Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Med Chem ; 23(9): 2079-97, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25800431

RESUMO

A potent, orally available dual CysLT1 and CysLT2 receptor antagonist with a dicarboxylic acid is described. 4-(3-(Carboxymethyl)-4-{(E)-2-[4-(4-phenoxybutoxy)phenyl]vinyl}-1H-indol-1-yl)butanoic acid (15: ONO-4310321, IC50: CysLT1=13nM, CysLT2=25 nM) showed excellent pharmacokinetic profiles (%Frat=100) compared with our previously reported compound 1 (%Frat=1.5). In addition, we describe a new rule for dicarboxylic acid derivatives to show good oral bioavailability (%Frat⩾40) in rats (HBDs: ⩽2, ClogP: >6.5 and TPSA: <100). Especially, reduction of only one hydrogen-bond donor (HBDs) showed dramatically improved oral bioavailability. This small change of HBDs in dicarboxylic acid derivatives is generally a very effective modification.


Assuntos
Ácidos Dicarboxílicos/administração & dosagem , Ácidos Dicarboxílicos/farmacologia , Descoberta de Drogas , Antagonistas de Leucotrienos/administração & dosagem , Antagonistas de Leucotrienos/farmacologia , Receptores de Leucotrienos/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Células CHO , Células CACO-2 , Cricetulus , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Antagonistas de Leucotrienos/química , Estrutura Molecular , Relação Estrutura-Atividade
2.
Bioorg Med Chem ; 22(21): 6026-38, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25281269

RESUMO

A series of 9-disubstituted N-(9H-fluorene-2-carbonyl)guanidine derivatives have been discovered as potent and orally active dual 5-HT(2B) and 5-HT(7) receptor antagonists. Upon screening several compounds, N-(diaminomethylene)-4',5'-dihydro-3'H-spiro[fluorene-9,2'-furan]-2-carboxamide (17) exhibited potent affinity for both 5-HT(2B) (Ki = 5.1 nM) and 5-HT(7) (K(i) = 1.7 nM) receptors with high selectivity over 5-HT(2A), 5-HT(2C), α(1), D(2) and M(1) receptors. Optical resolution of the intermediate carboxylic acid 16 via the formation of diastereomeric salts using chiral alkaloids gave the optically pure compounds (R)-17 and (S)-17. Both enantiomers suppressed 5-HT-induced dural protein extravasation in guinea pigs in a dose-dependent manner and the amount of leaked protein was suppressed to near normal levels when orally administrated at 10 mg/kg. (R)-17 and (S)-17 were therefore selected as candidates for human clinical trials.


Assuntos
Receptor 5-HT2B de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacologia , Animais , Células CHO , Cricetulus , Cobaias , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Antagonistas do Receptor 5-HT2 de Serotonina/síntese química , Antagonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas da Serotonina/síntese química
3.
Bioorg Med Chem ; 22(15): 4323-37, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916029

RESUMO

We previously reported that the novel dual 5-HT2B and 5-HT7 receptor antagonist N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (4) exerted a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs. To develop a synthetic strategy, we performed docking studies of lead compound 4 bound to 5-HT2B and 5-HT7 receptors, and observed that the carbonyl guanidine group forms a tight interaction network with an active center Asp (D135:5-HT2B, D162:5-HT7), Tyr (Y370:5-HT2B, Y374:5-HT7) and aromatic residue (W131:5-HT2B, F158:5-HT7). Based on molecular modeling results, we optimized the substituents at the 5- to 8-position and 9-position of the fluorene ring and identified N-(diaminomethylene)-9-hydroxy-9-methyl-9H-fluorene-2-carboxamide (24a) exhibits potent affinity for 5-HT2B (Ki=4.3 nM) and 5-HT7 receptor (Ki=4.3 nM) with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 24a reversed the hypothermic effect of 5-carboxamidotryptamine (5-CT) in mice and also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered at 30 mg/kg. Compound 24a is therefore a promising candidate for a novel class of anti-migraine agent without any adverse effects.


Assuntos
Guanidina/análogos & derivados , Receptor 5-HT2B de Serotonina/química , Receptores de Serotonina/química , Antagonistas da Serotonina/síntese química , Administração Oral , Animais , Sítios de Ligação , Temperatura Corporal/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Guanidina/síntese química , Guanidina/farmacocinética , Cobaias , Células HEK293 , Humanos , Hipotermia Induzida , Masculino , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2B de Serotonina/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/análogos & derivados , Serotonina/farmacologia , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacocinética , Relação Estrutura-Atividade
4.
ChemMedChem ; 19(2): e202300606, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37983645

RESUMO

Prostaglandin E2 (PGE2) plays a key role in various stages of cancer. PGE2 signals through the EP2 and the EP4 receptors, promoting tumorigenesis, metastasis, and/or immune suppression. Dual inhibition of both the EP2 and the EP4 receptors has the potential to counteract the effect of PGE2 and to result in antitumor efficacy. We herein disclose for the first time the structure of dual EP2/EP4 antagonists. By merging the scaffolds of EP2 selective and EP4 selective inhibitors, we generated a new chemical series of compounds blocking both receptors with comparable potency. In vitro and in vivo profiling suggests that the newly identified compounds are promising lead structures for further development into dual EP2/EP4 antagonists for use in cancer therapy.


Assuntos
Dinoprostona , Neoplasias , Humanos , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP4
5.
Bioorg Med Chem ; 21(24): 7841-52, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24189186

RESUMO

To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure-activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki=1.8 nM and Ki=17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.


Assuntos
Guanidina/análogos & derivados , Guanidina/farmacologia , Receptor 5-HT2B de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacologia , Relação Dose-Resposta a Droga , Guanidina/química , Humanos , Estrutura Molecular , Antagonistas da Serotonina/síntese química , Relação Estrutura-Atividade
6.
Curr Top Med Chem ; 20(31): 2830-2842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32648846

RESUMO

Opioids are widely used for pain management in moderate-to-severe pain. However, opioids are associated with adverse events, such as constipation and emesis/vomiting. To reduce these undesired effects, a structure-activity relationship study of morphinan derivatives was conducted, and a promising lead compound with inhibitory effects on opioid receptors was obtained. Further improvement in the potency and pharmacokinetic profiles of the lead compound led to the discovery of naldemedine, which showed anti-constipation and anti-emetic effects against these adverse events that were induced by morphine without influencing morphine's analgesic effect. Naldemedine was launched in Japan and the USA in 2017 and in the EU in 2019, for treating opioid-induced constipation.


Assuntos
Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides/metabolismo , Humanos , Naltrexona/química , Naltrexona/farmacologia , Antagonistas de Entorpecentes/química
7.
Biochem Pharmacol ; 177: 113957, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268138

RESUMO

Toll-like receptor 2 (TLR2) and TLR8 are involved in the recognition of bacterial and viral components and are linked not only to protective antimicrobial immunity but also to inflammatory diseases. Recently, increasing attention has been paid to the receptor crosstalk between TLR2 and TLR8 to fine-tune innate immune responses. In this study, we report a novel dual TLR2/TLR8 antagonist, compound 24 that was developed by a modeling-guided synthesis approach. The modulator was optimized from the previously reported 1,3-benzothiazole derivative, compound 8. Compound 24 was pharmacologically characterized for the ability to inhibit TLR2- and TLR8-mediated responses in TLR-overexpressing reporter cells and THP-1 macrophages. The modulator showed high efficacy with IC50 values in the low micromolar range for both TLRs, selectivity towards other TLRs and low cytotoxicity. At TLR2, a slight predominance for the TLR2/1 heterodimer was found in reporter cells selectively expressing TLR2/1 or TLR2/6 heterodimers. Concentration ratio analysis in the presence of Pam3CSK4 or Pam2CSK4 indicated non-competitive antagonist behavior at hTLR2. In computational docking studies, a plausible alternative binding mode of compound 24 was predicted for both TLR2 and TLR8. Our results provide evidence that it is feasible to simultaneously and selectively target endosomal- and surface-located TLRs. We identified a small-molecule dual TLR2/8 antagonist that may serve as a valuable pharmacological tool to decipher the role of TLR2/8 co-signaling in inflammation.


Assuntos
Benzotiazóis/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/antagonistas & inibidores , Benzotiazóis/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Interleucina-8/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estrutura Molecular , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Células THP-1 , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/metabolismo
8.
J Biomol Struct Dyn ; 38(3): 860-885, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30916624

RESUMO

The extrapyramidal side effects of schizophrenia treatment can be significantly reduced by simultaneously targeting dopamine D2 and serotonin 5-HT2A receptors. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) models of D2 receptor (CoMFA-1, q2 = 0.767, r2 = 0.969; CoMSIA-1, q2 = 0.717, r2 = 0.978) and 5-HT2A receptor antagonists (CoMFA-2, q2 = 0.703, r2 = 0.946; CoMSIA-2, q2 = 0.675, r2 = 0.916) were successfully constructed using 35 tetrahydropyridopyrimidinone derivatives. Topomer CoMFA and HQSAR models were then constructed to further validate and supplement above models. Results showed that all models had good predictive power and stability. Contour map analysis revealed that the electrostatic and hydrophobic fields played vital roles in the bioactivity of dual antagonists. Molecular docking and molecular dynamic studies also suggested that the hydrogen bonding, electrostatic and hydrophobic interactions played key roles in the formation of stable binding sites. Meanwhile, several key residues like ASP114, TRP100, PHE389 of dopamine D2 receptor and ASP134, PHE328, TRP324 of serotonin 5-HT2A receptor were identified. Based on above findings, seven compounds were obtained through bioisostere replacement and ten compounds were designed by contour map analysis, in which the predicted activity of compounds S6 and DS2 were equivalent to that of the template compound 15. 3D-QSAR and ADMET predictions indicated that all newly designed compounds had great biological activity and physicochemical properties. Moreover, based on the best pharmacophore model, four compounds (Z1, Z2, Z3 and Z4) with new backbones were obtained by virtual screening. Overall, this study could provide theoretical guidance for the structural optimization, design and synthesis of novel dopamine D2 and serotonin 5-HT2A receptors dual antagonists. Abbreviations3D-QSARThree-dimensional quantitative structure-activity relationship5-HT2ARSerotonin 5-hydroxytryptamine 5-HT2A receptor5-HT2CRSerotonin 5-hydroxytryptamine 5-HT2C receptor receptorCADDComputer-aided drug designCoMFAComparative molecular field analysisCoMSIAComparative molecular similarity index analysisD2RDopamine D(2) receptorGPCRG-protein coupled receptorPLSPartial least squares regressionHQSARHologram quantitative structure-activity relationship. Communicated by Ramaswamy H. Sarma.


Assuntos
Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Esquizofrenia/tratamento farmacológico , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Domínio Catalítico , Antagonistas dos Receptores de Dopamina D2/análise , Antagonistas dos Receptores de Dopamina D2/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes , Antagonistas do Receptor 5-HT2 de Serotonina/análise , Antagonistas do Receptor 5-HT2 de Serotonina/química , Eletricidade Estática
9.
ACS Med Chem Lett ; 6(4): 439-44, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25893046

RESUMO

We describe the hybridization of our previously reported acyclic and cyclic CC chemokine receptor 2 (CCR2) antagonists to lead to a new series of dual antagonists of CCR2 and CCR5. Installation of a γ-lactam as the spacer group and a quinazoline as a benzamide mimetic improved oral bioavailability markedly. These efforts led to the identification of 13d, a potent and orally bioavailable dual antagonist suitable for use in both murine and monkey models of inflammation.

10.
ACS Med Chem Lett ; 5(11): 1230-4, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25408836

RESUMO

The benzoxazine derivative, (2S)-4-(3-carboxypropyl)-8-{[4-(4-phenylbutoxy)benzoyl]amino}-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (19, ONO-2050297), was identified as the first potent dual CysLT1 and CysLT2 antagonist with IC50 values of 0.017 µM (CysLT1) and 0.00087 µM (CysLT2), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA