Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.858
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(13): 2309-2323.e24, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35662414

RESUMO

The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.


Assuntos
DNA Mitocondrial , Proteínas Mitocondriais , Animais , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , Humanos , Mamíferos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA/metabolismo , RNA Mitocondrial , RNA Citoplasmático Pequeno , Partícula de Reconhecimento de Sinal , Transcrição Gênica
2.
Cell ; 184(13): 3519-3527.e10, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34107286

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations. The kinase domain of LRRK2 is captured in an inactive state, a conformation also adopted by the most common PD-associated mutation, LRRK2G2019S. This conformation serves as a framework for structure-guided design of conformational specific inhibitors. We further determined the structure of COR-mediated LRRK2 dimers and found that single-point mutations at the dimer interface abolished pathogenic filamentation in cells. Overall, our study provides mechanistic insights into physiological and pathological roles of LRRK2 and establishes a structural template for future therapeutic intervention in PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Sequência de Aminoácidos , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/ultraestrutura , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
3.
Annu Rev Biochem ; 84: 739-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25621509

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. The structure of intact forms of this receptor has yet to be determined, but intense investigations of fragments of the receptor have provided a detailed view of its activation mechanism, which we review here. Ligand binding converts the receptor to a dimeric form, in which contacts are restricted to the receptor itself, allowing heterodimerization of the four EGFR family members without direct ligand involvement. Activation of the receptor depends on the formation of an asymmetric dimer of kinase domains, in which one kinase domain allosterically activates the other. Coupling between the extracellular and intracellular domains may involve a switch between alternative crossings of the transmembrane helices, which form dimeric structures. We also discuss how receptor regulation is compromised by oncogenic mutations and the structural basis for negative cooperativity in ligand binding.


Assuntos
Receptores ErbB/metabolismo , Animais , Dimerização , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/química , Humanos , Ligação Proteica , Estrutura Terciária de Proteína
4.
Mol Cell ; 82(17): 3126-3134.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858621

RESUMO

During gene transcription, RNA polymerase II (RNA Pol II) passes nucleosomes with the help of various elongation factors. Here, we show that RNA Pol II achieves efficient nucleosome passage when the human elongation factors DSIF, PAF1 complex (PAF), RTF1, SPT6, and TFIIS are present. The cryo-EM structure of an intermediate of the nucleosome passage shows a partially unraveled hexasome that lacks the proximal H2A-H2B dimer and interacts with the RNA Pol II jaw, DSIF, and the CTR9trestle helix. RNA Pol II adopts a backtracked state with the RNA 3' end dislodged from the active site and bound in the RNA Pol II pore. Additional structures and biochemical data show that human TFIIS enters the RNA Pol II pore and stimulates the cleavage of the backtracked RNA and nucleosome passage.


Assuntos
Nucleossomos , RNA Polimerase II , Núcleo Celular/metabolismo , Humanos , Nucleossomos/genética , RNA , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo
5.
Mol Cell ; 74(3): 421-435.e10, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30926243

RESUMO

Deubiquitinases have emerged as promising drug targets for cancer therapy. The two DUBs USP25 and USP28 share high similarity but vary in their cellular functions. USP28 is known for its tumor-promoting role, whereas USP25 is a regulator of the innate immune system and, recently, a role in tumorigenesis was proposed. We solved the structures of the catalytic domains of both proteins and established substantial differences in their activities. While USP28 is a constitutively active dimer, USP25 presents an auto-inhibited tetramer. Our data indicate that the activation of USP25 is not achieved through substrate or ubiquitin binding. USP25 cancer-associated mutations lead to activation in vitro and in vivo, thereby providing a functional link between auto-inhibition and the cancer-promoting role of the enzyme. Our work led to the identification of significant differences between USP25 and USP28 and provided the molecular basis for the development of new and highly specific anti-cancer drugs.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Ubiquitina Tiolesterase/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/genética , Humanos , Mutação/genética , Neoplasias/tratamento farmacológico , Ligação Proteica/genética , Conformação Proteica , Multimerização Proteica/genética , Ubiquitina/genética , Ubiquitina Tiolesterase/química
6.
Proc Natl Acad Sci U S A ; 121(30): e2404013121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39024111

RESUMO

Rechargeable zinc-air batteries (ZABs) are regarded as a remarkably promising alternative to current lithium-ion batteries, addressing the requirements for large-scale high-energy storage. Nevertheless, the sluggish kinetics involving oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) hamper the widespread application of ZABs, necessitating the development of high-efficiency and durable bifunctional electrocatalysts. Here, we report oxygen atom-bridged Fe, Co dual-metal dimers (FeOCo-SAD), in which the active site Fe-O-Co-N6 moiety boosts exceptional reversible activity toward ORR and OER in alkaline electrolytes. Specifically, FeOCo-SAD achieves a half-wave potential (E1/2) of 0.87 V for ORR and an overpotential of 310 mV at a current density of 10 mA cm-2 for OER, with a potential gap (ΔE) of only 0.67 V. Meanwhile, FeOCo-SAD manifests high performance with a peak power density of 241.24 mW cm-2 in realistic rechargeable ZABs. Theoretical calculations demonstrate that the introduction of an oxygen bridge in the Fe, Co dimer induced charge spatial redistribution around Fe and Co atoms. This enhances the activation of oxygen and optimizes the adsorption/desorption dynamics of reaction intermediates. Consequently, energy barriers are effectively reduced, leading to a strong promotion of intrinsic activity toward ORR and OER. This work suggests that oxygen-bridging dual-metal dimers offer promising prospects for significantly enhancing the performance of reversible oxygen electrocatalysis and for creating innovative catalysts that exhibit synergistic effects and electronic states.

7.
Genes Dev ; 32(5-6): 430-447, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549180

RESUMO

The p53 tumor suppressor protein is the most well studied as a regulator of transcription in the nucleus, where it exists primarily as a tetramer. However, there are other oligomeric states of p53 that are relevant to its regulation and activities. In unstressed cells, p53 is normally held in check by MDM2 that targets p53 for transcriptional repression, proteasomal degradation, and cytoplasmic localization. Here we discovered a hydrophobic region within the MDM2 N-terminal domain that binds exclusively to the dimeric form of the p53 C-terminal domain in vitro. In cell-based assays, MDM2 exhibits superior binding to, hyperdegradation of, and increased nuclear exclusion of dimeric p53 when compared with tetrameric wild-type p53. Correspondingly, impairing the hydrophobicity of the newly identified N-terminal MDM2 region leads to p53 stabilization. Interestingly, we found that dimeric mutant p53 is partially unfolded and is a target for ubiquitin-independent degradation by the 20S proteasome. Finally, forcing certain tumor-derived mutant forms of p53 into dimer configuration results in hyperdegradation of mutant p53 and inhibition of p53-mediated cancer cell migration. Gaining insight into different oligomeric forms of p53 may provide novel approaches to cancer therapy.


Assuntos
Neoplasias/fisiopatologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica/genética , Proteólise , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
8.
J Biol Chem ; 300(9): 107675, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128719

RESUMO

The assembly of two monomeric constructs spanning segments 1-199 (MPro1-199) and 10-306 (MPro10-306) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro1-199 and MPro10-306 detectable by analytical ultracentrifugation and native mass estimation by light scattering. Assemblies larger than a heterodimer (1:1) are discussed in terms of alternate pathways of domain III association, either through switching the location of helix 201 to 214 onto a second helical domain of MPro10-306 and vice versa or direct interdomain III contacts like that of the native dimer, based on known structures and AlphaFold 3 prediction, respectively. At a constant concentration of MPro1-199 with molar excess of GC373, the rate of substrate hydrolysis displays first order dependency on the MPro10-306 concentration and vice versa. An equimolar composition of the two proteins with excess GC373 exhibits half-maximal activity at ∼6 µM MPro1-199. Catalytic activity arises primarily from MPro1-199 and is dependent on the interface interactions involving the N-finger residues 1 to 9 of MPro1-199 and E290 of MPro10-306. Importantly, our results confirm that a single N-finger region with its associated intersubunit contacts is sufficient to form a heterodimeric MPro intermediate with enhanced catalytic activity.


Assuntos
Proteases 3C de Coronavírus , Multimerização Proteica , SARS-CoV-2 , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , Domínios Proteicos , COVID-19/virologia , Modelos Moleculares
9.
J Biol Chem ; 300(8): 107502, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945452

RESUMO

Opioid use disorders (OUD) and overdoses are ever-evolving public health threats that continue to grow in incidence and prevalence in the United States and abroad. Current treatments consist of opioid receptor agonists and antagonists, which are safe and effective but still suffer from some limitations. Murine and humanized monoclonal antibodies (mAb) have emerged as an alternative and complementary strategy to reverse and prevent opioid-induced respiratory depression. To explore antibody applications beyond traditional heavy-light chain mAbs, we identified and biophysically characterized a novel single-domain antibody specific for fentanyl from a camelid variable-heavy-heavy (VHH) domain phage display library. Structural data suggested that VHH binding to fentanyl was facilitated by a unique domain-swapped dimerization mechanism, which accompanied a rearrangement of complementarity-determining region loops leading to the formation of a fentanyl-binding pocket. Structure-guided mutagenesis further identified an amino acid substitution that improved the affinity and relaxed the requirement for dimerization of the VHH in fentanyl binding. Our studies demonstrate VHH engagement of an opioid and inform on how to further engineer a VHH for enhanced stability and efficacy, laying the groundwork for exploring the in vivo applications of VHH-based biologics against OUD and overdose.


Assuntos
Fentanila , Anticorpos de Domínio Único , Fentanila/química , Fentanila/imunologia , Animais , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Humanos , Camelidae/imunologia , Camelídeos Americanos , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Analgésicos Opioides/imunologia
10.
EMBO J ; 40(14): e106438, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34101209

RESUMO

Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high-resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure-guided mutations demonstrate the importance of both types of protein-lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Humanos , Bicamadas Lipídicas/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(26): e2200923119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733246

RESUMO

All kingdoms of life produce essential nicotinamide dinucleotide NADP(H) using NAD kinases (NADKs). A panel of published NADK structures from bacteria, eukaryotic cytosol, and yeast mitochondria revealed similar tetrameric enzymes. Here, we present the 2.8-Å structure of the human mitochondrial kinase NADK2 with a bound substrate, which is an exception to this uniformity, diverging both structurally and biochemically from NADKs. We show that NADK2 harbors a unique tetramer disruptor/dimerization element, which is conserved in mitochondrial kinases of animals (EMKA) and absent from other NADKs. EMKA stabilizes the NADK2 dimer but prevents further NADK2 oligomerization by blocking the tetramerization interface. This structural change bears functional consequences and alters the activation mechanism of the enzyme. Whereas tetrameric NADKs undergo cooperative activation via oligomerization, NADK2 is a constitutively active noncooperative dimer. Thus, our data point to a unique regulation of NADP(H) synthesis in animal mitochondria achieved via structural adaptation of the NADK2 kinase.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , NAD , Fosfotransferases (Aceptor do Grupo Álcool) , Multimerização Proteica , Animais , Humanos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(49): e2212497119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454753

RESUMO

Nanoconfined few-molecule water clusters are invaluable systems to study fundamental aspects of hydrogen bonding. Unfortunately, most experiments on water clusters must be performed at cryogenic temperatures. Probing water clusters in noncryogenic systems is however crucial to understand the behavior of confined water in atmospheric or biological settings, but such systems usually require either complex synthesis and/or introduce many confounding external bonds to the clusters. Here, we show that combining Raman spectroscopy with the molecular nanocapsule cucurbituril is a powerful technique to sequester and analyze water clusters in ambient conditions. We observe sharp peaks in vibrational spectra arising from a single rigid confined water dimer. The high resolution and rich information in these vibrational spectra allow us to track specific isotopic exchanges inside the water dimer, verified with density-functional theory and kinetic population modeling. We showcase the versatility of such molecular nanocapsules by tracking water cluster vibrations through systematic changes in confinement size, in temperatures up to 120° C, and in their chemical environment.


Assuntos
Nanocápsulas , Vibração , Água , Polímeros , Análise Espectral Raman
13.
Proc Natl Acad Sci U S A ; 119(32): e2204473119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921442

RESUMO

E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped ß-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.


Assuntos
Anticorpos Monoclonais , Caderinas , Adesão Celular , Anticorpos Monoclonais/química , Caderinas/química , Caderinas/imunologia , Cristalografia por Raios X , Humanos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Domínios Proteicos
14.
Nano Lett ; 24(22): 6568-6575, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787693

RESUMO

Zero-dimensional metal halides have received wide attention due to their structural diversity, strong quantum confinement, and associated excellent photoluminescence properties. A reversible and tunable luminescence would be desirable for applications such as anti-counterfeiting, information encryption, and artificial intelligence. Yet, these materials are underexplored, with little known about their luminescence tuning mechanisms. Here we report a pyramidal coplanar dimer, (TBA)Sb2Cl7 (TBA = tetrabutylammonium), showing broadband emission wavelength tuning (585-650 nm) by simple thermal treatment. We attribute the broad color change to structural disorder induced by varying the heat treatment temperatures. Increasing the heating temperature transitions the material from long-range ordered crystalline phase to highly disordered glassy phase. The latter exhibits stronger electron-phonon coupling, enhancing the self-trapped exciton emission efficiency. The work provides a new material platform for manifold optical anti-counterfeiting applications and sheds light on the emission color tuning mechanisms for further design of stimuli-responsive materials.

15.
J Biol Chem ; 299(10): 105229, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690681

RESUMO

Chemokine receptors are members of the rhodopsin-like class A GPCRs whose signaling through G proteins drives the directional movement of cells in response to a chemokine gradient. Chemokine receptors CXCR4 and CCR5 have been extensively studied due to their roles in leukocyte development and inflammation and their status as coreceptors for HIV-1 infection, among other roles. Both receptors form dimers or oligomers of unclear function. While CXCR4 has been crystallized in a dimeric arrangement, available atomic resolution structures of CCR5 are monomeric. To investigate their dimerization interfaces, we used a bimolecular fluorescence complementation (BiFC)-based screen and deep mutational scanning to find mutations that change how the receptors self-associate, either via specific oligomer assembly or alternative mechanisms of clustering in close proximity. Many disruptive mutations promoted self-associations nonspecifically, suggesting they aggregated in the membrane. A mutationally intolerant region was found on CXCR4 that matched the crystallographic dimer interface, supporting this dimeric arrangement in living cells. A mutationally intolerant region was also observed on the surface of CCR5 by transmembrane helices 3 and 4. Mutations predicted from the scan to reduce BiFC were validated and were localized in the transmembrane domains as well as the C-terminal cytoplasmic tails where they reduced lipid microdomain localization. A mutation in the dimer interface of CXCR4 had increased binding to the ligand CXCL12 and yet diminished calcium signaling. There was no change in syncytia formation with cells expressing HIV-1 Env. The data highlight that multiple mechanisms are involved in self-association of chemokine receptor chains.


Assuntos
Modelos Moleculares , Mutação , Receptores CCR5 , Receptores CXCR4 , Dimerização , Mutagênese , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Humanos , Linhagem Celular , Estrutura Terciária de Proteína
16.
J Biol Chem ; 299(12): 105445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949224

RESUMO

The metabolic processes that link Alzheimer's disease (AD) to elevated cholesterol levels in the brain are not fully defined. Amyloid beta (Aß) plaque accumulation is believed to begin decades prior to symptoms and to contribute significantly to the disease. Cholesterol and its metabolites accelerate plaque formation through as-yet-undefined mechanisms. Here, the mechanism of cholesterol (CH) and cholesterol 3-sulfate (CS) induced acceleration of Aß42 fibril formation is examined in quantitative ligand binding, Aß42 fibril polymerization, and molecular dynamics studies. Equilibrium and pre-steady-state binding studies reveal that monomeric Aß42•ligand complexes form and dissociate rapidly relative to oligomerization, that the ligand/peptide stoichiometry is 1-to-1, and that the peptide is likely saturated in vivo. Analysis of Aß42 polymerization progress curves demonstrates that ligands accelerate polymer synthesis by catalyzing the conversion of peptide monomers into dimers that nucleate the polymerization reaction. Nucleation is accelerated ∼49-fold by CH, and ∼13,000-fold by CS - a minor CH metabolite. Polymerization kinetic models predict that at presumed disease-relevant CS and CH concentrations, approximately half of the polymerization nuclei will contain CS, small oligomers of neurotoxic dimensions (∼12-mers) will contain substantial CS, and fibril-formation lag times will decrease 13-fold relative to unliganded Aß42. Molecular dynamics models, which quantitatively predict all experimental findings, indicate that the acceleration mechanism is rooted in ligand-induced stabilization of the peptide in non-helical conformations that readily form polymerization nuclei.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Colesterol , Ligantes , Fragmentos de Peptídeos/metabolismo , Esteróis , Estrutura Secundária de Proteína
17.
J Biol Chem ; 299(5): 104679, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028766

RESUMO

The 3D organization of the eukaryotic genome is crucial for various cellular processes such as gene expression and epigenetic regulation, as well as for maintaining genome integrity. However, the interplay between UV-induced DNA damage and repair with the 3D structure of the genome is not well understood. Here, we used state-of-the-art Hi-C, Damage-seq, and XR-seq datasets and in silico simulations to investigate the synergistic effects of UV damage and 3D genome organization. Our findings demonstrate that the peripheral 3D organization of the genome shields the central regions of genomic DNA from UV-induced damage. Additionally, we observed that potential damage sites of pyrimidine-pyrimidone (6-4) photoproducts are more prevalent in the nucleus center, possibly indicating an evolutionary pressure against those sites at the periphery. Interestingly, we found no correlation between repair efficiency and 3D structure after 12 min of irradiation, suggesting that UV radiation alters the genome's 3D organization in a short period of time. Interestingly, however, 2 h after UV induction, we observed more efficient repair levels in the center of the nucleus relative to the periphery. These results have implications for understanding the etiology of cancer and other diseases, as the interplay between UV radiation and the 3D genome may play a role in the development of genetic mutations and genomic instability.


Assuntos
Dano ao DNA , Reparo do DNA , Epigênese Genética , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta/efeitos adversos
18.
Br J Haematol ; 205(3): 924-931, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38706448

RESUMO

Large amounts of azurophilic granules are considered to be a morphological feature of acute promyelocytic leukaemia (APL). However, a small percentage of acute myeloid leukaemia (AML) patients also have a large number of azurophilic granules. A large cohort of 3210 AML patients in our hospital was screened to identify AML patients who had a large number of azurophilic granules. The clinical parameters of these patients were collected and compared with typical AML patients (control Group 1) and APL patients (control Group 2). The incidence of AML with a large number of azurophilic granules was 1.26%. The fibrinogen and D-dimer levels of patients in the study group were more similar to those of patients in control Group 2, as was the incidence of bleeding events. Additionally, patients in the study group had higher FLT3-ITD and NPM1 mutation rates than patients in control Group 1. Finally, patients in the study group had a higher 30-day mortality rate than those in control Group 2 (24.2% vs. 9.09%) and showed a higher 30-day mortality trend than those in control Group 1. Therefore, we should pay more attention to the prevention of coagulation dysfunction and bleeding events for these patients.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Estudos Retrospectivos , Idoso , Adulto , Grânulos Citoplasmáticos/patologia , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Mutação , Proteínas Nucleares/genética , Idoso de 80 Anos ou mais , Adolescente , Adulto Jovem , Fibrinogênio/análise , Hemorragia/etiologia
19.
Biochem Biophys Res Commun ; 717: 150029, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38714015

RESUMO

The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.


Assuntos
Proteína 10 de Linfoma CCL de Células B , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Domínios Proteicos , Multimerização Proteica , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/química , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteína 10 de Linfoma CCL de Células B/química , Proteína 10 de Linfoma CCL de Células B/genética , Humanos , Cristalografia por Raios X , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Caspases/metabolismo , Caspases/química
20.
Small ; 20(13): e2306817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964343

RESUMO

Condensates are molecular assemblies that are formed through liquid-liquid phase separation and play important roles in many biological processes. The rational design of condensate formation and their properties is central to applications, such as biosynthetic materials, synthetic biology, and for understanding cell biology. Protein engineering is used to make a triblock structure with varying terminal blocks of folded proteins on both sides of an intrinsically disordered mid-region. Dissociation constants are determined in the range of micromolar to millimolar for a set of proteins suitable for use as terminal blocks. Varying the weak dimerization of terminal blocks leads to an adjustable tendency for condensate formation while keeping the intrinsically disordered region constant. The dissociation constants of the terminal domains correlate directly with the tendency to undergo liquid-liquid phase separation. Differences in physical properties, such as diffusion rate are not directly correlated with the strength of dimerization but can be understood from the properties and interplay of the constituent blocks. The work demonstrates the importance of weak interactions in condensate formation and shows a principle for protein design that will help in fabricating functional condensates in a predictable and rational way.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Dimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA