Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(2): 489-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013504

RESUMO

Brain organoids are self-organized, three-dimensional (3D) aggregates derived from pluripotent stem cells that have cell types and cellular architectures resembling those of the developing human brain. The current understanding of human brain developmental processes and neurological disorders has advanced significantly with the introduction of this in vitro model. Brain organoids serve as a translational link between two-dimensional (2D) cultures and in vivo models which imitate the neural tube formation at the early and late stages and the differentiation of neuroepithelium with whole-brain regionalization. In addition, the generation of region-specific brain organoids made it possible to investigate the pathogenic and etiological aspects of acquired and inherited brain disease along with drug discovery and drug toxicity testing. In this review article, we first summarize an overview of the existing methods and platforms used for generating brain organoids and their limitations and then discuss the recent advancement in brain organoid technology. In addition, we discuss how brain organoids have been used to model aspects of neurodevelopmental and neurodegenerative diseases, including autism spectrum disorder (ASD), Rett syndrome, Zika virus-related microcephaly, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso , Infecção por Zika virus , Zika virus , Humanos , Encéfalo , Organoides
2.
Arch Toxicol ; 98(4): 1209-1224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311648

RESUMO

To meet the growing demand for developmental toxicity assessment of chemicals, New Approach Methodologies (NAMs) are needed. Previously, we developed two 3D in vitro assays based on human-induced pluripotent stem cells (hiPSC) and cardiomyocyte differentiation: the PluriBeat assay, based on assessment of beating differentiated embryoid bodies, and the PluriLum assay, a reporter gene assay based on the expression of the early cardiac marker NKX2.5; both promising assays for predicting embryotoxic effects of chemicals and drugs. In this work, we aimed to further describe the predictive power of the PluriLum assay and compare its sensitivity with PluriBeat and similar human stem cell-based assays developed by others. For this purpose, we assessed the toxicity of a panel of ten chemicals from different chemical classes, consisting of the known developmental toxicants 5-fluorouracil, all-trans retinoic acid and valproic acid, as well as the negative control compounds ascorbic acid and folic acid. In addition, the fungicides epoxiconazole and prochloraz, and three perfluoroalkyl substances (PFAS), PFOS, PFOA and GenX were tested. Generally, the PluriLum assay displayed higher sensitivity when compared to the PluriBeat assay. For several compounds the luminescence readout of the PluriLum assay showed effects not detected by the PluriBeat assay, including two PFAS compounds and the two fungicides. Overall, we find that the PluriLum assay has the potential to provide a fast and objective detection of developmental toxicants and has a level of sensitivity that is comparable to or higher than other in vitro assays also based on human stem cells and cardiomyocyte differentiation for assessment of developmental toxicity.


Assuntos
Fluorocarbonos , Fungicidas Industriais , Células-Tronco Pluripotentes Induzidas , Humanos , Testes de Toxicidade/métodos , Corpos Embrioides , Diferenciação Celular , Substâncias Perigosas
3.
Ecotoxicol Environ Saf ; 283: 116859, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39137466

RESUMO

The developmental toxicity and human health risks of triazole fungicides (TFs) have attracted worldwide attention due to the ability to enter the human body in a variety of ways. Nevertheless, the specific mechanism by which TFs exert remains incompletely understood. Given that retinoic acid (RA) signaling pathway are closely related to development, this study aimed to screen and identify developmentally disabled chemicals in commonly used TFs and to reveal the potential effects of TFs on developmental retardation through the RA signaling pathway in mouse embryonic stem cells (mESCs). Specifically, six typical TFs (myclobutanil, tebuconazole, hexaconazole, propiconazole, difenoconazole, and flusilazole) were exposed through the construction of an embryoid bodies (EBs)-based in vitro global differentiation models. Our results clarified that various TFs disturbed lineage commitment during early embryonic development. Crucially, the activation of RA signaling pathway, which alters the expression of key genes and interferes the transport and metabolism of retinol, may be responsible for this effect. Furthermore, molecular docking, molecular dynamics simulations, and experiments using a retinoic acid receptor α inhibitor provide evidence supporting the potential modulatory role of the retinoic acid signaling pathway in developmental injury. The current study offers new insights into the TFs involved in the RA signaling pathway that interfere with the differentiation process of mESCs, which is crucial for understanding the impact of TFs on pregnancy and early development.


Assuntos
Diferenciação Celular , Fungicidas Industriais , Transdução de Sinais , Tretinoína , Triazóis , Triazóis/toxicidade , Fungicidas Industriais/toxicidade , Diferenciação Celular/efeitos dos fármacos , Tretinoína/toxicidade , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Simulação de Acoplamento Molecular , Dioxolanos/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Nitrilas , Silanos
4.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062912

RESUMO

Knowledge of the molecular mechanisms that underlie the regulation of major adaptive responses to an unbalanced oxygen tension is central to understanding tissue homeostasis and disease. Hypoxia-inducible transcription factors (HIFs) coordinate changes in the transcriptome that control these adaptive responses. Here, we focused on the functional role of the transcriptional repressor basic-helix-loop-helix family member e40 (Bhlhe40), which we previously identified in a meta-analysis as one of the most consistently upregulated genes in response to hypoxia across various cell types. We investigated the role of Bhlhe40 in controlling proliferation and angiogenesis using a gene editing strategy in mouse embryonic stem cells (mESCs) that we differentiated in embryoid bodies (EBs). We observed that hypoxia-induced Bhlhe40 expression was compatible with the rapid proliferation of pluripotent mESCs under low oxygen tension. However, in EBs, hypoxia triggered a Bhlhe40-dependent cell cycle arrest in most progenitor cells and endothelial cells within vascular structures. Furthermore, Bhlhe40 knockout increased the basal vascularization of the EBs in normoxia and exacerbated the hypoxia-induced vascularization, supporting a novel role for Bhlhe40 as a negative regulator of blood vessel formation. Our findings implicate Bhlhe40 in mediating key functional adaptive responses to hypoxia, such as proliferation arrest and angiogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipóxia Celular , Proliferação de Células , Corpos Embrioides , Células-Tronco Embrionárias Murinas , Neovascularização Fisiológica , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Corpos Embrioides/metabolismo , Corpos Embrioides/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Neovascularização Fisiológica/genética , Diferenciação Celular/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células Endoteliais/metabolismo , Angiogênese
5.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338722

RESUMO

Within the last decade, a wide variety of protocols have emerged for the generation of retinal organoids. A subset of studies have compared protocols based on stem cell source, the physical features of the microenvironment, and both internal and external signals, all features that influence embryoid body and retinal organoid formation. Most of these comparisons have focused on the effect of signaling pathways on retinal organoid development. In this study, our aim is to understand whether starting cell conditions, specifically those involved in embryoid body formation, affect the development of retinal organoids in terms of differentiation capacity and reproducibility. To investigate this, we used the popular 3D floating culture method to generate retinal organoids from stem cells. This method starts with either small clumps of stem cells generated from larger clones (clumps protocol, CP) or with an aggregation of single cells (single cells protocol, SCP). Using histological analysis and gene-expression comparison, we found a retention of the pluripotency capacity on embryoid bodies generated through the SCP compared to the CP. Nonetheless, these early developmental differences seem not to impact the final retinal organoid formation, suggesting a potential compensatory mechanism during the neurosphere stage. This study not only facilitates an in-depth exploration of embryoid body development but also provides valuable insights for the selection of the most suitable protocol in order to study retinal development and to model inherited retinal disorders in vitro.


Assuntos
Corpos Embrioides , Retina , Reprodutibilidade dos Testes , Retina/metabolismo , Organoides , Diferenciação Celular
6.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569800

RESUMO

Normal developmental progression relies on close interactions between the embryonic and extraembryonic lineages in the pre- and peri-gastrulation stage conceptus. For example, mouse epiblast-derived FGF and NODAL signals are required to maintain a stem-like state in trophoblast cells of the extraembryonic ectoderm, while visceral endoderm signals are pivotal to pattern the anterior region of the epiblast. These developmental stages also coincide with the specification of the first heart precursors. Here, we established a robust differentiation protocol of mouse embryonic stem cells (ESCs) into cardiomyocyte-containing embryoid bodies that we used to test the impact of trophoblast on this key developmental process. Using trophoblast stem cells (TSCs) to produce trophoblast-conditioned medium (TCM), we show that TCM profoundly slows down the cardiomyocyte differentiation dynamics and specifically delays the emergence of cardiac mesoderm progenitors. TCM also strongly promotes the retention of pluripotency transcription factors, thereby sustaining the stem cell state of ESCs. By applying TCM from various mutant TSCs, we further show that those mutations that cause a trophoblast-mediated effect on early heart development in vivo alter the normal cardiomyocyte differentiation trajectory. Our approaches provide a meaningful deconstruction of the intricate crosstalk between the embryonic and the extraembryonic compartments. They demonstrate that trophoblast helps prolong a pluripotent state in embryonic cells and delays early differentiative processes, likely through production of leukemia inhibitory factor (LIF). These data expand our knowledge of the multifaceted signaling interactions among distinct compartments of the early conceptus that ensure normal embryogenesis, insights that will be of significance for the field of synthetic embryo research.

7.
Dev Biol ; 478: 102-121, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181916

RESUMO

Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.


Assuntos
Encefalopatias , Encéfalo , Organoides , Retina , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular , Biologia do Desenvolvimento/métodos , Corpos Embrioides/fisiologia , Indução Embrionária , Humanos , Células-Tronco Neurais/fisiologia , Neurobiologia/métodos , Neurogênese , Retina/citologia , Retina/embriologia , Retina/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos
8.
Biochem Biophys Res Commun ; 626: 58-65, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35970045

RESUMO

Serum response factor (SRF) cooperates with various co-factors to manage the specification of diverse cell lineages during heart development. Many microRNAs mediate the function of SRF in this process. However, how are miR210 and miR30c involved in the decision of cardiac cell fates remains to be explored. In this study, we found that SRF directly controlled the cardiac expression of miR210. Both miR210 and miR30c blocked the formation of beating cardiomyocyte during embryoid body (EB) differentiation, a cellular model widely used for studying cardiogenesis. Both of anticipated microRNA targets and differentially expressed genes in day8 EBs were systematically determined and enriched with gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and Reactome. Functional enrichments of prediction microRNA targets and down-regulated genes in day8 EBs of miR210 suggested the importance of PI3K-Akt signal and ETS2 in miR210 inhibition of cardiomyocyte differentiation. Similar analyses revealed that miR30c repressed both developmental progress and the adrenergic signaling in cardiomyocytes during the differentiation of EBs. Taken together, SRF directs the expression of miR210 and miR30c, and they repress cardiac development via inhibiting the differentiation of cardiac muscle cell lineage as well as the cell proliferation. Through the regulation of specific microRNAs, the complication of SRF's function in heart development is emphasized.


Assuntos
Corpos Embrioides , MicroRNAs , Diferenciação Celular/genética , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo
9.
Biochem Biophys Res Commun ; 590: 125-131, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974300

RESUMO

Embryonic stem cells (ESCs) are derived from the inner cell mass of developing blastocysts, which have self-renewal ability and have the potential to develop or reconstitute into all embryonic lineages. Selenophosphate synthetase 1 (SEPHS1) is an essential protein in mouse early embryo development. However, the role of SEPHS1 in mouse ESCs remains to be elucidated. In this study, we generated Sephs1 KO ESCs and found that deficiency of SEPSH1 has little effect on pluripotency maintenance and proliferation. Notably, SEPHS1 deficiency impaired differentiation into three germ layers and gastruloid aggregation in vitro. RNA-seq analysis showed SEPHS1 is involved in cardiogenesis, verified by no beating signal in Sephs1 KO embryoid body at d10 and low expression of cardiac-related and contraction markers. Taken together, our results suggest that SPEHS1 is dispensable in ESC self-renewal, but indispensable in subsequent germ layer differentiation especially for functional cardiac lineage.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miocárdio/citologia , Fosfotransferases/metabolismo , Animais , Diferenciação Celular/genética , Corpos Embrioides/citologia , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases/deficiência , Transcrição Gênica
10.
Toxicol Appl Pharmacol ; 446: 116056, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35537546

RESUMO

The study of developmental effect of xenobiotics in humans is limited and often relies on epidemiological data. Whether and to which extent potentially toxic compounds may cross the placental barrier, and whether adverse effects on embryo development are the consequence of direct or indirect placental-mediated action is debated. The availability of in vitro models simulating the feto-maternal interface could contribute to elucidate this issue. Here, we report the development of a novel in vitro model using murine blastocyst derived trophoblast stem cells (TSC) to mimic the placental barrier and mouse embryoid bodies (EBs) to represent the embryonic tissues. We demonstrate that this model can be used for translocation studies, as well as embryotoxicity assessment of titanium dioxide nanoparticles (TiO2NPs). By evaluating trans-epithelial electrical resistance, translocation of fluorescein isothiocyanate-dextran beads and expression of junctional complex proteins, we show that TSCs cultured on transwell inserts under differentiating condition form syncytia. We also show that TiO2NPs administered in the upper transwell compartment are able to reach the lower compartment and interfere with EB differentiation when no TSC are cultured on the insert. On the contrary, when TSC are present, NPs translocate to a lesser extent and do not affect EB development. These results indicate that the proposed in vitro model is suitable to study the correlation between translocation and toxicity of TiO2NPs and suggest a direct effect of the particles on EB development. We propose that this model could be exploited to study developmental effect of other xenobiotics.


Assuntos
Nanopartículas Metálicas , Placenta , Titânio , Animais , Feminino , Nanopartículas Metálicas/toxicidade , Camundongos , Placenta/metabolismo , Gravidez , Titânio/toxicidade , Xenobióticos/metabolismo
11.
Stem Cells ; 39(4): 443-457, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33426760

RESUMO

ERG1, a potassium ion channel, is essential for cardiac action potential repolarization phase. However, the role of ERG1 for normal development of the heart is poorly understood. Using the rat embryonic stem cells (rESCs) model, we show that ERG1 is crucial in cardiomyocyte lineage commitment via interactions with Integrin ß1. In the mesoderm phase of rESCs, the interaction of ERG1 with Integrin ß1 can activate the AKT pathway by recruiting and phosphorylating PI3K p85 and focal adhesion kinase (FAK) to further phosphorylate AKT. Activation of AKT pathway promotes cardiomyocyte differentiation through two different mechanisms, (a) through phosphorylation of GSK3ß to upregulate the expression levels of ß-catenin and Gata4; (b) through promotion of nuclear translocation of nuclear factor-κB by phosphorylating IKKß to inhibit cell apoptosis, which occurs due to increased Bcl2 expression. Our study provides solid evidence for a novel role of ERG1 on differentiation of rESCs into cardiomyocytes.


Assuntos
Canal de Potássio ERG1/genética , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Integrina beta1/genética , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Apoptose/genética , Diferenciação Celular , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Canal de Potássio ERG1/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Integrina beta1/metabolismo , Miócitos Cardíacos/citologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Transdução de Sinais , beta Catenina/genética , beta Catenina/metabolismo
12.
Dev Biol ; 464(2): 161-175, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32579954

RESUMO

The Dishevelled proteins transduce both canonical Wnt/ß-catenin and non-canonical Wnt/planar cell polarity (PCP) signaling pathways to regulate many key developmental processes during embryogenesis. Here, we disrupt both canonical and non-canonical Wnt pathways by targeting the entire Dishevelled family of genes (Dvl1, Dvl2, and Dvl3) to investigate their functional roles in the early embryo. We identified several defects in anterior-posterior axis specification and mesoderm patterning in Dvl1+/-; Dvl2-/-; Dvl3-/- embryos. Homozygous deletions in all three Dvl genes (Dvl TKO) resulted in defects in distal visceral endoderm migration and a complete failure to induce mesoderm formation. To identify potential mechanisms that lead to the defects in the developmental processes preceding gastrulation, we generated Dvl TKO mouse embryonic stem cells (mESCs) and compared the transcriptional profile of these cells with wild-type (WT) mESCs during germ lineage differentiation into 3D embryoid bodies (EBs). While the Dvl TKO mESCs displayed similar morphology, self-renewal properties, and minor transcriptional variation from WT mESCs, we identified major transcriptional dysregulation in the Dvl TKO EBs during differentiation in a number of genes involved in anterior-posterior pattern specification, gastrulation induction, mesenchyme morphogenesis, and mesoderm-derived tissue development. The absence of the Dvls leads to specific down-regulation of BMP signaling genes. Furthermore, exogenous activation of canonical Wnt, BMP, and Nodal signaling all fail to rescue the mesodermal defects in the Dvl TKO EBs. Moreover, endoderm differentiation was promoted in the absence of mesoderm in the Dvl TKO EBs, while the suppression of ectoderm differentiation was delayed. Overall, we demonstrate that the Dvls are dispensable for maintaining self-renewal in mESCs but are critical during differentiation to regulate key developmental signaling pathways to promote proper axis specification and mesoderm formation.


Assuntos
Diferenciação Celular , Proteínas Desgrenhadas/deficiência , Embrião de Mamíferos , Deleção de Genes , Mesoderma/embriologia , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Desgrenhadas/metabolismo , Camundongos , Camundongos Knockout
13.
Toxicol Appl Pharmacol ; 433: 115792, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742744

RESUMO

Concurrent with the '3R' principle, the embryonic stem cell test (EST) using mouse embryonic stem cells, developed in 2000, remains the solely accepted in vitro method for embryotoxicity testing. However, the scope and implementation of EST for embryotoxicity screening, compliant with regulatory requirements, are limited. This is due to its technical complexity, long testing period, labor-intensive methodology, and limited endpoint data, leading to misclassification of embryotoxic potential. In this study, we used human induced pluripotent stem cell (hiPSC)-derived embryoid bodies (EB) as an in vitro model to investigate the embryotoxic effects of a carefully selected set of pharmacological compounds. Morphology, viability, and differentiation potential were investigated after exposing EBs to folic acid, all-trans-retinoic acid, dexamethasone, and valproic acid for 15 days. The results showed that the compounds differentially repressed cell growth, compromised morphology, and triggered apoptosis in the EBs. Further, transcriptomics was employed to compare subtle temporal changes between treated and untreated cultures. Gene ontology and pathway analysis revealed that dysregulation of a large number of genes strongly correlated with impaired neuroectoderm and cardiac mesoderm formation. This aberrant gene expression pattern was associated with several disorders of the brain like mental retardation, multiple sclerosis, stroke and of the heart like dilated cardiomyopathy, ventricular tachycardia, and ventricular arrhythmia. Lastly, these in vitro findings were validated using in ovo chick embryo model. Taken together, pharmacological compound or drug-induced defective EB development from hiPSCs could potentially be used as a suitable in vitro platform for embryotoxicity screening.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Teratogênicos/toxicidade , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula , Embrião de Galinha , Dexametasona/toxicidade , Relação Dose-Resposta a Droga , Corpos Embrioides/metabolismo , Corpos Embrioides/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Concentração Inibidora 50 , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/efeitos dos fármacos , Medição de Risco , Tretinoína/toxicidade , Ácido Valproico/toxicidade
14.
FASEB J ; 34(5): 6654-6674, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32223018

RESUMO

Angiogenesis, the main mechanism that allows vascular expansion for tissue regeneration or disease progression, is often triggered by an imbalance between oxygen consumption and demand. Here, by analyzing changes in the transcriptomic profile of endothelial cells (ECs) under hypoxia we uncovered that the repression of cell cycle entry and DNA replication stand as central responses in the early adaptation of ECs to low oxygen tension. Accordingly, hypoxia imposed a restriction in S-phase in ECs that is mediated by Hypoxia-Inducible Factors. Our results indicate that the induction of angiogenesis by hypoxia in Embryoid Bodies generated from murine Stem Cells is accomplished by the compensation of decreased S-phase entry in mature ECs and differentiation of progenitor cells. This conditioning most likely allows an optimum remodeling of the vascular network. Identification of the molecular underpinnings of cell cycle arrest by hypoxia would be relevant for the design of improved strategies aimed to suppress angiogenesis in pathological contexts where hypoxia is a driver of neovascularization.


Assuntos
Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Hipóxia/fisiopatologia , Neovascularização Fisiológica , Animais , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Células Endoteliais/fisiologia , Humanos , Camundongos
15.
Arterioscler Thromb Vasc Biol ; 40(12): 2875-2890, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115267

RESUMO

OBJECTIVE: Endothelial progenitors migrate early during embryogenesis to form the primary vascular plexus. The regulatory mechanisms that govern their migration are not completely defined. Here, we describe a novel role for ETV2 (Ets variant transcription factor 2) in cell migration and provide evidence for an ETV2-Rhoj network as a mechanism responsible for this process. Approach and Results: Analysis of RNAseq datasets showed robust enrichment of migratory/motility pathways following overexpression of ETV2 during mesodermal differentiation. We then analyzed ETV2 chromatin immunoprecipitation-seq and assay for transposase accessible chromatin-seq datasets, which showed enrichment of chromatin immunoprecipitation-seq peaks with increased chromatin accessibility in migratory genes following overexpression of ETV2. Migratory assays showed that overexpression of ETV2 enhanced cell migration in mouse embryonic stem cells, embryoid bodies, and mouse embryonic fibroblasts. Knockout of Etv2 led to migratory defects of Etv2-EYFP+ angioblasts to their predefined regions of developing embryos relative to wild-type controls at embryonic day (E) 8.5, supporting its role during migration. Mechanistically, we showed that ETV2 binds the promoter region of Rhoj serving as an upstream regulator of cell migration. Single-cell RNAseq analysis of Etv2-EYFP+ sorted cells revealed coexpression of Etv2 and Rhoj in endothelial progenitors at E7.75 and E8.25. Overexpression of ETV2 led to a robust increase in Rhoj in both embryoid bodies and mouse embryonic fibroblasts, whereas, its expression was abolished in the Etv2 knockout embryoid bodies. Finally, shRNA-mediated knockdown of Rhoj resulted in migration defects, which were partially rescued by overexpression of ETV2. CONCLUSIONS: These results define an ETV2-Rhoj cascade, which is important for the regulation of endothelial progenitor cell migration.


Assuntos
Movimento Celular , Células-Tronco Embrionárias/enzimologia , Células Progenitoras Endoteliais/enzimologia , Fatores de Transcrição/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Idade Gestacional , Camundongos Transgênicos , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas rho de Ligação ao GTP/genética
16.
Mol Ther ; 28(1): 142-156, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31606324

RESUMO

Hypoxic microenvironments exist in developing embryonic tissues and determine stem cell fate. We previously demonstrated that hypoxic priming plays roles in lineage commitment of embryonic stem cells. In the present study, we found that hypoxia-primed embryoid bodies (Hyp-EBs) efficiently differentiate into the myogenic lineage, resulting in the induction of the myogenic marker MyoD, which was not mediated by hypoxia-inducible factor 1α (HIF1α) or HIF2α, but rather by Sp1 induction and binding to the MyoD promoter. Knockdown of Sp1 in Hyp-EBs abrogated hypoxia-induced MyoD expression and myogenic differentiation. Importantly, in the cardiotoxin-muscle injury mice model, Hyp-EB transplantation facilitated muscle regeneration in vivo, whereas transplantation of Sp1-knockdown Hyp-EBs failed to do. Moreover, we compared microRNA (miRNA) expression profiles between EBs under normoxia versus hypoxia and found that hypoxia-mediated Sp1 induction was mediated by the suppression of miRNA-92a, which directly targeted the 3' untranslated region (3' UTR) of Sp1. Further, the inhibitory effect of miRNA-92a on Sp1 in luciferase assay was abolished by a point mutation in specific sequence in the Sp1 3' UTR that is required for the binding of miRNA-92a. Collectively, these results suggest that hypoxic priming enhances EB commitment to the myogenic lineage through miR-92a/Sp1/MyoD regulatory axis, suggesting a new pathway that promotes myogenic-lineage differentiation.


Assuntos
Diferenciação Celular/genética , Hipóxia Celular/genética , Linhagem da Célula/genética , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Fator de Transcrição Sp1/metabolismo , Regiões 3' não Traduzidas , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/genética , Transfecção
17.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440843

RESUMO

Numerous protocols of cardiac differentiation have been established by essentially focusing on specific growth factors on human pluripotent stem cell (hPSC) differentiation efficiency. However, the optimal environmental factors to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Here, we hypothesized that low oxygen exposure enhances the molecular and functional maturity of the cardiomyocytes. We aimed at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hPSCs in 2D- and 3D-based protocols. hPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed. The mitochondrial localization and metabolic properties were evaluated. The intracellular Ca2+ handling and contractile properties were also monitored. The 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac spheroids containing hPSC-CMs in LOE further exhibited cardiac markers, hypertrophy, steadier SR Ca2+ release properties revealing a better SR Ca2+ handling, and enhanced contractile force. Preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Our results brought evidences that LOE is moderately beneficial for the 3D cardiac spheroids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE.


Assuntos
Diferenciação Celular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Biomarcadores , Cálcio/metabolismo , Técnicas de Cultura de Células , Expressão Gênica , Humanos , Mitocôndrias Cardíacas/metabolismo , Retículo Sarcoplasmático/metabolismo , Esferoides Celulares
18.
Stem Cells ; 37(7): 899-909, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977233

RESUMO

As a morphogen, Sonic Hedgehog (Shh) mediates signaling at a distance from its sites of synthesis. After secretion, Shh must traverse a distance through the extracellular matrix (ECM) to reach the target cells and activate the Hh response. ECM proteins, in particular, the heparan sulfate proteoglycans (HSPGs) of the glypican family, have both negative and positive effects on Shh signaling, all attributed to their ability to bind Shh. Using mouse embryonic stem cell-derived mosaic tissues with compartments that lack the glycosyltransferases Exostosin1 and Exostosin2, or the HSPG core protein Glypican5, we show that Shh accumulates around its source cells when they are surrounded by cells that have a mutated ECM. This accumulation of Shh is correlated with an increased noncell autonomous Shh response. Our results support a model in which Shh presented on the cell surface accumulates at or near ECM that lacks HSPGs, possibly due to the absence of these Shh sequestering molecules. Stem Cells 2019;37:899-909.


Assuntos
Glipicanas/genética , Proteínas Hedgehog/genética , Células-Tronco Embrionárias Murinas/metabolismo , N-Acetilglucosaminiltransferases/genética , Transdução de Sinais/genética , Animais , Diferenciação Celular , Linhagem da Célula/genética , Movimento Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Edição de Genes/métodos , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glipicanas/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , N-Acetilglucosaminiltransferases/deficiência , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Transporte Proteico , Transfecção , Proteína Vermelha Fluorescente
19.
Biochem Biophys Res Commun ; 511(1): 173-178, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30773261

RESUMO

Isolated mouse embryonic stem cells (mESCs) retain the capacities to self-renew limitlessly and to give rise to all tissues of an adult mouse. A precise understanding of the relationships, mechanisms of action and functions of novel genes involved in mESCs differentiation is crucial to expand our knowledge of vertebrate development. The epithelial membrane protein 2 (EMP2) is a membrane-spanning protein found in epithelial and endothelial cell-cell junctions that has been implicated in the regulation of cell proliferation and migration in normal and tumor tissues. In this study, Emp2 was disrupted in mESCs using the CRISPR/Cas9 technology. We subsequently assessed Emp2 functions by using mouse embryoid bodies (EBs) capable of forming the three germ layers of an embryo in vitro and by further analyzing the emergence of the future cardiac tissue in these EB models. We found that when Emp2 is disrupted, expression of pluripotency markers was up-regulated and/or longer retained in EBs. Additionally, the formation of each germ layer was variously affected during gastrulation and in particular, the formation of mesoderm was delayed. Besides, we discovered that Emp2 was involved in the regulation of the epithelial-mesenchymal transition (EMT) process and in the differentiation of cells into functional cardiomyocytes.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/genética , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Gastrulação , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo
20.
Biochem Biophys Res Commun ; 516(3): 673-679, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248595

RESUMO

Induced pluripotent stem cells (iPSCs) show huge variations in their differentiation potential, even in the same condition. However, methods for predicting these differentiation tendencies, especially in the early stage of differentiation, are still scarce. This study aimed to establish a simple and practical system to predict the differentiation tendency of iPSC lines using embryoid bodies (EBs) with identified parameters in the early stage. We compared four human iPSC lines in terms of the morphology and maintenance of EBs and their gene expression levels of specific markers for three germ-layers. Furthermore, the differentiation potentials of these iPSC lines into melanocytes, which are ectoderm-derived cells, were also compared and correlated with the above parameters. The results showed that iPSC lines forming regular, smooth, and not cystic EBs, which could be maintained in culture for a relatively longer time, also expressed higher levels of ectoderm-specific markers and lower levels of mesoderm/endoderm markers. Additionally, these iPSC lines showed greater potential in melanocyte differentiation using EB-based protocol, and the induced melanocytes expressed melanocytic markers and presented characteristics that were similar to those of normal human melanocytes. By contrast, iPSC lines that formed cystic EBs with bright or dark cavities and expressed relatively lower levels of ectoderm-specific markers failed in the melanocyte differentiation. Collectively, the differentiation tendency of human iPSC lines may be predicted by specific parameters in the EB stage. The formation and maintenance of optimal EBs and the expression of germ layer-specific markers are particularly important and practical for the prediction assay in the early stage.


Assuntos
Diferenciação Celular/genética , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Melanócitos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Corpos Embrioides/citologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Melanócitos/citologia , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA