Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microvasc Res ; 99: 43-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724978

RESUMO

The complicated capillary network induced by angiogenesis is one of the main reasons of unsuccessful cancer therapy. A multi-scale mathematical method which simulates drug transport to a solid tumor is used in this study to investigate how capillary network structure affects drug delivery. The mathematical method involves processes such as blood flow through vessels, solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The effect of heterogeneous dynamic network on interstitial fluid flow and drug delivery is investigated by this multi-scale method. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. Finally, convection-diffusion equation is used to simulate drug delivery. Three approaches are used to simulate drug transport based on the developed mathematical method: without a vascular network, using a static vascular network, and a dynamic vascular network. The avascular approach predicts more uniform and higher drug concentration than vascular approaches since the simplified assumptions are implemented in this method. The dynamic network which uses more realistic assumptions predicts more irregular blood vessels, high interstitial pressure, and more heterogeneity in drug distribution than other two approaches.


Assuntos
Sistemas de Liberação de Medicamentos , Microcirculação , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Algoritmos , Transporte Biológico , Capilares , Simulação por Computador , Difusão , Líquido Extracelular , Matriz Extracelular/metabolismo , Humanos , Microvasos , Modelos Biológicos , Neovascularização Patológica , Permeabilidade , Porosidade
2.
Micromachines (Basel) ; 12(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34945321

RESUMO

Mixing at the microscale is of great importance for various applications ranging from biological and chemical synthesis to drug delivery. Among the numerous types of micromixers that have been developed, planar passive spiral micromixers have gained considerable interest due to their ease of fabrication and integration into complex miniaturized systems. However, less attention has been paid to non-planar spiral micromixers with various cross-sections and the effects of these cross-sections on the total performance of the micromixer. Here, mixing performance in a spiral micromixer with different channel cross-sections is evaluated experimentally and numerically in the Re range of 0.001 to 50. The accuracy of the 3D-finite element model was first verified at different flow rates by tracking the mixing index across the loops, which were directly proportional to the spiral radius and were hence also proportional to the Dean flow. It is shown that higher flow rates induce stronger vortices compared to lower flow rates; thus, fewer loops are required for efficient mixing. The numerical study revealed that a large-angle outward trapezoidal cross-section provides the highest mixing performance, reaching efficiencies of up to 95%. Moreover, the velocity/vorticity along the channel length was analyzed and discussed to evaluate channel mixing performance. A relatively low pressure drop (<130 kPa) makes these passive spiral micromixers ideal candidates for various lab-on-chip applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA