Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 29(8): 613-634, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937957

RESUMO

Bacteria use several means to survive under stress conditions such as nutrient depletion. One such response is the formation of hibernating 100S ribosomes, which are translationally inactive 70S dimers. In Gammaproteobacteria (Enterobacterales), 100S ribosome formation requires ribosome modulation factor (RMF) and short hibernation promoting factor (HPF), whereas it is mediated by only long HPF in the majority of bacteria. Here, we investigated the role of HPFs of Comamonas testosteroni, which belongs to the Betaproteobacteria with common ancestor to the Gammaproteobacteria. C. testosteroni has two genes of HPF homologs of differing length (CtHPF-125 and CtHPF-119). CtHPF-125 was induced in the stationary phase, whereas CtHPF-119 conserved in many other Betaproteobacteria was not expressed in the culture conditions used here. Unlike short HPF and RMF, and long HPF, CtHPF-125 could not form 100S ribosome. We first constructed the deletion mutant of Cthpf-125 gene. When the deletion mutant grows in the stationary phase, 70S particles were degraded faster than in the wild strain. CtHPF-125 contributes to stabilizing the 70S ribosome. CtHPF-125 and CtHPF-119 both inhibited protein synthesis by transcription-translation in vitro. Our findings suggest that CtHPF-125 binds to ribosome, and stabilizes 70S ribosomes, inhibits translation without forming 100S ribosomes and supports prolonging life.


Assuntos
Proteínas de Bactérias , Comamonas testosteroni , Proteínas Ribossômicas , Ribossomos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ribossomos/metabolismo , Comamonas testosteroni/metabolismo , Comamonas testosteroni/genética
2.
J Biomed Sci ; 30(1): 95, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110948

RESUMO

BACKGROUND: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), and its pathogenicity is associated with its ability to evade the host defense system. The secretory form of the chorismate mutase of M. tuberculosis (TBCM, encoded by Rv1885c) is assumed to play a key role in the pathogenesis of TB; however, the mechanism remains unknown. METHODS: A tbcm deletion mutant (B∆tbcm) was generated by targeted gene knockout in BCG to investigate the pathogenic role of TBCM in mice or macrophages. We compared the pathogenesis of B∆tbcm and wild-type BCG in vivo by measuring the bacterial clearance rate and the degree of apoptosis. Promotion of the intrinsic apoptotic pathway was evaluated in infected bone marrow-derived macrophages (BMDMs) by measuring apoptotic cell death, loss of mitochondrial membrane potential and translocation of pore-forming proteins. Immunocytochemistry, western blotting and real-time PCR were also performed to assess the related protein expression levels after infection. Furthermore, these findings were validated by complementation of tbcm in BCG. RESULTS: Deletion of the tbcm gene in BCG leads to reduced pathogenesis in a mouse model, compared to wild type BCG, by promoting apoptotic cell death and bacterial clearance. Based on these findings, we found that intrinsic apoptosis and mitochondrial impairment were promoted in B∆tbcm-infected BMDMs. B∆tbcm down-regulates the expression of Bcl-2, which leads to mitochondrial outer membrane permeabilization (MOMP), culminating in cytochrome c release from mitochondria. Consistent with this, transcriptome profiling also indicated that B∆tbcm infection is more closely related to altered mitochondrial-related gene expression than wild-type BCG infection, suggesting an inhibitory role of TBCM in mitochondrial dysfunction. Moreover, genetic complementation of B∆tbcm (C∆tbcm) restored its capacity to inhibit mitochondria-mediated apoptotic cell death. CONCLUSIONS: Our findings demonstrate the contribution of TBCM to bacterial survival, inhibiting intrinsic apoptotic cell death of macrophages as a virulence factor of M. tuberculosis complex (MTBC) strains, which could be a potential target for the development of TB therapy.


Assuntos
Corismato Mutase , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Apoptose/genética , Corismato Mutase/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculose/genética , Tuberculose/microbiologia
3.
Fish Shellfish Immunol ; 127: 264-270, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35752370

RESUMO

To search for live attenuated vaccines (LAV) candidates against Pseudomonas plecoglossicida, the causative agent of the visceral granulomas disease in farmed large yellow croaker (Larimichthys crocea), two type Ⅵ secretion systems (T6SS) and a predicted α/ß fold family hydrolase encoding gene, ORF4885 were targeted to construct deletion mutants. The biological profiles of 4 mutants were characterized; LD50 to the croakers detected, in vivo survival post-infection investigated, relative percent of survival (RPS) of the croakers 28d post-vaccination determined, and transcription of five immunity-related genes of the treated fish was quantified. On comparison to the WT, the mutants revealed similar growth curves in 11h; swarming motility of Δ4885 declined significantly at 72h post-incubation (P < 0.05); ΔS1Δ4885 showed significantly poor biofilm formation and weak resistance to fish serum bactericidal activity (P < 0.05). LD50 of the mutants were much higher than the WT, indication of strong virulence attenuation; in vivo survival test showed the mutant ΔS1Δ4885 and ΔS1ΔS3 were eliminated by the host 10d post-infection, demonstration of the safety and potentiality to be LAV candidates. Immunization with the mutant ΔS1Δ4885 provided higher RPS than ΔS1ΔS3. Transcription of IgT was significant in all immunized groups while IgM increased only in intraperitoneally injected groups. This study successfully searched a quite safe and strong immunogenic LAV candidate to defeat P. plecoglossicida infection.


Assuntos
Doenças dos Peixes , Perciformes , Infecções por Pseudomonas , Animais , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes , Pseudomonas , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/veterinária , Vacinas Atenuadas
4.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163023

RESUMO

Smaller oligomeric chaperones of α-crystallins (αA- and αB-) have received increasing attention due to their improved therapeutic potential in preventing protein aggregating diseases. Our previous study suggested that deleting 54-61 residues from the N-terminal domain (NTD) of αB-crystallin (αBΔ54-61) decreases the oligomer size and increases the chaperone function. Several studies have also suggested that NTD plays a significant role in protein oligomerization and chaperone function. The current study was undertaken to assess the effect of deleting conserved 21-28 residues from the activated αBΔ54-61 (to get αBΔ21-28, Δ54-61) on the structure-function of recombinant αBΔ21-28, Δ54-61. The αBΔ21-28, Δ54-61 mutant shows an 80% reduction in oligomer size and 3- to 25-fold increases in chaperone activity against model substrates when compared to αB-WT. Additionally, the αB∆21-28, ∆54-61 was found to prevent ß-amyloid (Aß1-42) fibril formation in vitro and suppressed Aß1-42-induced cytotoxicity in ARPE-19 cells in a more effective manner than seen with αB-WT or αB∆54-61. Cytotoxicity and reactive oxygen species (ROS) detection studies with sodium iodate (SI) showed that the double mutant protein has higher anti-apoptotic and anti-oxidative activities than the wild-type or αB∆54-61 in oxidatively stressed cells. Our study shows that the residues 21-28 and 54-61 in αB-crystallin contribute to the oligomerization and modulate chaperone function. The deletion of conserved 21-28 residues further potentiates the activated αBΔ54-61. We propose that increased substrate affinity, altered subunit structure, and assembly leading to smaller oligomers could be the causative factors for the increased chaperone activity of αBΔ21-28, Δ54-61.


Assuntos
Antioxidantes/farmacologia , Chaperonas Moleculares/farmacologia , Mutação , Estresse Oxidativo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Cadeia B de alfa-Cristalina/farmacologia , Sequência de Aminoácidos , Apoptose , Células Cultivadas , Humanos , Mutagênese Sítio-Dirigida , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/genética
5.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163237

RESUMO

Glutaredoxin (Grx) is an important oxidoreductase to maintain the redox homoeostasis of cells. In our previous study, cold-adapted Grx from Psychrobacter sp. ANT206 (PsGrx) has been characterized. Here, we constructed an in-frame deletion mutant of psgrx (Δpsgrx). Mutant Δpsgrx was more sensitive to low temperature, demonstrating that psgrx was conducive to the growth of ANT206. Mutant Δpsgrx also had more malondialdehyde (MDA) and protein carbonylation content, suggesting that PsGrx could play a part in the regulation of tolerance against low temperature. A yeast two-hybrid system was adopted to screen interacting proteins of 26 components. Furthermore, two target proteins, glutathione reductase (GR) and alkyl hydroperoxide reductase subunit C (AhpC), were regulated by PsGrx under low temperature, and the interactions were confirmed via bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). Moreover, PsGrx could enhance GR activity. trxR expression in Δpsgrx, Δahpc, and ANT206 were illustrated 3.7, 2.4, and 10-fold more than mutant Δpsgrx Δahpc, indicating that PsGrx might increase the expression of trxR by interacting with AhpC. In conclusion, PsGrx may participate in glutathione metabolism and ROS-scavenging by regulating GR and AhpC to protect the growth of ANT206. These findings preliminarily suggest the role of PsGrx in the regulation of oxidative stress, which could improve the low-temperature tolerance of ANT206.


Assuntos
Glutarredoxinas/metabolismo , Psychrobacter/genética , Sequência de Aminoácidos , Antioxidantes/metabolismo , Temperatura Baixa , Glutarredoxinas/fisiologia , Glutationa Redutase/metabolismo , Glutationa Redutase/fisiologia , Homeostase , Cinética , Modelos Moleculares , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Peroxirredoxinas/fisiologia , Psychrobacter/metabolismo , Temperatura
6.
Appl Microbiol Biotechnol ; 105(9): 3733-3743, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33900422

RESUMO

3,3'-Thiodipropionic acid (TDP) is an antioxidant, which can be used as precursor carbon source to synthesize polythioesters. The bacterium Variovorax paradoxus TBEA6 strain can use TDP as a single source of carbon and energy. In the present study, experiments were carried out to identify proteins involved in the transport of TDP into the cells of strain TBEA6. Hence, eight putative tctC genes, which encode for the TctC proteins, were amplified from genomic DNA of TBEA6 strain using polymerase chain reaction and expressed in E. coli BL21 cells. Cells were grown in auto-induction medium, and protein purification was done using His Spin Trap affinity columns. Purity and molecular weight of each protein were confirmed by SDS-PAGE analysis. Protein-ligand interactions were monitored in thermoshift assays using the real-time PCR system. Two TctC proteins (locus tags VPARA-44430 and VPARA-01760) out of eight proteins showed a significant shift in their melting temperatures when they interact with the ligand (TDP or gluconate). The responsible genes were deleted in the genome of TBEA6 using suicide plasmid pJQ200mp18Tc, and single deletion mutants of the two candidate genes were subsequently generated. Finally, growth of the wild-type strain (TBEA6) and the two mutant strains (ΔVPARA-44430 and ΔVPARA-01760) were monitored and compared using TDP or gluconate as carbon sources. Wild type strains were successfully grown with TDP or gluconate. From the two mutant strains, one (ΔVPARA-44430) was unable to grow with TDP indicating that the tctC gene with locus tag VPARA-44430 is involved in the uptake of TDP.Key Points• Putative tctC genes from V. paradoxus TBEA6 were heterologously expressed in E. coli.• Protein-ligand interactions monitored in thermoshift assays using the real-time PCR.• tctC gene with locus tag VPARA-44430 is involved in the uptake of TDP.


Assuntos
Proteínas de Transporte , Comamonadaceae , Comamonadaceae/genética , Escherichia coli/genética , Propionatos
7.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071169

RESUMO

Polygodial is a "hot" peppery-tasting sesquiterpenoid that was first described for its anti-feedant activity against African armyworms. Using the haploid deletion mutant library of Saccharomyces cerevisiae, a genome-wide mutant screen was performed to shed more light on polygodial's antifungal mechanism of action. We identified 66 deletion strains that were hypersensitive and 47 that were highly resistant to polygodial treatment. Among the hypersensitive strains, an enrichment was found for genes required for vacuolar acidification, amino acid biosynthesis, nucleosome mobilization, the transcription mediator complex, autophagy and vesicular trafficking, while the resistant strains were enriched for genes encoding cytoskeleton-binding proteins, ribosomal proteins, mitochondrial matrix proteins, components of the heme activator protein (HAP) complex, and known regulators of the target of rapamycin complex 1 (TORC1) signaling. WE confirm that polygodial triggers a dose-dependent vacuolar alkalinization and that it increases Ca2+ influx and inhibits glucose-induced Ca2+ signaling. Moreover, we provide evidence suggesting that TORC1 signaling and its protective agent ubiquitin play a central role in polygodial resistance, suggesting that they can be targeted by polygodial either directly or via altered Ca2+ homeostasis.


Assuntos
Antifúngicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Antifúngicos/química , Cálcio , Farmacorresistência Fúngica/genética , Homeostase/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Testes de Sensibilidade Microbiana , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Nucleossomos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras
8.
Virol J ; 17(1): 137, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928221

RESUMO

BACKGROUND: Recent study has shown that the C-terminal portion of 3A (amino acids (aa) 81-153) is not essential for foot-and-mouth disease virus replication in cell culture, however, the complete C-terminal portion (aa 77-153) of 3A is highly variable and prone to occur deletions and mutations, therefore, we presume that this region plays a very limited role and probablely is completely nonessential for virus viability. METHODS: In this study, to identify the largest non-essential region of the C-terminal portion in 3A for FMDV viability, several deletions containing aa 80-153, 77-153 and 76-153 of 3A protein were introduced into an FMDV full-length infectious cDNA clone pOFS by the overlapping extension PCR. Additionally, to explore the importance of the highly conserved residue 76 L of 3A for the FMDV of Cathay topotype, two mutants containing 3A L76I and 3A L76V were generated based on the 3A deletion mutant by point mutation. We also introduced the enhanced green fluorescent protein (eGFP) into one of the 3A deletion mutants by the extension PCR to investigate the genetic flexibility of 3A to express foreign genes. All linearized full plasmids were transfected into BSR/T7 cells to rescue infectious foot-and-mouth disease viruses. The rescused viruses were analyzed by RT-PCR, nucleotide sequencing, immunofluorescence assay and western blot and were characterized by plaque assays and one-step growth kinetics. RESULTS: The results demonstrated that the deletion of aa 80-153 and aa 77-153 and the substitutions of 3A L76I and 3A L76V did not affect the production of infectious virus, while the fusion of the eGFP gene to the C-terminus of 3A resulted in nonviable FMDV. CONCLUSIONS: Our results firstly reported that the aa 77-153 rather than aa 81-153 of 3A protein was dispensable for FMDV replication in cell culture. This study is of great significance for development of FMD marker vaccine and foreign gene expression in the future.


Assuntos
Vírus da Febre Aftosa/fisiologia , Proteínas não Estruturais Virais/genética , Replicação Viral , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada , Cricetinae , Vírus da Febre Aftosa/genética , Viabilidade Microbiana , Mutação , Biossíntese de Proteínas , Proteínas não Estruturais Virais/metabolismo
9.
Extremophiles ; 24(3): 433-446, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32296946

RESUMO

Glutamine synthetase is an essential enzyme in ammonium assimilation and glutamine biosynthesis. The Haloferax mediterranei genome has two other glnA-type genes (glnA2 and glnA3) in addition to the glutamine synthetase gene glnA. To determine whether the glnA2 and glnA3 genes can replace glnA in nitrogen metabolism, we generated deletion mutants of glnA. The glnA deletion mutants could not be generated in a medium without glutamine, and thus, glnA is an essential gene in H. mediterranei. The glnA deletion mutant was achieved by adding 40 mM glutamine to the selective medium. This conditional HM26-ΔglnA mutant was characterised with different approaches in the presence of distinct nitrogen sources and nitrogen starvation. Transcriptomic analysis was performed to compare the expression profiles of the strains HM26-ΔglnA and HM26 under different growth conditions. The glnA deletion did not affect the expression of glnA2, glnA3 and nitrogen assimilation genes under nitrogen starvation. Moreover, the results showed that glnA, glnA2 and glnA3 were not expressed under the same conditions. These results indicated that glnA is an essential gene for H. mediterranei and, therefore, glnA2 and glnA3 cannot replace glnA in the conditions analysed.


Assuntos
Haloferax mediterranei , Conversão Gênica , Glutamato-Amônia Ligase , Glutamina
10.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31636136

RESUMO

Streptococcus equi subsp. zooepidemicus is an important pathogen in horses that causes severe diseases such as pneumonia and abortion. Furthermore, it is a zoonotic agent, and contact with horses is a known risk factor. In this study, we investigated the working hypothesis that the zoonotic potential varies among S. equi subsp. zooepidemicus strains in association with differences in M-like protein-mediated binding of host plasma proteins. We demonstrate via in-frame deletion mutagenesis of two different S. equi subsp. zooepidemicus strains that the M-like protein SzM is crucial for the binding of fibrinogen to the bacterial surface and for survival in equine and human blood. S. equi subsp. zooepidemicus isolates of equine and human origins were compared with regard to SzM sequences and binding of equine and human fibrinogens. The N-terminal 216 amino acids of the mature SzM were found to exhibit a high degree of diversity, but the majority of human isolates grouped in three distinct SzM clusters. Plasma protein absorption assays and flow cytometry analysis revealed that pronounced binding of human fibrinogen is a common phenotype of human S. equi subsp. zooepidemicus isolates but much less so in equine S. equi subsp. zooepidemicus isolates. Furthermore, binding of human fibrinogen is associated with specific SzM types. These results suggest that SzM-mediated binding of human fibrinogen is an important virulence mechanism of zoonotic S. equi subsp. zooepidemicus isolates.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Fibrinogênio/metabolismo , Interações Hospedeiro-Patógeno , Streptococcus equi/metabolismo , Fatores de Virulência/metabolismo , Animais , Antígenos de Bactérias/classificação , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/classificação , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Análise por Conglomerados , Variação Genética , Cavalos , Humanos , Fenótipo , Ligação Proteica , Homologia de Sequência , Fatores de Virulência/classificação , Fatores de Virulência/genética
11.
BMC Genomics ; 20(1): 873, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744473

RESUMO

BACKGROUND: Candida albicans is an opportunistic pathogen which is responsible for widespread nosocomial infections. It encompasses a fungus specific serine/threonine protein phosphatase gene, CaPPZ1 that is involved in cation transport, cell wall integrity, oxidative stress response, morphological transition, and virulence according to the phenotypes of the cappz1 deletion mutant. RESULTS: We demonstrated that a short-term treatment with a sublethal concentration of tert-butyl hydroperoxide suppressed the growth of the fungal cells without affecting their viability, both in the cappz1 mutant and in the genetically matching QMY23 control strains. To reveal the gene expression changes behind the above observations we carried out a global transcriptome analysis. We used a pilot DNA microarray hybridization together with extensive RNA sequencing, and confirmed our results by quantitative RT-PCR. Novel functions of the CaPpz1 enzyme and oxidative stress mechanisms have been unraveled. The numbers of genes affected as well as the amplitudes of the transcript level changes indicated that the deletion of the phosphatase sensitized the response of C. albicans to oxidative stress conditions in important physiological functions like membrane transport, cell surface interactions, oxidation-reduction processes, translation and RNA metabolism. CONCLUSIONS: We conclude that in the wild type C. albicans CaPPZ1 has a protective role against oxidative damage. We suggest that the specific inhibition of this phosphatase combined with mild oxidative treatment could be a feasible approach to topical antifungal therapy.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo/genética , Fosfoproteínas Fosfatases/genética , Transcriptoma , Transporte Biológico , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fosfoproteínas Fosfatases/deficiência , Biossíntese de Proteínas , terc-Butil Hidroperóxido/farmacologia
12.
Fungal Genet Biol ; 129: 101-114, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108193

RESUMO

Corynespora cassiicola is an ascomycete fungus causing important damages in a wide range of plant hosts, including rubber tree. The small secreted protein cassiicolin is suspected to play a role in the onset of the disease in rubber tree, based on toxicity and gene expression profiles. However, its exact contribution to virulence, compared to other putative effectors, remains unclear. We created a deletion mutant targeting the cassiicolin gene Cas1 from the highly aggressive isolate CCP. Wild-type CCP and mutant ccpΔcas1 did not differ in terms of mycelium growth, sporulation, and germination rate in vitro. Cas1 gene deletion induced a complete loss of virulence on the susceptible clones PB260 and IRCA631, as revealed by inoculation experiments on intact (non-detached) leaves. However, residual symptoms persisted when inoculations were conducted on detached leaves, notably with longer incubation times. Complementation with exogenous cassiicolin restored the mutant capacity to colonize the leaf tissues. We also compared the toxicity of CCP and ccpΔcas1 culture filtrates, through electrolyte leakage measurements on abraded detached leaves, over a range of clones as well as an F1 population derived from the cross between the clones PB260 (susceptible) and RRIM600 (tolerant). On average, filtrate toxicity was lower but not fully suppressed in ccpΔcas1 compared to CCP, with clone-dependent variations. The two QTL, previously found associated with sensitivity to CPP filtrate or to the purified cassiicolin, were no longer detected with the mutant filtrate, while new QTL were revealed. Our results demonstrate that: (1) cassiicolin is a necrotrophic effector conferring virulence to the CCP isolate in susceptible rubber clones and (2) other effectors produced by CCP contribute to residual filtrate toxicity and virulence in senescing/wounded tissues. These other effectors may be involved in saprotrophy rather than necrotrophy.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Deleção de Genes , Hevea/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Variação Genética , Folhas de Planta/microbiologia , Virulência
13.
Biotechnol Appl Biochem ; 66(2): 254-260, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30403295

RESUMO

Previously, we found that endogenously produced pro-inflammatory molecules, advanced glycation end products (AGEs), interact with tumor necrosis factor-like weak inducer of apoptosis (TWEAK), and attenuate its immunomodulatory function. In the present study, to elucidate the mechanism by which AGEs attenuate TWEAK function, we searched for regions responsible for TWEAK-AGE interaction using TWEAK deletion mutants. Pull-down assays with the TWEAK mutants and AGEs revealed that the C-terminal half of TWEAK, which is the region essential for receptor stimulation, was required for this interaction. On the other hand, the N-terminal deletion mutants did not exhibit a significant decrease in AGE binding. Moreover, a moderate decrease in the AGE binding by double-deletion in quartered C-terminal half regions and a substantial decrease by triple-deletion in this region were observed. In addition, full-length TWEAK stimulated IL-8 gene expression in endothelial EA.hy.926 cells, whereas the triple-deletion mutant lost much of this activity, suggesting that the TWEAK-AGE interaction sites overlap with the region needed to exert normal function of TWEAK. Our present findings may help to elucidate the pathophysiological roles of the TWEAK-AGE interaction for prevention and treatment of AGE-related inflammatory diseases.


Assuntos
Citocina TWEAK/metabolismo , Regulação da Expressão Gênica , Produtos Finais de Glicação Avançada/metabolismo , Interleucina-8/biossíntese , Linhagem Celular , Citocina TWEAK/genética , Produtos Finais de Glicação Avançada/genética , Humanos , Interleucina-8/genética , Ligação Proteica , Domínios Proteicos
14.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490596

RESUMO

The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes.IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry.


Assuntos
Deleção de Genes , Vaccinia virus/fisiologia , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Linhagem Celular , Humanos , Vaccinia virus/genética , Proteínas Estruturais Virais/genética
15.
Microb Pathog ; 123: 132-138, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29959044

RESUMO

Transcription factor Seb1 contains two C2H2 zinc finger motifs which are similar to the Msn2/4 of Saccharomyces cerevisiae. The homologous proteins of Seb1 function to regulate the response to various stresses or decomposing and utilizing pectin in some fungi. In this study, we characterized a homologue of Seb1 gene, VmSeb1, in Valsa mali, which causes a highly destructive bark disease on apple. VmSeb1 deletion mutant showed a drastic reduction in growth rate in vitro. It is also important for conidiation because VmSeb1 deletion mutant formed more pycnidia on PDA medium. Deletion mutant of VmSeb1 increased melanin genes expression. In addition, the sensitivity to oxidative stress increased and cell wall inhibitor in VmSeb1 deletion mutant, as its growth was more severely inhibited by H2O2 and Congo red than that in the wild-type. The virulence assay showed that the lesion length caused by the VmSeb1 deletion mutant was smaller compared to wild-type on detached apple twigs. However, expression of pectinase genes and pectinase activity in deletion mutant were the same as those of the wild-type during infection. These results indicate that VmSeb1 plays important roles in growth, asexual development, response to oxidative stress, maintenance of cell wall integrity, and virulence. However, VmSeb1 is not involved in the regulation of pectinase genes expression in V. mali.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/crescimento & desenvolvimento , Estresse Oxidativo/fisiologia , Canais de Translocação SEC/metabolismo , Fatores de Transcrição/metabolismo , Ascomicetos/genética , Parede Celular/metabolismo , Peróxido de Hidrogênio/farmacologia , Malus/microbiologia , Estresse Oxidativo/genética , Doenças das Plantas/microbiologia , Poligalacturonase/genética , Canais de Translocação SEC/genética , Fatores de Transcrição/genética
16.
Mol Biol (Mosk) ; 52(1): 3-9, 2018.
Artigo em Russo | MEDLINE | ID: mdl-29512629

RESUMO

A new series of heat-stable (st) mutants of bacteriophage T5, which contains deletions in the tRNA gene region, has been isolated. An accurate mapping of the deletion boundaries for more than 30 mutants of phage T5 has been carried out. As a result of the analysis of nucleotide sequences flanking the deleted regions in wild-type phage DNA, it has been shown that they all contain short, direct repeats of different lengths (2-35 nucleotide residues), and that only one repetition is retained in the mutant phage DNA. On the basis of the obtained results, it was suggested that deletion mutants of the phage T5 are formed as a result of illegal recombination occurring with the participation of short repeats in DNA (SHDIR). Based on the example of two mutants, it has been shown that the resistance to thermal inactivation depends on the size of the deleted region.


Assuntos
Mutação , RNA de Transferência/genética , Fagos T/genética , Sequência de Bases , DNA Viral/genética , Deleção de Sequência
17.
J Bacteriol ; 199(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28264990

RESUMO

FabG performs the NADPH-dependent reduction of ß-keto acyl-acyl carrier protein substrates in the elongation cycle of fatty acid synthesis. We report the characterization of a temperature-sensitive mutation (fabGΔ8) in Escherichia colifabG that results from an in-frame 8-amino-acid residue deletion in the α6/α7 subdomain. This region forms part of one of the two dimerization interfaces of this tetrameric enzyme and is reported to undergo significant conformational changes upon cofactor binding, which define the entrance to the active-site cleft. The activity of the mutant enzyme is extremely thermolabile and is deficient in forming homodimers at nonpermissive temperatures with a corresponding decrease in fatty acid synthesis both in vivo and in vitro Surprisingly, the fabGΔ8 strain reverts to temperature resistance at a rate reminiscent of that of a point mutant with intragenic pseudorevertants located either on the 2-fold axes of symmetry or at the mouth of the active-site cleft. The fabGΔ8 mutation also confers resistance to the calmodulin inhibitor trifluoperazine and renders the enzyme extremely sensitive to Ca2+in vitro We also observed a significant alteration in the lipid A fatty acid composition of fabGΔ8 strains but only in an lpxC background, probably due to alterations in the permeability of the outer membrane. These observations provide insights into the structural dynamics of FabG and hint at yet another point of regulation between fatty acid and lipid A biosynthesis.IMPORTANCE Membrane lipid homeostasis and its plasticity in a variety of environments are essential for bacterial survival. Since lipid biosynthesis in bacteria and plants is fundamentally distinct from that in animals, it is an ideal target for the development of antibacterial therapeutics. FabG, the subject of this study, catalyzes the first cofactor-dependent reduction in this pathway and is active only as a tetramer. This study examines the interactions responsible for tetramerization through the biochemical characterization of a novel temperature-sensitive mutation caused by a short deletion in an important helix-turn-helix motif. The mutant strain has altered phospholipid and lipid A compositions and is resistant to trifluoperazine, an inhibitor of mammalian calmodulin. Understanding its structural dynamics and its influence on lipid A synthesis also allows us to explore lipid homeostasis as a mechanism for antibiotic resistance.


Assuntos
Oxirredutases do Álcool/genética , Farmacorresistência Bacteriana/efeitos da radiação , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos da radiação , Metabolismo dos Lipídeos/efeitos da radiação , Deleção de Sequência , Oxirredutases do Álcool/química , Antibacterianos/farmacologia , Cálcio/toxicidade , Estabilidade Enzimática/efeitos da radiação , Escherichia coli/enzimologia , Escherichia coli/genética , Multimerização Proteica , Supressão Genética , Temperatura , Trifluoperazina/farmacologia
18.
J Exp Bot ; 68(20): 5497-5509, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29099990

RESUMO

Our previous genetic analysis of a tetraploid wild wheat species, Aegilops peregrina, predicted that a single gene per haploid genome, Bgc-1, controls B-type starch granule content in the grain. To test whether bread wheat (Triticum aestivum L.) has orthologous Bgc-1 loci, we screened a population of γ-irradiated bread wheat cv. Paragon for deletions of the group 4 chromosomes spanning Bgc-1. Suitable deletions, each encompassing ~600-700 genes, were discovered for chromosomes 4A and 4D. These two deletions are predicted to have 240 homoeologous genes in common. In contrast to single deletion mutant plants, double deletion mutants were found to lack B-type starch granules. The B-less grains had normal A-type starch granule morphology, normal overall starch content, and normal grain weight. In addition to variation in starch granule size distribution, the B-less wheat grains differed from controls in grain hardness, starch swelling power, and amylose content. We believe that these B-less wheat plants are the only Triticeae cereals available that combine substantial alterations in starch granule size distribution with minimal impact on starch content.


Assuntos
Deleção de Genes , Mutação , Amido/genética , Triticum/genética , Fenótipo , Poaceae/genética , Amido/química
19.
Microb Pathog ; 108: 78-84, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28487228

RESUMO

S-adenosylhomocysteine/Methylthioadenosine nucleosidase (SAHN E.C.3.2.2.9) does not exist in mammalian cells but is essential for methyl recycling in numerous bacterial and protozoan species. Inhibition of this enzyme could limit synthesis of autoinducers of bacterial quorum sensing (QS), and hence, causes reduction in biofilm formation and may attenuate virulence. In this study, sahn deletion mutant of E. coli MG1655, sahn-complemented strain, and SANH-overexpressing strain were established and used to identify the secretion of autoinducer-2 (AI-2) and biofilm formation. The results indicated that deletion of the sahn gene abolished the production of the QS signal AI-2 and biofilm formation in mutant strain MG1655-Δsahn. And the complementation strain MG1655-Δsahn (pET-28a-sahn) showed restored production of AI-2 and biofilm formation, which indicates that the sahn gene plays an important role in bacterial quorum sensing. The recombinant SAHN protein was overexpressed and purified. The enzymatic activity of SAHN was successfully determined by a coupling-enzyme analysis based on xanthine oxidase, with the Vmax and Km of SAHN enzymatic reaction confirmed. Given that sahn is essential for the quorum sensing of both Gram-negative and Gram-positive bacteria, SAHN could be a potential target for wide-spectrum antibiotics.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/metabolismo , Homosserina/análogos & derivados , Lactonas/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Percepção de Quorum/fisiologia , S-Adenosil-Homocisteína/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Homosserina/metabolismo , Fenótipo , Purina-Núcleosídeo Fosforilase/genética , Proteínas Recombinantes/genética , Deleção de Sequência , Virulência
20.
Microb Pathog ; 111: 298-306, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28888885

RESUMO

Mitogen-activated protein kinases (MAPKs) play critical roles in the regulation of different developmental processes and hydrolytic enzyme production in many fungal plant pathogens. In this study, an FUS3/KSS1-related MAPK gene, VmPmk1, was identified and characterized in Valsa mali, which causes a highly destructive canker disease on apple. VmPmk1 deletion mutant showed a significant reduction in growth rate in vitro, and could not produce pycnidium, indicating that the MAPK gene is important for growth and asexual development. Also, VmPmk1 played a significant role in response to oxidative stress and in the maintenance of cell wall integrity. More importantly, when deletion mutant was inoculated onto detached apple leaves and twigs, an obvious decrease in lesion size was observed. Furthermore, expression of many cell wall degrading enzyme (CWDE) genes declined in the VmPmk1 deletion mutant during infection. VmPmk1 deletion mutant also showed a significant reduction in activities of CWDEs in both induced media and infection process. Finally, the determination of immunogold labeling of pectin demonstrated that the capacity of degradation pectin was attenuated due to the deletion of VmPmk1. These results indicated that VmPmk1 plays important roles in growth, asexual development, response to oxidative stress, and maintenance of cell wall integrity. More importantly, VmPmk1 is involved in pathogenicity of V. mali mainly by regulating CWDE genes expression.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Malus/microbiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/genética , Parede Celular/genética , Proteínas Fúngicas/genética , Malus/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Pectinas/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA