Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Chemistry ; 29(8): e202203081, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36367092

RESUMO

Two lithium phospha-enolates [RP=C(Sii Pr3 )OLi]2 were prepared by reaction of triisopropyl silyl phosphaethynolate, i Pr3 SiPCO, with aryl lithium reagents LiR (R=Mes: 1,3,5-trimethyl phenyl; or Mes*: 1,3,5,-tri-tertbutyl phenyl). Monomer/dimer aggregation of the enolates can be modulated by addition of 12-crown-4. Substitution of lithium for a heavier alkali metal was achieved through initial formation of a silyl enol ether, followed by reaction with KOt Bu to form the corresponding potassium phospha-enolate [MesP=C(Sii Pr3 )OK]2 . On addition of water, the enolates are protonated to afford RP=C(Sii Pr3 )(OH). For the sterically less demanding system (R=Mes), this phospha-enol rapidly tautomerises to the corresponding acyl phosphine MesP(H)C(Sii Pr3 )(O), which on heating extrudes CO. In contrast, bulkier phospha-enol (R=Mes*) is stable to rearrangement at room temperature and thermally decomposes to RH and i Pr3 SiPCO.

2.
Angew Chem Int Ed Engl ; 62(3): e202215856, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399366

RESUMO

Photoexcitation of cyclic ketones leads to the expulsion of carbon monoxide and a mixture of products derived from diradical intermediates. Here we show that synthetic utility of this process is improved if strained heterocyclic ketones are used. Photochemistry of 3-oxetanone and N-Boc-3-azetidinone has not been previously described. Decarbonylation of these 4-membered rings proceeds through a step-wise Norrish type I cleavage of the C-C bond from the singlet excited state. Ylides derived from both compounds are high-energy species that are kinetically stable long enough to undergo [3+2] cycloaddition with a variety of alkenes and produce substituted tetrahydrofurans and pyrrolidines. The reaction has a sufficiently wide scope to produce scaffolds that were either previously inaccessible or difficult to synthesize, thereby providing experimental access to new chemical space.


Assuntos
Azetidinas , Cetonas , Análise Espectral , Cetonas/química , Simulação por Computador
3.
Mass Spectrom Rev ; 40(6): 782-810, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965774

RESUMO

Carboxylic acids are valuable organic substrates as they are widely available, easy to handle, and exhibit structural and functional variety. While they are used in many standard synthetic protocols, over the past two decades numerous studies have explored new modes of metal-mediated reactivity of carboxylic acids and their derivatives. Mass spectrometry-based studies can provide fundamental mechanistic insights into these new modes of reactivity. Here gas-phase models for the following catalytic transformations of carboxylic acids and their derivatives are reviewed: protodecarboxylation; dehydration; decarbonylation; reaction as coordinated bases in C-H bond activation; remote functionalization and decarboxylative C-C bond coupling. In each case the catalytic problem is defined, insights from gas-phase studies are highlighted, comparisons with condensed-phase systems are made and perspectives are reached. Finally, the potential role for mechanistic studies that integrate both gas- and condensed-phase studies is highlighted by recent studies on the discovery of new catalysts for the selective decomposition of formic acid and the invention of the new extrusion-insertion class of reactions for the synthesis of amides, thioamides, and amidines. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Assuntos
Ácidos Carboxílicos , Metais , Ácidos Carboxílicos/química , Catálise , Espectrometria de Massas
4.
Chemistry ; 28(10): e202104347, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019188

RESUMO

We report an unprecedented catalytic protocol for the enantioselective decarbonylative transformation of aryl aldehydes. In this process, the decarbonylation of aldehydes catalyzed by chiral iridium complexes enabled the formation of asymmetric C-C bonds through the formation of an aryl-iridium intermediate. The decarbonylative aryl addition to bicyclic alkenes was fluidly performed without a stoichiometric aryl-metal reagent, such as aryl boronic acid, with a cationic iridium complex generated in situ from Ir(cod)2 (BArF 4 ) and the sulfur-linked bis(phosphoramidite) ligand ((R,R)-S-Me-BIPAM). This reaction has broad functional group compatibility, and no waste is generated, except carbon monoxide.

5.
Chemistry ; 27(60): 14816-14820, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34460121

RESUMO

1,2,3-Triazoles are well-established bioisosteres for amides, often installed as a result of structure-activity-relationship (SAR) exploration. A straightforward approach to assess the effect of the replacement of an amide by a triazole would start from the carboxylic acid and the amine used for the formation of a given amide and convert them into the corresponding alkyne and azide for cyclization by copper-catalyzed alkyne-azide cycloaddition (CuAAC). Herein, we report a functional-group-tolerant and operationally simple decarbonylative alkynylation that allows the conversion of complex (hetero)aryl carboxylic acids into alkynes. Furthermore, the utility of this method was demonstrated in the preparation of a triazolo analog of the commercial drug moclobemide. Lastly, mechanistic investigations using labeled carboxylic acid derivatives clearly show the decarbonylative nature of this transformation.


Assuntos
Alcinos , Ácidos Carboxílicos , Azidas , Catálise , Cobre , Ciclização , Reação de Cicloadição , Estrutura Molecular
6.
Chemistry ; 27(51): 12971-12975, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34235794

RESUMO

A decarbonylation free, polystyrene-supported, Pd (Pd@PS)-catalysed carbonylative esterification of the hydroxy group of 5-hydroxymethyl furfural (5-HMF) to its corresponding aryl esters has been developed. The use of Pd@PS, oxalic acid as CO source, and aryl halides was first explored for the aryl ester of 5-HMF synthesis. Here, we investigated the vital role of a polystyrene support to avoid the commonly known decarbonylation of 5-HMF. The reaction exhibits vast substrate scope with comparably good yield and catalyst recyclability.


Assuntos
Ésteres , Ácido Oxálico , Catálise , Esterificação
7.
Chem Rec ; 21(12): 3394-3410, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33852203

RESUMO

The activation of a carbon-fluorine bond is one of the most challenging topics in modern synthetic organic chemistry due to their low reactivity compared to other carbon-halogen bonds. In this review, we present the recent developments since 2015 on cross-coupling reactions that form C-C bonds via cleavage of C(sp2 )-F bonds. Not only the conventional activation of C(sp2 )-F bonds, but also decarbonylative or carbonyl-retentive cleavage of C(acyl)-F bonds will be introduced. This paper mainly describes new protocols for the formation of C(sp2 )-C(sp3 ), C(sp2 )-C(sp2 ), and C(sp2 )-C(sp) bonds via transition-metal-catalyzed cleavage of C(sp2 )-F bonds.

8.
Philos Trans A Math Phys Eng Sci ; 379(2209): 20200346, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510929

RESUMO

The hydrodeoxygenation (HDO) of acetophenone was evaluated in liquid phase and gas phase over monometallic Pt/SiO2, Co/SiO2 and bimetallic Pt-Co/SiO2 catalysts. The influence of reaction time and loading of the catalyst were analysed by following the conversion and products selectivity. Phenylethanol, cyclohexylethanone and cyclohexylethanol are the main products of reaction using the Pt/SiO2 catalyst. By contrast, ethylbenzene and phenylethanol are the only products formed on the Co/SiO2 and Pt-Co/SiO2 catalysts. The bimetallic catalyst is more stable as a function of time and more active towards the HDO process than the monometallic systems. The presence of an organic solvent showed only minor changes in product yields with no effect on the product speciation. Periodic density functional theory analysis indicates a stronger interaction between the carbonyl group of acetophenone with Co than with Pt sites of the mono and bimetallic systems, indicating a key activity of oxophilic sites towards improved selectivity to deoxygenated products. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

9.
Molecules ; 27(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011298

RESUMO

The amidation reaction of a tetrahydroisoquinolin-1-one-4-carboxylic acid is a key step in the multi-kilogram-scale preparation of the antimalarial drug SJ733, now in phase 2 clinical trials. In the course of investigating THIQ carboxamidations, we found that propanephosphonic acid anhydride (T3P) is an effective reagent, although the yield and byproducts vary with the nature and quantity of the base. As a control, the T3P reaction of a 3-(2-thienyl) THIQ was performed in the absence of the amine, and the products were characterized: among them are three dimeric allenes and two dimeric lactones. A nucleophile-promoted ketene dimerization process subject to subtle steric and stereoelectronic effects accounts for their formation. Two novel monomeric products, a decarboxylated isoquinolone and a purple, fused aryl ketone, were also isolated, and mechanisms for their formation from the ketene intermediate are proposed.

10.
Angew Chem Int Ed Engl ; 60(24): 13666-13670, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843132

RESUMO

The first examples of Lewis base adducts of the parent boraphosphaketene (H2 B-PCO) and their cyclodimers are prepared. One of these adducts is shown to undergo mild decarbonylation and phosphinidene insertion into a B-C bond of a borole, forming very rare examples of 1,2-phosphaborinines, B/P isosteres of benzene. The strong donor properties of these 1,2-phosphaborinines are confirmed by the synthesis of their π complexes with the Group 6 metals.

11.
Angew Chem Int Ed Engl ; 60(51): 26500-26505, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34596302

RESUMO

The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4 )(HN(C2 H4 PPh2 )2 )] (Ru-MACHO-BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2.

12.
Angew Chem Int Ed Engl ; 60(40): 22057-22061, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34383991

RESUMO

The reactivity of the phosphanyl-phosphagallene, [H2 C{N(Dipp)}]2 PP=Ga(Nacnac) (Nacnac=HC[C(Me)N(Dipp)]2 ; Dipp=2,6-i Pr2 C6 H3 ) towards a series of reagents possessing E-H bonds (primary amines, ammonia, water, phenylacetylene, phenylphosphine, and phenylsilane) is reported. Two contrasting reaction pathways are observed, determined by the polarity of the E-H bonds of the substrates. In the case of protic reagents (δ- E-Hδ+ ), a frustrated Lewis pair type of mechanism is operational at room temperature, in which the gallium metal centre acts as a Lewis acid and the pendant phosphanyl moiety deprotonates the substrates. Interestingly, at elevated temperatures both NH2 i Pr and ammonia can react via a second, higher energy, pathway resulting in the hydroamination of the Ga=P bond. By contrast, with hydridic reagents (δ+ E-Hδ- ), such as phenylsilane, hydroelementation of the Ga=P bond is exclusively observed, in line with the polarisation of the Si-H and Ga=P bonds.

13.
Angew Chem Int Ed Engl ; 60(14): 7752-7758, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33460518

RESUMO

Starphenes are attractive compounds due to their characteristic physicochemical properties that are inherited from acenes, making them interesting compounds for organic electronics and optics. However, the instability and low solubility of larger starphene homologs make their synthesis extremely challenging. Herein, we present a new strategy leading to pristine [16]starphene in preparative scale. Our approach is based on a synthesis of a carbonyl-protected starphene precursor that is thermally converted in a solid-state form to the neat [16]starphene, which is then characterised with a variety of analytical methods, such as 13 C CP-MAS NMR, TGA, MS MALDI, UV/Vis and FTIR spectroscopy. Furthermore, high-resolution STM experiments unambiguously confirm its expected structure and reveal a moderate electronic delocalisation between the pentacene arms. Nucleus-independent chemical shifts NICS(1) are also calculated to survey its aromatic character.

14.
Angew Chem Int Ed Engl ; 60(19): 10690-10699, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33596335

RESUMO

Cooperative bimetallic catalysis is a fundamental approach in modern synthetic chemistry. We report bimetallic cooperative catalysis for the direct decarbonylative heteroarylation of ubiquitous carboxylic acids via acyl C-O/C-H coupling. This novel catalytic system exploits the cooperative action of a copper catalyst and a palladium catalyst in decarbonylation, which enables highly chemoselective synthesis of important heterobiaryl motifs through the coupling of carboxylic acids with heteroarenes in the absence of prefunctionalization or directing groups. This cooperative decarbonylative method uses common carboxylic acids and shows a remarkably broad substrate scope (>70 examples), including late-stage modification of pharmaceuticals and streamlined synthesis of bioactive agents. Extensive mechanistic and computational studies were conducted to gain insight into the mechanism of the reaction. The key step involves intersection of the two catalytic cycles via transmetallation of the copper-aryl species with the palladium(II) intermediate generated by oxidative addition/decarbonylation.


Assuntos
Ácidos Carboxílicos/química , Complexos de Coordenação/química , Compostos Heterocíclicos/síntese química , Paládio/química , Catálise , Compostos Heterocíclicos/química , Estrutura Molecular
15.
Chemistry ; 26(19): 4246-4250, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012367

RESUMO

The radical-radical coupling reaction is an important synthetic strategy. In this study, the iron-catalyzed radical-radical cross-coupling reaction based on the decarboxylation of keto acids and decarbonylation of aliphatic aldehydes to obtain valuable aryl ketones is reported for the first time. Remarkably, when tertiary aldehydes were used as carbonyl sources, ketone esters were selectively obtained instead of ketones. The gram-scale preparation of aryl ketone through this strategy was easily achieved by using only 3 mol % of the iron catalyst. As a proof-of-concept, the bioactive molecule flurprimidol was synthesized in two steps by using this strategy.

16.
Fuel (Lond) ; 278: 118255, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32834073

RESUMO

Nowadays, production of biofuels is a rather hot topic due to depleting of conventional fossil fuel feedstocks and a number of other factors. Plant lipid-based feedstocks are very important for production of diesel-, kerosene-, and gasoline-like hydrocarbons. Usually, (hydro)deoxygenation processes are aimed at obtaining of linear hydrocarbons known to have poor fuel characteristics compared to the branched ones. Thus, further hydroisomerization is required to improve their properties as motor fuel components. This review article is focused on conversion of lipid-based feedstocks and model compounds into high-quality fuel components for a single step - direct cracking into aromatics and merged hydrodeoxygenation-hydroisomerization to obtain isoparaffins. The second process is quite novel and a number of the research articles presented in the literature is relatively low. As auxiliary subsections, hydroisomerization of straight hydrocarbons and techno-economic analysis of renewable diesel-like fuel production are briefly reviewed as well.

17.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31972970

RESUMO

For the convenient introduction of simple linear/branched alkyl groups into biologically important azaspirocyclohexadienones, a practical Fe-catalyzed decarbonylative cascade spiro-cyclization of N-aryl cinnamamides with aliphatic aldehydes to provide alkylated 1-azaspiro-cyclohexadienones was developed. Aliphatic aldehydes were oxidative decarbonylated into primary, secondary and tertiary alkyl radicals conveniently and allows for the subsequent cascade construction of dual C(sp3)-C(sp3) and C=O bonds via radical addition, spirocyclization and oxidation sequence.


Assuntos
Alquilantes/química , Compostos Aza/química , Cinamatos/química , Cicloexenos/química , Ferro/química , Compostos de Espiro/química , Aldeídos/química , Alquilação , Catálise , Ciclização
18.
Angew Chem Int Ed Engl ; 59(45): 19846-19850, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32720436

RESUMO

Production of renewable, high-value N-containing chemicals from lignocellulose will expand product diversity and increase the economic competitiveness of the biorefinery. Herein, we report a single-step conversion of furfural to pyrrole in 75 % yield as a key N-containing building block, achieved via tandem decarbonylation-amination reactions over tailor-designed Pd@S-1 and H-beta zeolite catalytic system. Pyrrole was further transformed into dl-proline in two steps following carboxylation with CO2 and hydrogenation over Rh/C catalyst. After treating with Escherichia coli, valuable d-proline was obtained in theoretically maximum yield (50 %) bearing 99 % ee. The report here establishes a route bridging commercial commodity feedstock from biomass with high-value organonitrogen chemicals through pyrrole as a hub molecule.

19.
Angew Chem Int Ed Engl ; 59(47): 20914-20918, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32615007

RESUMO

Phosphagallenes (1 a/1 b) featuring double bonds between phosphorus and gallium were synthesized by reaction of (phosphanyl)phosphaketenes with the gallium carbenoid Ga(Nacnac) (Nacnac=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ). The stability of these species is dependent on the saturation of the phosphanyl moiety. 1 a, which bears an unsaturated phosphanyl ring, rearranges in solution to yield a spirocyclic compound (2) which contains a P=P bond. The saturated variant 1 b is stable even at elevated temperatures. 1 b behaves as a frustrated Lewis pair capable of activation of H2 and forms a 1:1 adduct with CO2 .

20.
Chemistry ; 25(36): 8508-8512, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31066944

RESUMO

A sequence of a Baeyer-Villiger oxidation and a Lewis acid-promoted reduction of the resulting formate with Et3 SiH enabled the metal-free formal decarbonylation of tertiary and secondary aliphatic aldehydes. The new methodology mimics the biosynthetic decarbonylation pathway through oxidative C-C bond cleavage rather than the C(O)-H bond activation known from conventional Tsuji-Wilkinson-type reactions. The substrate scope is complementary to existing transition-metal-catalyzed protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA