RESUMO
Lemon balm (Melissa officinalis L.) is a valuable medicinal plant, but its growth can be significantly impacted by drought stress. This study aimed to mitigate the adverse effects of water deficit stress on lemon balm biomass by integrating poultry manure compost, poultry manure biochar, NPK fertilizer, Trichoderma harzianum, Thiobacillus thioparus, and elemental sulfur as soil amendments. The experiment was conducted in a greenhouse using a completely randomized design with a factorial arrangement, consisting of three replicates. It included a water deficit stress factor at three levels (95-100%, 75-80%, and 55-60% of field capacity) and a soil amendment treatment factor with eleven different fertilizer levels. Treatments included control (no amendment), NPK fertilizer, poultry manure compost, poultry manure biochar, and combinations of these with T. harzianum, T. thioparus, and elemental sulfur under various water deficit levels. Water deficit stress significantly reduced photosynthetic pigments, gas exchange parameters, chlorophyll fluorescence, relative water content, and antioxidant enzyme activity, while increasing membrane permeability and lipid peroxidation in lemon balm plants. However, the integrated application of organic, biological, and chemical amendments mitigated these negative impacts. The combined treatment of poultry manure compost, poultry manure biochar, NPK fertilizer, T. harzianum, T. thioparus, and elemental sulfur was the most effective in improving the morpho-physiological properties (1.97-60%) and biomass (2.31-2.76 times) of lemon balm under water deficit stress. The results demonstrate the potential of this holistic approach to enhance the resilience of lemon balm cultivation in water-scarce environments. The integration of organic, biological, and chemical amendments can contribute to sustainable agricultural practices by improving plant morphological and physiological properties and plant performance under drought conditions.
Assuntos
Fertilizantes , Esterco , Melissa , Solo , Melissa/fisiologia , Solo/química , Agricultura/métodos , Carvão Vegetal , Água/metabolismo , Biomassa , Compostagem/métodos , Clorofila/metabolismo , Desidratação , SecasRESUMO
A three-component cyclization reaction of O-acyl oximes, silyl enol ethers and elemental sulfur has been developed, in which silyl enol ether acts as a C1 synthon to participate in cyclization reaction and build series of 2-aroylnaphthothiazoles and 2-aroylbenzothienothiazoles. The preliminary exploration of the reaction mechanism indicated that this transformation probably proceeded through a radical process, involving S3â¢- as a key intermediate, enabling subsequent nucleophilic substitution with O-acyl oximes to afford iminosulfur radical, which undergoes 1,3-H shift to yield sulfur-centered radical intermediate. And then this intermediate undergoes radical addition with silyl enol ether, leading to the formation of the titled products through intramolecular cyclization and oxidation. Moreover, the products obtained exhibit favorable fluorescence properties, which indicates their potential application as functional materials.
RESUMO
A visible-light-induced strategy has been explored for the synthesis of naphtho[2,1-d]thiazol-2-amines through ortho-C-H sulfuration of 2-isocyanonaphthalenes with elemental sulfur and amines under external photocatalyst-free conditions. This three-component reaction, which utilizes elemental sulfur as the odorless sulfur source, molecular oxygen as the clean oxidant, and visible light as the clean energy source, provides a mild and efficient approach to construct a series of naphtho[2,1-d]thiazol-2-amines. Preliminary mechanistic studies indicated that visible-light-promoted photoexcitation of reaction intermediates consisting of thioureas and DBU might be involved in this transformation.
RESUMO
SO2 reduction with CH4 to produce elemental sulfur (S8) or other sulfides is typically challenging due to high energy barriers and catalyst poisoning by SO2. Herein, we report that a comproportionation reaction (CR) induced by H2S recirculating significantly accelerates the reactions, altering reaction pathways and enabling flexible adjustment of the products from S8 to sulfides. Results show that SO2 can be fully reduced to H2S at a lower temperature of 650 °C, compared to the 800 °C required for the direct reduction (DR), effectively eliminating catalyst poisoning. The kinetic rate constant is significantly improved, with CR at 650 °C exhibiting about 3-fold higher value than DR at 750 °C. Additionally, the apparent activation energy decreases from 128 to 37 kJ/mol with H2S, altering the reaction route. This CR resolves the challenges related to robust sulfur-oxygen bond activation and enhances CH4 dissociation. During the process, the well-dispersed lamellar MoS2 crystallites with Co promoters (CoMoS) act as active species. H2S facilitates the comproportionation reaction, reducing SO2 to a nascent sulfur (Sx*). Subsequently, CH4 efficiently activates CoMoS in the absence of SO2, forming H2S. This shifts the mechanism from Mars-van Krevelen (MvK) in DR to sequential Langmuir-Hinshelwood (L-H) and MvK in CR. Additionally, it mitigates sulfation poisoning through this rapid activation reaction pathway. This unique comproportionation reaction provides a novel strategy for efficient sulfur resource utilization.
Assuntos
Metano , Dióxido de Enxofre , Metano/química , Sulfetos/química , Temperatura , Enxofre/química , OxirreduçãoRESUMO
The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H2S) as a byproduct. This study examined the capability of a consortium consisting of Sulfobacillus thermosulfidooxidans and Sulfobacillus acidophilus to partially oxidize H2S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor's steady state, despite high flow rates. Afterward, the electron donor was changed to H2S. When the bioreactor was operated continuously and with high aeration, H2S was fully oxidized to SO42-. However, under conditions of low aeration and at a concentration of 0.26 g/L of H2S, the consortium was able to oxidize H2S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H2S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H2S. The findings highlight the capability of a Sulfobacillus consortium to convert H2S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.
Assuntos
Sulfeto de Hidrogênio , Sulfatos , Reatores Biológicos/microbiologia , Enxofre , Bactérias , OxirreduçãoRESUMO
Representatives of the colorless sulfur bacteria of the genus Beggiatoa use reduced sulfur compounds in the processes of lithotrophic growth, which is accompanied by the storage of intracellular sulfur. However, it is still unknown how the transformation of intracellular sulfur occurs in Beggiatoa representatives. Annotation of the genome of Beggiatoa leptomitoformis D-402 did not identify any genes for the oxidation or reduction of elemental sulfur. By searching BLASTP, two putative persulfide dioxygenase (PDO) homologs were found in the genome of B. leptomitoformis. In some heterotrophic prokaryotes, PDO is involved in the oxidation of sulfane sulfur. According to HPLC-MS/MS, the revealed protein was reliably detected in a culture sample grown only in the presence of endogenous sulfur and CO2. The recombinant protein from B. leptomitoformis was active in the presence of glutathione persulfide. The crystal structure of recombinant PDO exhibited consistency with known structures of type I PDO. Thus, it was shown that B. leptomitoformis uses PDO to oxidize endogenous sulfur. Additionally, on the basis of HPLC-MS/MS, RT-qPCR, and the study of PDO reaction products, we predicted the interrelation of PDO and Sox-system function in the oxidation of endogenous sulfur in B. leptomitoformis and the connection of this process with energy metabolism.
Assuntos
Dioxigenases , Oxirredução , Enxofre , Enxofre/metabolismo , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Glutationa/metabolismo , Glutationa/análogos & derivados , Espectrometria de Massas em Tandem , Sulfetos/metabolismo , DissulfetosRESUMO
Lacking electron donors generally causes poor denitrification performance in constructed wetlands (CWs). In this study, iron scraps (ISs) and elemental sulfur (S0) were employed as electron donors in different surface flow constructed wetlands (SFCWs): control (C-SF), ISs added (Fe-SF), S0 added (S-SF), and ISs and S0 combined (Fe + S-SF) to investigate the performance and mechanism of nitrogen (N) removal through continuous flow and batch experiments. The impact of hydraulic retention times (HRTs) and temperatures on N removal was explored. The combined use of ISs and S0 significantly improved nitrate (NO3- -N) removal in Fe + S-SF compared to the other SFCWs. During the 3-d HRT at 25 °C, the average NO3- -N removal efficiency in Fe + S-SF reached the highest value of 71.66 ± 12.54%, reducing NO3- -N concentrations from 12.03 mg/L to 3.47 mg/L. The results of the batch experiments revealed an N removal pattern that aligned with the findings of the continuous flow experiment. The microbial community analysis revealed a selective enrichment of key functional genera (e.g., Ferritrophicum and Dechloromonas), contributing to enhanced N removal in Fe + S-SF. These findings suggest that the synergistic use of ISs and S0 can achieve better denitrification efficiency and potentially be utilized for enhanced N removal from low C/N wastewater.
RESUMO
The bulk radical polymerization of bis(aziridine) with molten elemental sulfur resulted in brittle, cross-linked polymers. However, when the bis(aziridine) was treated with elemental sulfur in the presence of an organobase, the ring-opening reaction of aziridine with oligosulfide anions occurred, leading to the formation of linear polymers by step-growth polymerization. These newly synthesized polymers possess repeating units containing a sulfonamide or amide functional moiety and oligosulfide bonds with an average sulfur segment of about two. A small molecular model reaction confirmed the nucleophilic addition reaction of elemental sulfur to aziridine. It was verified that S-S dynamic bond exchange takes place in the presence of an organic base within the linear chains. The mixture of the synthesized polysulfides with pyridine exhibits exceptional adhesive properties when applied to steel, and aluminum substrates. Notably, these prepared adhesives displayed good reusability due to the dynamic S-S exchange and complete recyclability due to their solution processability. This elemental sulfur-involved polymerization approach represents an innovative method for the synthesis of advanced sulfur-containing polymers, demonstrating the potential for various applications in adhesives and beyond.
RESUMO
Chlorobaculum tepidum is an anaerobic green sulfur bacterium which oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. It can also oxidize sulfide to produce extracellular S0 globules, which can be further oxidized to sulfate and used as an electron donor. Here, we performed label-free quantitative proteomics on total cell lysates prepared from different metabolic states, including a sulfur production state (10 h post-incubation [PI]), the beginning of sulfur consumption (20 h PI), and the end of sulfur consumption (40 h PI), respectively. We observed an increased abundance of the sulfide:quinone oxidoreductase (Sqr) proteins in 10 h PI indicating a sulfur production state. The periplasmic thiosulfate-oxidizing Sox enzymes and the dissimilatory sulfite reductase (Dsr) subunits showed an increased abundance in 20 h PI, corresponding to the sulfur-consuming state. In addition, we found that the abundance of the heterodisulfide-reductase and the sulfhydrogenase operons was influenced by electron donor availability and may be associated with sulfur metabolism. Further, we isolated and analyzed the extracellular sulfur globules in the different metabolic states to study their morphology and the sulfur cluster composition, yielding 58 previously uncharacterized proteins in purified globules. Our results show that C. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism in response to the availability of reduced sulfur compounds.
Assuntos
Chlorobi , Proteômica , Enxofre , Chlorobi/metabolismo , Oxirredução , Proteômica/métodos , Sulfetos/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , FotossínteseRESUMO
Biological sulfide oxidation is an efficient means to recover elemental sulfur (S0) as a valuable resource from sulfide-bearing wastewater. This work evaluated the autotrophic sulfide oxidation to S0 in the O2-based membrane biofilm reactor (O2-MBfR). High recovery of S0 (80-90% of influent S) and high sulfide oxidation (â¼100%) were simultaneously achieved when the ratio of O2-delivery capacity to sulfide-to S0 surface loading (SL) (O2/S2- â S0 ratio) was around 1.5 (g O2/m2-day/g O2/m2-day). On average, most of the produced S0 was recovered in the MBfR effluent, although the biofilm could be a source or sink for S0. Shallow metagenomic analysis of the biofilm showed that the top sulfide-oxidizing genera present in all stages were Thauera, Thiomonas, Thauera_A, and Pseudomonas. Thiomonas or Pseudomonas was the most important genus in stages that produced almost only S0 (i.e., the O2/S2- â S0 ratio around 1.5 g of the O2/m2-day/g O2/m2-day). With a lower sulfide SL, the S0-producing genes were sqr and fccAB in Thiomonas. With a higher sulfide SL, the S0-producing genes were in the soxABDXYZ system in Pseudomonas. Thus, the biofilm community of the O2-MBfR adapted to different sulfide-to-S0 SLs and corresponding O2-delivery capacities. The results illustrate the potential for S0 recovery using the O2-MBfR.
Assuntos
Reatores Biológicos , Oxigênio , Oxirredução , Enxofre , Biofilmes , Sulfetos , DesnitrificaçãoRESUMO
Magnetite (Mt) has long been regarded as a stable phase with a low reactivity toward dissolved sulfide, but natural Mt with varying stoichiometries (the structural Fe(II)/Fe(III) ratio, xstru) might exhibit distinct reactivities in sulfidation. How Mt stoichiometry affects its sulfidation processes and products remains unknown. Here, we demonstrate that xstru is a master variable controlling the rates and extents of sulfide oxidation by magnetite nanoparticles (11 ± 2 nm). At pH = 7.0-8.0 and the initial Fe/S molar ratio of 10-50, the partially oxidized magnetite (xstru = 0.19-0.43) can oxidize dissolved sulfide to elemental sulfur (S0), but only surface adsorption of sulfide, without interfacial electron transfer (IET), occurs on the nearly stoichiometric magnetite (xstru = 0.47). The higher initial rate and extent of sulfide oxidation and S0 production are observed with the more oxidized magnetite that has the higher electron-accepting capability from surface-complexed sulfide (S(-II)(s)). The FeS clusters formed from magnetite sulfidation can be oxidized by the most oxidized magnetite with xstru = 0.19 but not by other magnetite particles. A linear relationship between the Gibbs free energy of reaction and the surface area-normalized initial rate of sulfide oxidation is observed in all experiments under the different conditions, suggesting the S(-II)(s)-magnetite IET dominates magnetite sulfidation at high Fe/S molar ratios and near-neutral pH.
Assuntos
Óxido Ferroso-Férrico , Ferro , Ferro/química , Enxofre , Transporte de Elétrons , Sulfetos/química , OxirreduçãoRESUMO
Mineral weathering and alkaline pH neutralization are prerequisites to the ecoengineering of alkaline Fe-ore tailings into soil-like growth media (i.e., Technosols). These processes can be accelerated by the growth and physiological functions of tolerant sulfur oxidizing bacteria (SOB) in tailings. The present study characterized an indigenous SOB community enriched in the tailings, in response to the addition of elemental sulfur (S0) and organic matter (OM), as well as resultant S0oxidation, pH neutralization, and mineral weathering in a glasshouse experiment. The addition of S0 was found to have stimulated the growth of indigenous SOB, such as acidophilic Alicyclobacillaceae, Bacillaceae, and Hydrogenophilaceae in tailings. The OM amendment favored the growth of heterotrophic/mixotrophic SOB (e.g., class Alphaproteobacteria and Gammaproteobacteria). The resultant S0 oxidation neutralized the alkaline pH and enhanced the weathering of biotite-like minerals and formation of secondary minerals, such as ferrihydrite- and jarosite-like minerals. The improved physicochemical properties and secondary mineral formation facilitated organo-mineral associations that are critical to soil aggregate formation. From these findings, co-amendments of S0 and plant biomass (OM) can be applied to enhance the abundance of the indigenous SOB community in tailings and accelerate mineral weathering and geochemical changes for eco-engineered soil formation, as a sustainable option for rehabilitation of Fe ore tailings.
Assuntos
Compostos de Ferro , Minerais , Bactérias , Enxofre , Oxirredução , Ferro , Solo , Concentração de Íons de HidrogênioRESUMO
Inverse vulcanization utilizes an organic compound as reagent for crosslinking elemental sulfur to result in corresponding polymeric material with a high sulfur content. This work, employing 1,3,5-triisopropylbenzene (TIPB) as the reagent, demonstrates the first attempt on extending the scope of crosslinking agents of inverse vulcanization to saturate compounds. Under nuclear magnetic spectroscopic analysis, the reactions between TIPB and elemental sulfur take places through ring-opening reaction of S8 resulting in sulfur radicals at sulfur chain ends, radicals transferring to isopropyl groups of TIPB, and radical coupling reactions between carbon radicals and sulfur radicals. The obtained products are similar to the sulfur polymers from conventional inverse vulcanization processes and show self-healing property.
Assuntos
Compostos Orgânicos , Enxofre , Indicadores e Reagentes , Enxofre/química , Polímeros/química , CarbonoRESUMO
Dosing sulfide into the sulfur-packed-bed (S0PB) has great potential to enhance the denitrification efficiency by providing compensatory electron donors, however, the response of sulfur-metabolizing biofilm to various sulfide dosages has never been investigated. In this study, the S0PB reactor was carried out with increasing sulfide dosages by 3.6 kg/m3/d, presenting a decreasing effluent nitrate from 14.2 to 2.7 mg N/L with accelerated denitrification efficiency (k: 0.04 to 0.27). However, 6.5 mg N/L of nitrite accumulated when the sulfide dosage exceeded 0.9 kg/m3/d (optimum value). The increasing electron export contribution of sulfide a maximum of 85.5% illustrated its competition with the in-situ sulfur. Meanwhile, over-dosing sulfide caused serious biofilm expulsion with significant decreases in the total biomass, live cell population, and ATP by 90.2%, 86.7%, and 54.8%, respectively. This study verified the capacity of dosing sulfide to improve the denitrification efficiency in S0PB but alerted the negative effect of exceeded dosing.
Assuntos
Reatores Biológicos , Desnitrificação , Sulfetos , Enxofre , BiofilmesRESUMO
Lithium sulfur batteries are suitable for drones due to their high gravimetric energy density (2600 Wh/kg of sulfur). However, on the cathode side, high specific capacity with high sulfur loading (high areal capacity) is challenging due to the poor conductivity of sulfur. Shuttling of Li-sulfide species between the sulfur cathode and lithium anode also limits specific capacity. Sulfur-carbon composite active materials with encapsulated sulfur address both issues but require expensive processing and have low sulfur content with limited areal capacity. Proper encapsulation of sulfur in carbonaceous structures along with active additives in solution may largely mitigate shuttling, resulting in cells with improved energy density at relatively low cost. Here, composite current collectors, selected binders, and carbonaceous matrices impregnated with an active mass were used to award stable sulfur cathodes with high areal specific capacity. All three components are necessary to reach a high sulfur loading of 3.8 mg/cm2 with a specific/areal capacity of 805 mAh/g/2.2 mAh/cm2. Good adhesion between the carbon-coated Al foil current collectors and the composite sulfur impregnated carbon matrices is mandatory for stable electrodes. Swelling of the binders influenced cycling retention as electroconductivity dominated the cycling performance of the Li-S cells comprising cathodes with high sulfur loading. Composite electrodes based on carbonaceous matrices in which sulfur is impregnated at high specific loading and non-swelling binders that maintain the integrated structure of the composite electrodes are important for strong performance. This basic design can be mass produced and optimized to yield practical devices.
RESUMO
Elemental sulfur is often used in organic synthesis as its low cost and high abundance make it a highly desirable source of sulfur atoms. However, sulfur's unpredictable catenation behavior poses challenges to its widespread usage due to difficulties in designing new reactions that can account for its multifaceted reactivity. In order to accurately model sulfur's mechanisms using computational approaches, it is necessary to identify density functional theory (DFT) methods that are accurate on these systems. This study benchmarks 12 well-known DFT functionals that include local, non-local, and hybrid methods against DLPNO-CCSD(T)/aug-cc-pV(Q+d)Z//MP2/aug-cc-pV(T+d)Z/SMD(MeCN) for the accurate treatment of organic polysulfides, taking cyanide as a nucleophile. Our benchmarking results indicate that the M06-2X and B3LYP-D3(BJ) density functionals are the most accurate for calculating reaction energies, while local functionals performed the worst. For activation energies, MN15, MN15-L, M06-2X, and ωB97X-D are the most accurate. Our analysis of structural parameters shows that all functionals perform well for ground state optimizations except B97D3, while MN15-L and M06-2X performed best for transition structure optimizations. Overall, the four hybrid functionals MN15, M06-2X, ωB97X-D, and B3LYP-D3(BJ) appear adequate for studying the reaction mechanisms of polysulfides.
Assuntos
Benchmarking , Enxofre , Teoria da Densidade FuncionalRESUMO
In this concept review, the fundamental and polymerization chemistry of inverse vulcanization for the preparation of statistical and segmented sulfur copolymers, which have been actively developed and advanced in various applications over the past decade is discussed. This concept review delves into a discussion of step-growth polymerization constructs to describe the inverse vulcanization process and discuss prepolymer approaches for the synthesis of segmented sulfur polyurethanes. Furthermore, this concept review discusses the advantages of inverse vulcanization in conjunction with dynamic covalent polymerization and post-polymerization modifications to prepare segmented block copolymers with enhanced thermomechanical and flame retardant properties of these materials.
RESUMO
Nitrous oxide (N2 O) was previously deemed as a potent greenhouse gas but is actually an untapped energy source, which can accumulate during the microbial denitrification of nitric oxide (NO). Compared with the organic electron donor required in heterotrophic denitrification, elemental sulfur (S0 ) is a promising electron donor alternative due to its cheap cost and low biomass yield in sulfur-driven autotrophic denitrification. However, no effort has been made to test N2 O recovery from sulfur-driven denitrification of NO so far. Therefore, in this study, batch and continuous experiments were carried out to investigate the NO removal performance and N2 O recovery potential via sulfur-driven NO-based denitrification under various Fe(II)EDTA-NO concentrations. Efficient energy recovery was achieved, as up to 35.5%-40.9% of NO was converted to N2 O under various NO concentrations. N2 O recovery from Fe(II)EDTA-NO could be enhanced by the low bioavailability of sulfur and the acid environment caused by sulfur oxidation. The NO reductase (NOR) and N2 O reductase (N2 OR) were inhibited distinctively at relatively low NO levels, leading to efficient N2 O accumulation, but were suppressed irreversibly at NO level beyond 15 mM in continuous experiments. Such results indicated that the regulation of NO at a relatively low level would benefit the system stability and NO removal capacity during long-term system operation. The continuous operation of the sulfur-driven Fe(II)EDTA-NO-based denitrification reduced the overall microbial diversity but enriched several key microbial community. Thauera, Thermomonas, and Arenimonas that are able to carry out sulfur-driven autotrophic denitrification became the dominant organisms with their relative abundance increased from 25.8% to 68.3%, collectively.
Assuntos
Desnitrificação/fisiologia , Microbiota , Óxido Nítrico , Óxido Nitroso , Enxofre/metabolismo , Processos Autotróficos/fisiologia , Microbiota/genética , Microbiota/fisiologia , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismoRESUMO
There is increasing interest in thiosulfate-driven denitrification for low C/N wastewater treatment, but the denitrification performance varies with the thiosulfate oxidation pathways. Models have been developed to predict the products of denitrification, but few consider thiosulfate reduction to elemental sulfur (S0), an undesirable reaction that can intensify electron competition with denitrifying enzymes. In this study, the model using indirect coupling of electrons (ICE) was developed to predict S0 formation and electron competition during thiosulfate-driven denitrification. Kinetic data were obtained from sulfur-oxidizing bacteria (SOB) dominated by the branched pathway and were used to calibrate and validate the model. Electron competition was investigated under different operating conditions. Modeling results reveal that electrons produced in the first step of thiosulfate oxidation typically prioritize thiosulfate reduction, then nitrate reduction, and finally nitrite reduction. However, the electron consumption rate for S0 formation decreases sharply with the decline of thiosulfate concentration. Thus, a continuous feeding strategy was effective in alleviating the competition between thiosulfate reduction and denitrifying enzymes. Electron competition leads to nitrite accumulation, which could be a reliable substrate for anammox. The model was further evaluated with anammox integration. Results suggested that the branched pathway and continuous supply of thiosulfate are favorable to create a symbiotic relationship between SOB and anammox.
Assuntos
Desnitrificação , Tiossulfatos , Reatores Biológicos , Elétrons , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio , Oxirredução , EnxofreRESUMO
Pseudomonas sp. C27 can achieve the conversion of toxic sulfide to economical elemental sulfur (S0) with various electron acceptors. In this study the distribution pattern of S0 produced by C27 in denitrifying sulfide removal (DSR) process was explored. The SEM observation identified that the particle size of the biogenic S0 was at micron level. Strikingly, a novel distribution pattern of S0 was revealed that the produced S0 was not directly secreted extracellularly, but be stored temporarily in the cell interior. Pyrolysis at 65 °C for 20 min were recommended prior to S0 recovery, which could maximize the separation of extracellular polymeric substances (EPS) from C27. Furthermore, the effects of N/S molar ratio, initial sulfide concentration, and micro-oxygen condition were investigated to improve the production of S0 by C27. The highest S0 production was obtained at S/N of 3 and anaerobic condition seemed to favor the S0 production by C27. This study would provide a theoretical support for highly efficient sulfide removal as well as S0 recovery in sulfide-laden wastewater treatment.