poly(ethylene oxide) (PEO)-based polymer electrolyte is demonstrated to improve the polymer electrolyte's ionic conductivity because the strong interplay between O2- (PEO) and Li+ from Li2 S6 reduces the crystalline volume within the PEO. The Li/electrolyte interface is stabilized by the in situ formation of an ultra-thin Li2 S/Li2 S2 layer via the reaction between Li2 S6 and lithium metal, which increases the ionic transport at the interface and suppresses lithium dendrite growth. A symmetric Li/Li cell with the Li2 S6 -integrated composite electrolyte has excellent cyclability and a high critical current density of 0.9â mA cm-2 at 40 °C. Impressive electrochemical performance is demonstrated with all-solid-state Li/LiFePO4 and high-voltage Li/LiNi0.8 Mn0.1 Co0.1 O2 cells at 40 °C.
RESUMO
Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic-polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all-solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathodes, the all-solid-state lithium metal batteries render excellent specific capacities of above 150 mAhâ g-1 and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries.
RESUMO
Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+ -insulating oxides (fluorite Gd0.1 Ce0.9 O1.95 and perovskite La0.8 Sr0.2 Ga0.8 Mg0.2 O2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li+ conductivity above 10-4 â S cm-1 at 30 °C. Li solid-state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O2- of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.
RESUMO
Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.
RESUMO
Replacing the flammable liquid electrolytes with solid ones has been considered to be the most effective way to improve the safety of the lithium batteries. However, the solid electrolytes often suffer from low ionic conductivity and poor rate capability due to their relatively stable molecular/atomic architectures. In this study, we report a composite solid electrolyte, in which polyethylene oxide (PEO) is the matrix and Li6.4La3Zr1.45Ta0.5Mo0.05O12 (LLZTMO) and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) are the fillers. Ta/Mo co-doping can further promote the ion transport capacity in the electrolyte. The synthesized composite electrolytes exhibit high thermal stability (up to 413 °C) and good ionic conductivity (LLZTMO-PEO 2.00 × 10-4 S·cm-1, LLZTO-PEO 1.53 × 10-4 S·cm-1) at 35 °C. Compared with a pure PEO electrolyte, whose ionic conductivity is in the range of 10-7~10-6 S·cm-1, the ionic conductivity of composite solid electrolytes is greatly improved. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries.
RESUMO
All-solid-state batteries have the potential for enhanced safety and capacity over conventional lithium ion batteries, and are anticipated to dominate the energy storage industry. As such, strategies to enable recycling of the individual components are crucial to minimize waste and prevent health and environmental harm. Here, we use cold sintering to reprocess solid-state composite electrolytes, specifically Mg and Sr doped Li7La3Zr2O12 with polypropylene carbonate (PPC) and lithium perchlorate (LLZO-PPC-LiClO4). The low sintering temperature allows co-sintering of ceramics, polymers and lithium salts, leading to re-densification of the composite structures with reprocessing. Reprocessed LLZO-PPC-LiClO4 exhibits densified microstructures with ionic conductivities exceeding 10-4â S/cm at room temperature after 5â recycling cycles. All-solid-state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity of 168â mA h g-1 at 0.1â C, and retention of performance at 0.2â C for over 100â cycles. Life cycle assessment (LCA) suggests that recycled electrolytes outperforms the pristine electrolyte process in all environmental impact categories, highlighting cold sintering as a promising technology for recycling electrolytes.
RESUMO
Composite electrolytes have been accepted as the most promising species for solid-state batteries, exhibiting the synergistic advantages of solid polymer electrolytes (SPEs) and solid ceramic electrolytes (SCEs). Unfortunately, the interrupted Li+ conduction across the SPE and SCE interface hinders the ionic conductivity improvement of composite electrolytes. In our study on a ceramic-rich composite electrolyte (CRCE) membrane composed of borate polyanion-based lithiated poly(vinyl formal) (LiPVFM) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) particles, it is found that the strong interaction between the polyanions in LiPVFM and LATP particles results in a uniform distribution of ceramic particles at a high proportion of 50 wt % and good robustness of the electrolyte membrane with a Young's modulus of 9.20 GPa. More importantly, ab initio molecular dynamics simulation and experimental results demonstrate that Li+ conduction across the SPE and SCE interface is induced by the polyanion-based polymer due to its high lithium-ion transference number and similar Li+ diffusion coefficient with the SCE. Therefore, the unblocked Li+ conduction among ceramic particles dominates in the CRCE membrane with a high ionic conductivity of 6.60 × 10-4 S cm-1 at 25 °C, a lithium-ion transference number of 0.84, and a wide electrochemical stable window of 5.0 V (vs Li/Li+). Consequently, the high nickel ternary cathode LiNi0.8Mn0.1Co0.1O2-based batteries with CRCE deliver a high-rate capability of 135.08 mAh g-1 at 1.0 C and a prolonged cycle life of 100 cycles at 0.2 C between 3.0 and 4.3 V. The polyanion-induced Li+ conduction across the interface sheds new light on solving composite electrolyte problems for solid-state batteries.
RESUMO
Sulfide- and halide-based ceramic ionic conductors exhibit comparable ionic conductivity with liquid electrolytes and are candidates for high-energy- and high-power-density all-solid-state batteries. These materials, however, are inherently brittle, making them unfavorable for applications. Here, we report a mechanically enhanced composite Na+ conductor that contains 92.5 wt % of sodium thioantimonate (Na3SbS4, NSS) and 7.5 wt % of sodium carboxymethyl cellulose (CMC); the latter serves as the binder and an electrochemically inert encapsulation layer. The ceramic and binder constituents were integrated at the particle level, providing ceramic NSS-level Na+ conductivity in the NSS-CMC composite. The more than 5-fold decrease of electrolyte thickness obtained in NSS-CMC composite provided a 5-fold increase in Na+ conductance compared to NSS ceramic pellets. As a result of the CMC encapsulation, this NSS-CMC composite shows increased moisture resistivity and electrochemical stability, which significantly promotes the cycling performance of NSS-based solid-state batteries. This work demonstrates a well-controlled, orthogonal process of ceramic-rich, composite electrolyte processing: independent streams for ceramic particle formation along with binder encapsulation in a solvent-assisted environment. This work also provides insights into the interplay among the solvent, the polymeric binder, and the ceramic particles in composite electrolyte synthesis and implies the critical importance of identifying the appropriate solvent/binder system for precise control of this complicated process.
RESUMO
In the current challenging energy storage and conversion landscape, solid-state lithium metal batteries with high energy conversion efficiency, high energy density, and high safety stand out. Due to the limitations of material properties, it is difficult to achieve the ideal requirements of solid electrolytes with a single-phase electrolyte. A composite solid electrolyte is composed of two or more different materials. Composite electrolytes can simultaneously offer the advantages of multiple materials. Through different composite methods, the merits of various materials can be incorporated into the most essential part of the battery in a specific form. Currently, more and more researchers are focusing on composite methods for combining components in composite electrolytes. The ion transport capacity, interface stability, machinability, and safety of electrolytes can be significantly improved by selecting appropriate composite methods. This review summarizes the composite methods used for the components of composite electrolytes, such as filler blending, embedded framework, and multilayer bonding. It also discusses the future development trends of all-solid-state lithium batteries (ASSLBs).
RESUMO
Numerous endeavors have been dedicated to the development of composite polymer electrolyte (CPE) membranes for all-solid-state batteries (SSBs). However, insufficient ionic conductivity and mechanical properties still pose great challenges in practical applications. In this study, a flexible composite electrolyte membrane (FCPE) with fast ion transport channels was prepared using a phase conversion process combined with in situ polymerization. The polyvinylidene fluoride-hexafluoro propylene (PVDF-HFP) polymer matrix incorporated with lithium lanthanum zirconate (LLZTO) formed a 3D net-like structure, and the in situ polymerized polyvinyl ethylene carbonate (PVEC) enhanced the interface connection. This 3D network, with multiple rapid pathways for Li+ that effectively control Li+ flux, led to uniform lithium deposition. Moreover, the symmetrical lithium cells that used FCPE exhibited high stability after 1200 h of cycling at 0.1 mA cm-2. Specifically, all-solid-state lithium batteries coupled with LiFePO4 cathodes can stably cycle for over 100 cycles at room temperature with high Coulombic efficiencies. Furthermore, after 100 cycles, the infrared spectrum shows that the structure of FCPE remains stable. This work demonstrates a novel insight for designing a flexible composite electrolyte for highly safe SSBs.
RESUMO
The dehydrofluorination effect of poly(vinylidene fluoride) (PVDF) induced by ceramic fillers with an alkaline surface compromises the comprehensive properties of the solid composite electrolyte (SCE) and leads to the deficient performance of the solid-state lithium metal batteries (SLMBs). In this work, a unique PVDF-based double-layer solid electrolyte was fabricated, which consisted of a Li6.4La3Zr1.4Ta0.6O12 (LLZTO)-filled SCE with poly(acrylic acid) (PAA) as an alkalinity-scavenging agent in contact with the Li anode, and another SCE with lithium difluoro(oxalato)borate (LiDFOB) as a film-formation additive facing the cathode. It is found that a moderate amount of PAA relieves the dehydrofluorination degree of the PVDF matrix and improves the Li plating/stripping reversibility, and the addition of LiDFOB is involved in the formation of a stable passivation film on the cathode. Consequently, the resultant double-layer SCE holds favorable overall properties, especially being well-compatible with both electrodes, endowing the SLMBs with superior cycle and rate performance at room temperature.
RESUMO
Polymer solid-state lithium batteries (SSLB) are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety. Ion conductivity, interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB. As the main component of SSLB, poly(1,3-dioxolane) (PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid electrolyte, for their high ion conductivity at room temperature, good battery electrochemical performances, and simple assembly process. This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB. The focuses include exploring the polymerization mechanism of DOL, the performance of PDOL composite electrolytes, and the application of PDOL. Furthermore, we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB. The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.
RESUMO
Molten Carbonate Fuel Cells (MCFCs) are a promising technology as sustainable power generators as well as CO2 selective concentrators for carbon capture applications. Looking at the current cell configuration, several issues, which hinders a stable long-term operation of the system, are still unsettled. According to reference studies, the ceramic matrix is one of the most critical components in view of its high impact on the cell performance since it can influence both the stability and the reaction path. Indeed, it provides the structural support and holds the molten carbonates used as electrolyte, requiring a good mechanical strength despite of a porous structure, a high specific surface area and a sufficient electrolyte wettability to avoid the electrode flooding. The matrix structure, its key-features and degradation issues are discussed starting from the state-of-the-art lithium aluminate LiAlO2 usually strengthened with Al based reinforcement agents. Since the achievable performance is strictly dependent on manufacturing, a devoted section focuses on available techniques with a view also of their environmental impacts. Considering a still insufficient performance due to the material structural and chemical instability favoured by stressful working conditions, the electric conductive ceramics are presented as alternative matrixes permitting to increase the cell performance combining oxygen and carbonate ion paths.
RESUMO
Inferior air stability is a primary barrier for large-scale applications of garnet electrolytes in energy storage systems. Herein, a deeply hydrated hydrogarnet electrolyte generated by a simple ion-exchange-induced phase transition from conventional garnet, realizing a record-long air stability of more than two years when exposed to ambient air is proposed. Benefited from the elimination of air-sensitive lithium ions at 96 h/48e sites and unobstructed lithium conduction path along tetragonal sites (12a) and vacancies (12b), the hydrogarnet electrolyte exhibits intrinsic air stability and comparable ion conductivity to that of traditional garnet. Moreover, the unique properties of hydrogarnet pave the way for a brand-new aqueous route to prepare lithium metal stable composite electrolyte on a large-scale, with high ionic conductivity (8.04 × 10-4 S cm-1), wide electrochemical windows (4.95 V), and a high lithium transference number (0.43). When applied in solid-state lithium batteries (SSLBs), the batteries present impressive capacity and cycle life (164 mAh g-1 with capacity retention of 89.6% after 180 cycles at 1.0C under 50 °C). This work not only designs a new sort of hydrogarnet electrolyte, which is stable to both air and lithium metal but also provides an eco-friendly and large-scale fabrication route for SSLBs.
RESUMO
Herein, we present the preparation and properties of an ultrathin, mechanically robust, quasi-solid composite electrolyte (SEO-QSCE) for solid-state lithium metal battery (SLB) from a well-defined polystyrene-b-poly(ethylene oxide) diblock copolymer (SEO), Li6.75La3Zr1.75Ta0.25O12 nanofiller, and fluoroethylene carbonate plasticizer. Compared with the ordered lamellar microphase separation of SEO, the SEO-QSCE displays bicontinuous phases, consisting of a Li+ ion conductive poly(ethylene oxide) domain and a mechanically robust framework of the polystyrene domain. Therefore, the 12 µm-thick SEO-QSCE membrane exhibits an exceptional ionic conductivity of 1.3 × 10-3 S cm-1 at 30 °C, along with a remarkable tensile strength of 5.1 MPa and an elastic modulus of 2.7 GPa. The high mechanical robustness and the self-generated LiF-rich SEI enable the SEO-QSCE to have an extraordinary lithium dendrite prohibition effect. The SLB of Li|SEO-QSCE|LiFePO4 reveals superior cycling performances at 30 °C for over 600 cycles, maintaining an initial discharge capacity of 145 mAh g-1 and a remarkable capacity retention of 81% (117 mAh g-1) after 400 cycles at 0.5 C. The high-voltage SLB of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 displays good cycling stability for over 150 cycles at 30 °C. Moreover, the exceptional robustness of SEO-QSCE enables the high-voltage solid-state pouch cell of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 with high flexibility and excellent safety features. The current investigation delivers a promising and innovative approach for preparing quasi-solid electrolytes with features of ultrathin design, mechanical robustness, and exceptional electrochemical performance for high-voltage SLBs.