Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.315
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606976

RESUMO

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Assuntos
Antidepressivos/farmacologia , Receptor trkB/metabolismo , Animais , Antidepressivos/química , Antidepressivos/metabolismo , Sítios de Ligação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Colesterol/metabolismo , Embrião de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Hipocampo/metabolismo , Humanos , Camundongos , Modelos Animais , Simulação de Dinâmica Molecular , Domínios Proteicos , Ratos , Receptor trkB/química , Córtex Visual/metabolismo
2.
Cell ; 181(4): 774-783.e5, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413298

RESUMO

A visual cortical prosthesis (VCP) has long been proposed as a strategy for restoring useful vision to the blind, under the assumption that visual percepts of small spots of light produced with electrical stimulation of visual cortex (phosphenes) will combine into coherent percepts of visual forms, like pixels on a video screen. We tested an alternative strategy in which shapes were traced on the surface of visual cortex by stimulating electrodes in dynamic sequence. In both sighted and blind participants, dynamic stimulation enabled accurate recognition of letter shapes predicted by the brain's spatial map of the visual world. Forms were presented and recognized rapidly by blind participants, up to 86 forms per minute. These findings demonstrate that a brain prosthetic can produce coherent percepts of visual forms.


Assuntos
Cegueira/fisiopatologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Adulto , Estimulação Elétrica/métodos , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfenos , Córtex Visual/metabolismo , Córtex Visual/fisiologia , Próteses Visuais
3.
Immunity ; 57(3): 600-611.e6, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447570

RESUMO

Plasma cells that emerge after infection or vaccination exhibit heterogeneous lifespans; most survive for days to months, whereas others persist for decades, providing antigen-specific long-term protection. We developed a mathematical framework to explore the dynamics of plasma cell removal and its regulation by survival factors. Analyses of antibody persistence following hepatitis A and B and HPV vaccination revealed specific patterns of longevity and heterogeneity within and between responses, implying that this process is fine-tuned near a critical "flat" state between two dynamic regimes. This critical state reflects the tuning of rates of the underlying regulatory network and is highly sensitive to variation in parameters, which amplifies lifespan differences between cells. We propose that fine-tuning is the generic outcome of competition over shared survival signals, with a competition-based mechanism providing a unifying explanation for a wide range of experimental observations, including the dynamics of plasma cell accumulation and the effects of survival factor deletion. Our theory is testable, and we provide specific predictions.


Assuntos
Longevidade , Plasmócitos , Anticorpos , Vacinação , Antígenos
4.
Cell ; 175(5): 1430-1442.e17, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454650

RESUMO

In eukaryotic cells, organelles and the cytoskeleton undergo highly dynamic yet organized interactions capable of orchestrating complex cellular functions. Visualizing these interactions requires noninvasive, long-duration imaging of the intracellular environment at high spatiotemporal resolution and low background. To achieve these normally opposing goals, we developed grazing incidence structured illumination microscopy (GI-SIM) that is capable of imaging dynamic events near the basal cell cortex at 97-nm resolution and 266 frames/s over thousands of time points. We employed multi-color GI-SIM to characterize the fast dynamic interactions of diverse organelles and the cytoskeleton, shedding new light on the complex behaviors of these structures. Precise measurements of microtubule growth or shrinkage events helped distinguish among models of microtubule dynamic instability. Analysis of endoplasmic reticulum (ER) interactions with other organelles or microtubules uncovered new ER remodeling mechanisms, such as hitchhiking of the ER on motile organelles. Finally, ER-mitochondria contact sites were found to promote both mitochondrial fission and fusion.


Assuntos
Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Microscopia de Fluorescência
5.
Cell ; 167(3): 816-828.e16, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27745969

RESUMO

tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.


Assuntos
Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas/genética , RNA de Transferência/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Glucose/deficiência , Células HeLa , Humanos , Metilação , Polirribossomos/metabolismo
6.
Annu Rev Biochem ; 84: 465-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25839340

RESUMO

Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Amiloide/química , Bactérias/química , Humanos , Hidrogênio/análise , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/instrumentação
7.
Annu Rev Neurosci ; 45: 361-386, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385670

RESUMO

Cognitive neuroscience has highlighted the cerebral cortex while often overlooking subcortical structures. This cortical proclivity is found in basic and translational research on many aspects of cognition, especially higher cognitive domains such as language, reading, music, and math. We suggest that, for both anatomical and evolutionary reasons, multiple subcortical structures play substantial roles across higher and lower cognition. We present a comprehensive review of existing evidence, which indeed reveals extensive subcortical contributions in multiple cognitive domains. We argue that the findings are overall both real and important. Next, we advance a theoretical framework to capture the nature of (sub)cortical contributions to cognition. Finally, we propose how new subcortical cognitive roles can be identified by leveraging anatomical and evolutionary principles, and we describe specific methods that can be used to reveal subcortical cognition. Altogether, this review aims to advance cognitive neuroscience by highlighting subcortical cognition and facilitating its future investigation.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Córtex Cerebral , Cognição , Frutas
8.
Mol Cell ; 82(8): 1414-1423, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35305310

RESUMO

Protein degradation occurs through proteasomal, endosomal, and lysosomal pathways. Technological advancements have allowed for the determination of protein copy numbers and turnover rates on a global scale, which has provided an overview of trends and rules governing protein degradation. Sharper chemical and gene-editing tools have enabled the specific perturbation of each degradation pathway, whose effects on protein dynamics can now be comprehensively analyzed. We review major studies and innovation in this field and discuss the interdependence between the major pathways of protein degradation.


Assuntos
Autofagia , Complexo de Endopeptidases do Proteassoma , Endossomos/metabolismo , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
9.
EMBO J ; 43(1): 1-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177311

RESUMO

The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Canais de Translocação SEC/química , Proteínas SecA/metabolismo , Proteínas de Bactérias/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Proteico , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo
10.
Mol Cell ; 77(1): 82-94.e4, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630970

RESUMO

FUS is a nuclear RNA-binding protein, and its cytoplasmic aggregation is a pathogenic signature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It remains unknown how the FUS-RNA interactions contribute to phase separation and whether its phase behavior is affected by ALS-linked mutations. Here we demonstrate that wild-type FUS binds single-stranded RNA stoichiometrically in a length-dependent manner and that multimers induce highly dynamic interactions with RNA, giving rise to small and fluid condensates. In contrast, mutations in arginine display a severely altered conformation, static binding to RNA, and formation of large condensates, signifying the role of arginine in driving proper RNA interaction. Glycine mutations undergo rapid loss of fluidity, emphasizing the role of glycine in promoting fluidity. Strikingly, the nuclear import receptor Karyopherin-ß2 reverses the mutant defects and recovers the wild-type FUS behavior. We reveal two distinct mechanisms underpinning potentially disparate pathogenic pathways of ALS-linked FUS mutants.


Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Mutação/genética , Proteína FUS de Ligação a RNA/genética , RNA/genética , Transporte Ativo do Núcleo Celular/genética , Glicina/genética , Humanos
11.
Mol Cell ; 75(5): 905-920.e6, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422875

RESUMO

Variable levels of DNA methylation have been reported at tissue-specific differential methylation regions (DMRs) overlapping enhancers, including super-enhancers (SEs) associated with key cell identity genes, but the mechanisms responsible for this intriguing behavior are not well understood. We used allele-specific reporters at the endogenous Sox2 and Mir290 SEs in embryonic stem cells and found that the allelic DNA methylation state is dynamically switching, resulting in cell-to-cell heterogeneity. Dynamic DNA methylation is driven by the balance between DNA methyltransferases and transcription factor binding on one side and co-regulated with the Mediator complex recruitment and H3K27ac level changes at regulatory elements on the other side. DNA methylation at the Sox2 and the Mir290 SEs is independently regulated and has distinct consequences on the cellular differentiation state. Dynamic allele-specific DNA methylation at the two SEs was also seen at different stages in preimplantation embryos, revealing that methylation heterogeneity occurs in vivo.


Assuntos
Diferenciação Celular/fisiologia , Metilação de DNA/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
12.
Mol Cell ; 75(4): 769-780.e4, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442423

RESUMO

The ability to process and store information in living cells is essential for developing next-generation therapeutics and studying biology in situ. However, existing strategies have limited recording capacity and are challenging to scale. To overcome these limitations, we developed DOMINO, a robust and scalable platform for encoding logic and memory in bacterial and eukaryotic cells. Using an efficient single-nucleotide-resolution Read-Write head for DNA manipulation, DOMINO converts the living cells' DNA into an addressable, readable, and writable medium for computation and storage. DOMINO operators enable analog and digital molecular recording for long-term monitoring of signaling dynamics and cellular events. Furthermore, multiple operators can be layered and interconnected to encode order-independent, sequential, and temporal logic, allowing recording and control over the combination, order, and timing of molecular events in cells. We envision that DOMINO will lay the foundation for building robust and sophisticated computation-and-memory gene circuits for numerous biotechnological and biomedical applications.


Assuntos
Computadores Moleculares , DNA , DNA/química , DNA/metabolismo , Células HEK293 , Humanos
13.
Proc Natl Acad Sci U S A ; 121(6): e2313258121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300869

RESUMO

We report on the collective response of an assembly of chemomechanical Belousov-Zhabotinsky (BZ) hydrogel beads. We first demonstrate that a single isolated spherical BZ hydrogel bead with a radius below a critical value does not oscillate, whereas an assembly of the same BZ hydrogel beads presents chemical oscillation. A BZ chemical model with an additional flux of chemicals out of the BZ hydrogel captures the experimentally observed transition from oxidized nonoscillating to oscillating BZ hydrogels and shows this transition is due to a flux of inhibitors out of the BZ hydrogel. The model also captures the role of neighboring BZ hydrogel beads in decreasing the critical size for an assembly of BZ hydrogel beads to oscillate. We finally leverage the quorum sensing behavior of the collective to trigger their chemomechanical oscillation and discuss how this collective effect can be used to enhance the oscillatory strain of these active BZ hydrogels. These findings could help guide the eventual fabrication of a swarm of autonomous, communicating, and motile hydrogels.

14.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771864

RESUMO

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Assuntos
Aves , Voo Animal , Vento , Animais , Voo Animal/fisiologia , Aves/fisiologia , Orientação/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Orientação Espacial/fisiologia , Migração Animal/fisiologia
15.
Proc Natl Acad Sci U S A ; 121(21): e2311086121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739806

RESUMO

Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.


Assuntos
Clorofila A , Mudança Climática , Fitoplâncton , Estações do Ano , Clorofila A/metabolismo , Clorofila A/análise , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Estuários , Ecossistema , Plâncton/fisiologia , Plâncton/crescimento & desenvolvimento , Biomassa , Clorofila/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(17): e2314772121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621122

RESUMO

Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula: see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.


Assuntos
Formigas , Formigas Lava-Pés , Animais , Formigas/fisiologia , Física , Microdomínios da Membrana
17.
Proc Natl Acad Sci U S A ; 121(20): e2307038121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709932

RESUMO

Large-scale online campaigns, malicious or otherwise, require a significant degree of coordination among participants, which sparked interest in the study of coordinated online behavior. State-of-the-art methods for detecting coordinated behavior perform static analyses, disregarding the temporal dynamics of coordination. Here, we carry out a dynamic analysis of coordinated behavior. To reach our goal, we build a multiplex temporal network and we perform dynamic community detection to identify groups of users that exhibited coordinated behaviors in time. We find that i) coordinated communities (CCs) feature variable degrees of temporal instability; ii) dynamic analyses are needed to account for such instability, and results of static analyses can be unreliable and scarcely representative of unstable communities; iii) some users exhibit distinct archetypal behaviors that have important practical implications; iv) content and network characteristics contribute to explaining why users leave and join CCs. Our results demonstrate the advantages of dynamic analyses and open up new directions of research on the unfolding of online debates, on the strategies of CCs, and on the patterns of online influence.

18.
Proc Natl Acad Sci U S A ; 121(6): e2313962121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306480

RESUMO

Ultralight architected materials enabled by advanced manufacturing processes have achieved density-normalized strength and stiffness properties that are inaccessible to bulk materials. However, the majority of this work has focused on static loading and elastic-wave propagation. Fundamental understanding of the mechanical behavior of architected materials under large-deformation dynamic conditions remains limited, due to the complexity of mechanical responses and shortcomings of characterization methods. Here, we present a microscale suspended-plate impact testing framework for three-dimensional micro-architected materials, where supersonic microparticles to velocities of up to 850 m/s are accelerated against a substrate-decoupled architected material to quantify its energy dissipation characteristics. Using ultra-high-speed imaging, we perform in situ quantification of the impact energetics on two types of architected materials as well as their constituent nonarchitected monolithic polymer, indicating a 47% or greater increase in mass-normalized energy dissipation under a given impact condition through use of architecture. Post-mortem characterization, supported by a series of quasi-static experiments and high-fidelity simulations, shed light on two coupled mechanisms of energy dissipation: material compaction and particle-induced fracture. Together, experiments and simulations indicate that architecture-specific resistance to compaction and fracture can explain a difference in dynamic impact response across architectures. We complement our experimental and numerical efforts with dimensional analysis which provides a predictive framework for kinetic-energy absorption as a function of material parameters and impact conditions. We envision that enhanced understanding of energy dissipation mechanisms in architected materials will serve to define design considerations toward the creation of lightweight impact-mitigating materials for protective applications.

19.
Proc Natl Acad Sci U S A ; 121(26): e2402282121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885383

RESUMO

Goal-directed actions are characterized by two main features: the content (i.e., the action goal) and the form, called vitality forms (VF) (i.e., how actions are executed). It is well established that both the action content and the capacity to understand the content of another's action are mediated by a network formed by a set of parietal and frontal brain areas. In contrast, the neural bases of action forms (e.g., gentle or rude actions) have not been characterized. However, there are now studies showing that the observation and execution of actions endowed with VF activate, in addition to the parieto-frontal network, the dorso-central insula (DCI). In the present study, we established-using dynamic causal modeling (DCM)-the direction of information flow during observation and execution of actions endowed with gentle and rude VF in the human brain. Based on previous fMRI studies, the selected nodes for the DCM comprised the posterior superior temporal sulcus (pSTS), the inferior parietal lobule (IPL), the premotor cortex (PM), and the DCI. Bayesian model comparison showed that, during action observation, two streams arose from pSTS: one toward IPL, concerning the action goal, and one toward DCI, concerning the action vitality forms. During action execution, two streams arose from PM: one toward IPL, concerning the action goal and one toward DCI concerning action vitality forms. This last finding opens an interesting question concerning the possibility to elicit VF in two distinct ways: cognitively (from PM to DCI) and affectively (from DCI to PM).


Assuntos
Mapeamento Encefálico , Objetivos , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Rede Nervosa/fisiologia , Teorema de Bayes , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Lobo Parietal/fisiologia , Modelos Neurológicos , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 121(19): e2311146121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648469

RESUMO

The pace and scale of environmental change represent major challenges to many organisms. Animals that move long distances, such as migratory birds, are especially vulnerable to change since they need chains of intact habitat along their migratory routes. Estimating the resilience of such species to environmental changes assists in targeting conservation efforts. We developed a migration modeling framework to predict past (1960s), present (2010s), and future (2060s) optimal migration strategies across five shorebird species (Scolopacidae) within the East Asian-Australasian Flyway, which has seen major habitat deterioration and loss over the last century, and compared these predictions to empirical tracks from the present. Our model captured the migration strategies of the five species and identified the changes in migrations needed to respond to habitat deterioration and climate change. Notably, the larger species, with single or few major stopover sites, need to establish new migration routes and strategies, while smaller species can buffer habitat loss by redistributing their stopover areas to novel or less-used sites. Comparing model predictions with empirical tracks also indicates that larger species with the stronger need for adaptations continue to migrate closer to the optimal routes of the past, before habitat deterioration accelerated. Our study not only quantifies the vulnerability of species in the face of global change but also explicitly reveals the extent of adaptations required to sustain their migrations. This modeling framework provides a tool for conservation planning that can accommodate the future needs of migratory species.


Assuntos
Migração Animal , Aves , Mudança Climática , Ecossistema , Animais , Migração Animal/fisiologia , Aves/fisiologia , Conservação dos Recursos Naturais , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA