Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(3): e2302550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726238

RESUMO

The structural coloration of textiles with bionic photonic crystals (PCs) is expected to become a critical approach to the ecological coloration of textiles. Rapid and large-area preparation of PC structurally colored textiles can be achieved via self-assembly of high mass fractions of liquid photonic crystals (LPCs). However, the rapid and large-scale manufacturing of LPCs remains a challenge. In this work, the pH regulator is added in the process of emulsion polymerization to solve the problem of phase transformation caused by the thermal decomposition of the initiator to produce H+ , directly achieving 40 wt.% PS nanospheres in the dispersion. Then oligomers and small-molecule salts are removed from the system via dialysis, and the pre-crystallized LPC system is efficiently prepared. Adjusting the particle size and the mass fraction of nanospheres is shown to be an efficient way to control the optical properties of LPCs. The rapid and large-area preparation of PC structural color fabric and the patterned PC structural color fabric with an iridescent effect is implemented by using LPCs as the assembly intermediate. By constructing the encapsulation layer on the surface of the PC structural color fabric, the consistency of high structural stability and high color saturation of the PC is realized.

2.
Macromol Rapid Commun ; : e2400727, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39461895

RESUMO

In this study, reversible addition-fragmentation chain- transfer (RAFT) polymerization combined with the polymerization-induced self-assembly (PISA) technique is used to synthesize polyisoprene (PI)-based block and random copolymers with polystyrene (PS), aiming for high molecular weight and monomer conversion. The focus is to optimize the polymerization conditions to overcome the existing challenge of cross-linking and Diels-Alder reactions during the polymerization of isoprene, which typically constrain the reaction conversion and molecular weight of the final polymers. Using a poly(methacrylic acid) (PMAA) macroRAFT agent synthesized in ethanol at 80 °C, random and block copolymers of PS-PI with a target molecular weight of 50 000 g mole-1 and a high monomer conversion of ≈80% are achieved under optimized conditions in water-emulsion at 35 °C. 1H nuclear magnetic resonance (NMR) verified the successful synthesis as well as the high content of 1,4 microstructure in polyisoprene. The thermal analysis via differential scanning calorimetry indicated distinct glass transitions for the microphase-separated PI-PS block copolymer, while a single transition for PI-PS random copolymer, indicating no microphase separation. Furthermore, dynamic light scattering analysis together with transmission electron microscopy provided further insight into the self-assembled emulsion nanoparticles of the polymers indicating a particle size in the range 70 to 130 nm.

3.
Macromol Rapid Commun ; 45(20): e2400374, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018484

RESUMO

Particle size evolution in seeded semibatch emulsion polymerization is monitored by two real-time monitoring techniques: online turbidity spectroscopy (TUS) and inline photon density wave spectroscopy (PDWS). An automatic dilution system that withdraws a sample from the reactor and upon dilution transfers to the measurement cell is used for the online TUS analysis. A PDWS probe is immersed in the reactor and collects inline the scattered light directly from the reacting latex. The particle sizes retrieved from TUS and PDWS are compared to offline dynamic light scattering (DLS) values. The particle size obtained by TUS is close to the intensity-average particle size obtained offline by DLS, while the particle size obtained by PDWS lies closer to the number-average particle size from DLS.


Assuntos
Emulsões , Tamanho da Partícula , Fótons , Polimerização , Análise Espectral , Emulsões/química , Análise Espectral/métodos , Nefelometria e Turbidimetria , Difusão Dinâmica da Luz
4.
Macromol Rapid Commun ; 45(19): e2400314, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38885940

RESUMO

The development of new materials for antifreezing and anti-icing applications is a big challenge in industry and academic area. Inspired by the antifreeze proteins, latex particles with superhydrophilic zwitterionic shells and superhydrophobic cores are synthesized by reversible addition-fragmentation chain transfer emulsion polymerization, and the applications of the latex particles in antifreezing and anti-icing applications are investigated. In antifreezing study, the critical aggregate temperature (CAT) of the latex particles decreases, and the separation of the melting and freezing temperature of ice increases with the particle concentration. Enzyme molecules can be cryopreserved in the particle solution, and their bioactivities are well maintained. Latex particles are casted into latex films with dynamic surfaces. Anti-icing performances, including antifrosting properties, freezing delay time, and ice adhesion strengths, are studied; and the water-treated latex films present stronger anti-icing properties than other films, due to the synergistic effects of the superhydrophilic and superhydrophobic components. In addition, latex particles with zwitterionic shells and poly(n-butyl methacrylate) cores, and latex particles with small molecular surfactant on the surfaces are synthesized. The antifreezing performances of the latex particles and anti-icing properties of the latex films are compared.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Látex , Látex/química , Propriedades de Superfície , Tamanho da Partícula , Congelamento , Proteínas Anticongelantes/química
5.
Macromol Rapid Commun ; : e2400549, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137300

RESUMO

Aqueous emulsion polymerization is a robust technique for preparing nanoparticles of block copolymers; however, it typically yields spherical nanoassemblies. The scale preparation of nanoassemblies with nonspherical high-order morphologies is a challenge, particularly 2D core-shell nanosheets. In this study, the polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are combined to demonstrate the preparation of 2D nanosheets and their aggregates via aqueous reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. First, the crucial crystallizable component for CDSA, hydroxyethyl methacrylate polycaprolactone (HPCL) macromonomer is synthesized by ring opening polymerization (ROP). Subsequently, the RAFT emulsion polymerization of HPCL is conducted to generate crystallizable nanomicelles by a grafting-through approach. This PISA process simultaneously prepared spherical latices and bottlebrush block copolymers comprising poly(N',N'-dimethylacrylamide)-block-poly(hydroxyethyl methacrylate polycaprolactone) (PDMA-b-PHPCL). The latexes are now served as seeds for inducing the formation of 2D hexagonal nanosheets, bundle-shaped and flower-like aggregation via the CDSA of PHPCL segments and unreacted HPCL during cooling. Electron microscope analysis trace the morphology evolution of these 2D nanoparticles and reveal that an appropriate crystallized component of PHPCL blocks play a pivotal role in forming a hierarchical structure. This work demonstrates significant potential for large-scale production of 2D nanoassemblies through RAFT emulsion polymerization.

6.
Chem Biodivers ; 21(5): e202400033, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488267

RESUMO

In this research, the extract of Ephedra intermedia Schrenk & C.A.Mey. was encapsulated using the mini-emulsion polymerization method based on methyl methacrylate polymers with a nanometer size. The encapsulated extract was characterized using different analytical techniques. Furthermore, the loading efficiency and release of the plant extract were examined. FT-IR spectroscopy confirmed the formation of an expectational product. The TEM and SEM imaging showed a spherical morphology for the prepared encapsulated extract. The average size of poly-methyl-methacrylate nanoparticles containing Ephedra extract was found to be approximately 47 nm. The extract loading efficiency and encapsulation efficiency test demonstrated a dose-depending behavior on E. intermedia extract for both analyses, which is highly advantageous for traversing biological barriers. The release assay shows a controlled release for the extract at phosphate buffer solution (PBS). A 38 % release was calculated after 36 hours. The results obtained from the present study reveal that encapsulating the plant extract is a suitable alternative to control and increase their medicinal properties.


Assuntos
Emulsões , Ephedra , Extratos Vegetais , Polimerização , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Emulsões/química , Humanos , Ephedra/química , Tamanho da Partícula , Metanol/química , Nanopartículas/química , Liberação Controlada de Fármacos
7.
Angew Chem Int Ed Engl ; 63(30): e202320154, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38400586

RESUMO

Synthetic polymers are of paramount importance in modern life - an incredibly wide range of polymeric materials possessing an impressive variety of properties have been developed to date. The recent emergence of artificial intelligence and automation presents a great opportunity to significantly speed up discovery and development of the next generation of advanced polymeric materials. We have focused on the high-throughput automated synthesis of multiblock copolymers that comprise three or more distinct polymer segments of different monomer composition bonded in linear sequence. The present work has exploited automation to prepare high molar mass multiblock copolymers (typically>100,000 g mol-1) using reversible addition-fragmentation chain transfer (RAFT) polymerization in aqueous emulsion. A variety of original multiblock copolymers have been synthesised via a Chemspeed robot, exemplified by a multiblock copolymer comprising thirteen constituent blocks. Moreover, libraries of copolymers of randomized monomer compositions (acrylates, acrylamides, methacrylates, and styrenes), block orders, and block lengths were also generated, thereby demonstrating the robustness of our synthetic approach. One multiblock copolymer contained all four monomer families listed in the pool, which is unprecedented in the literature. The present work demonstrates that automation has the power to render complex and laborious syntheses of such unprecedented materials not just possible, but facile and straightforward, thus representing the way forward to the next generation of complex macromolecular architectures.

8.
Small ; 19(29): e2207199, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021720

RESUMO

Optoacoustic (OA, photoacoustic) imaging synergistically combines rich optical contrast with the resolution of ultrasound within light-scattering biological tissues. Contrast agents have become essential to boost deep-tissue OA sensitivity and fully exploit the capabilities of state-of-the-art OA imaging systems, thus facilitating the clinical translation of this modality. Inorganic particles with sizes of several microns can also be individually localized and tracked, thus enabling new applications in drug delivery, microrobotics, or super-resolution imaging. However, significant concerns have been raised regarding the low bio-degradability and potential toxic effects of inorganic particles. Bio-based, biodegradable nano- and microcapsules consisting of an aqueous core with clinically-approved indocyanine green (ICG) and a cross-linked casein shell obtained in an inverse emulsion approach are introduced. The feasibility to provide contrast-enhanced in vivo OA imaging with nanocapsules as well as localizing and tracking individual larger microcapsules of 4-5 µm is demonstrated. All components of the developed capsules are safe for human use and the inverse emulsion approach is known to be compatible with a variety of shell materials and payloads. Hence, the enhanced OA imaging performance can be exploited in multiple biomedical studies and can open a route to clinical approval of agents detectable at a single-particle level.


Assuntos
Verde de Indocianina , Nanocápsulas , Humanos , Cápsulas , Emulsões , Verde de Indocianina/farmacologia
9.
Small ; 19(24): e2207085, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919307

RESUMO

Fabricating bio-latex colloids with core-shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g-1 , the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m-3 . With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core-shell latex colloids.

10.
Chemistry ; 29(28): e202300438, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36843339

RESUMO

Responsive photonic crystals (RPCs) assembled by monodisperse colloidal particles have attracted enormous interest recently due to their tremendous applications in smart devices. Their structural colors can be determined by particle sizes. However, the lack of a reliable way to tune the sizes in situ limits their development. Herein, we present an efficient route to solve this problem through the fabrication of spherical polymeric particles with light-triggered reversible swelling behavior via surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization-induced self-assembly (PISA). Amphiphilic macro-RAFT agents containing azobenzene groups were synthesized and subsequently employed to mediate the polymerization of methyl methacrylate. Uniform submicron spheres were obtained by modulating solid contents and other parameters. Benefiting from the photoisomerization of azobenzene moieties, the particle sizes expanded and contracted upon alternative ultraviolet/visible-light irradiation accordingly. This strategy will be a supplement to the emulsion PISA and especially give aid to the progress of the RPC materials.

11.
Molecules ; 28(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677962

RESUMO

In the preparation of a superamphiphobic surface, the most basic method is to reduce the surface free energy of the interface. The C-F bond has a very low surface free energy, which can significantly change the wettability of the solid-liquid interface and make it a hydrophobic or oleophobic, or even superamphiphobic surface. Based on the analysis of a large number of research articles, the preparation and application progress in fluoropolymer emulsion were summarized. After that, some corresponding thoughts were put forward combined with our professional characteristics. According to recent research, the status of the fluoropolymer emulsion preparation system was analyzed. In addition, all related aspects of fluoropolymer emulsion were systematically classified in varying degrees. Furthermore, the interaction between fluoropolymer structure and properties, especially the interaction with nanomaterials, was also explored. The aim of this review is to try to attract more scholars' attention to fluorocarbon interfacial materials. It is expected that it will make a certain theoretical and practical significance in the preparation and application of fluoropolymer.


Assuntos
Polímeros de Fluorcarboneto , Nanoestruturas , Molhabilidade , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química
12.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110600

RESUMO

A novel fluorine-containing water-repellent agent (OFAE-SA-BA) was designed and synthesized by emulsion copolymerization, which was used to replace the commercial long fluorocarbon chain water-repellent agent. To improve water repellency, the intermediate and monomer containing two short fluoroalkyl chains were successfully synthesized and characterized by 1H NMR, 13C NMR and FT-IR, respectively. After being treated by the water-repellent agent, the surface chemical composition, molecular weight, thermal stability, surface morphology, wetting behavior, and durability of the modified cotton fabrics were characterized using X-ray photoelectron spectrophotometry (XPS), gel permeation chromatography (GPC), thermal degradation (TG), scanning electron microscopy (SEM), and video-based contact angle goniometry, respectively. The cotton fabric demonstrated water contact angle of 154.1°, both the water and oil repellency rating were grade 4. The durability of water repellency of the treated fabrics only decreased slightly after 30 times, which represented very good washing durability. The finishing agent did not affect the whiteness of the fabric.

13.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110624

RESUMO

A novel, molecularly imprinted, upconversion fluorescence probe (UCNP@MIFP) for sulfonamide sensing was fabricated by Pickering emulsion polymerization using UCNP@SiO2 particles as the stabilizer and sulfamethazine/sulfamerazine as the co-templates. The synthesis conditions of the UCNP@MIFP were optimized, and the synthesized probe was characterized by scanning electron microscopy, Fourier transform infrared spectrometer, thermogravimetric analyzer, and fluorescence spectrometer. The UCNP@MIFPs showed a good adsorption capacity and a fast kinetic feature for the template. The selectivity experiment revealed that the UCNP@MIFP has a broad-spectrum molecular recognition capability. Good linear relationships were obtained over the concentration range of 1-10 ng/mL for sulfamerazine, sulfamethazine, sulfathiazole, and sulfafurazole, with low limits of detection in the range of 1.37-2.35 ng/mL. The prepared UCNP@MIFP has the potential to detect four sulfonamide residues in food and environmental water.

14.
Molecules ; 28(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894582

RESUMO

Molecularly imprinted polymers (MIPs) have gained significant attention as artificial receptors due to their low cost, mild operating conditions, and excellent selectivity. To optimize the synthesis process and enhance the recognition performance, various support materials for molecular imprinting have been explored as a crucial research direction. Yeast, a biological material, offers advantages such as being green and environmentally friendly, low cost, and easy availability, making it a promising supporting substrate in the molecular imprinting process. We focus on the preparation of different types of MIPs involving yeast and elaborate on the specific roles it plays in each case. Additionally, we discuss the advantages and limitations of yeast in the preparation of MIPs and conclude with the challenges and future development trends of yeast in molecular imprinting research.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Saccharomyces cerevisiae , Polímeros/química , Polimerização
15.
Angew Chem Int Ed Engl ; 62(35): e202306916, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37433751

RESUMO

The practical synthesis of structurally controlled hyperbranched polymers (HBPs) by organotellurium-mediated radical polymerization (TERP) in water under emulsion conditions is reported. Copolymerization of vinyltelluride named evolmer, which induces controlled branch structure, and acrylates with TERP chain transfer agent (CTA) in water afforded HBPs having dendron structure. The molecular weight, dispersity, branch number, and branch length of the HBPs were controlled by changing the amount of CTA, evolmer, and acrylate monomers. HB-poly(butyl acrylate)s (HBPBAs) with up to the 8th generation having an average of 255 branches were successfully synthesized. As the monomer conversion reached nearly quantitative and the obtained polymer particles were well dispersed in water, the method is highly suitable for synthesizing topological block polymers, block polymers consisting of different topologies. Thus, linear-block-HB, HB-block-linear, and HB-block-HB-PBAs with the controlled structure were successfully synthesized by adding the second monomer(s) to the macro-CTA. The intrinsic viscosity of the resulting homo- and topological block PBAs was systematically controlled by the degree of the branch, the branch length, and the topology. Therefore, the method opens the possibility of obtaining various HBPs with diverse branch structures and tuning the polymer properties by the polymer topology.

16.
Small ; 18(38): e2203070, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35986441

RESUMO

Nanoparticles are well established vectors for the delivery of a wide range of biomedically relevant cargoes. Numerous studies have investigated the impact of size, shape, charge, and surface functionality of nanoparticles on mammalian cellular uptake. Rigidity has been studied to a far lesser extent, and its effects are still unclear. Here, the importance of this property, and its interplay with particle size, is systematically explored using a library of core-shell spherical PEGylated nanoparticles synthesized by RAFT emulsion polymerization. Rigidity of these particles is controlled by altering the intrinsic glass transition temperature of their constituting polymers. Three polymeric core rigidities are tested: hard, medium, and soft using two particle sizes, 50 and 100 nm diameters. Cellular uptake studies indicate that softer particles are taken up faster and threefold more than harder nanoparticles with the larger 100 nm particles. In addition, the study indicates major differences in the cellular uptake pathway, with harder particles being internalized through clathrin- and caveolae-mediated endocytosis as well as macropinocytosis, while softer particles are taken up bycaveolae- and non-receptormediated endocytosis. However, 50 nm derivatives do not show any appreciable differences in uptake efficiency, suggesting that rigidity as a parameter in the biological regime may be size dependent.


Assuntos
Clatrina , Nanopartículas , Animais , Clatrina/metabolismo , Emulsões , Endocitose , Mamíferos/metabolismo , Nanopartículas/metabolismo , Tamanho da Partícula , Polietilenoglicóis , Polímeros/farmacologia
17.
Macromol Rapid Commun ; 43(5): e2100740, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34890084

RESUMO

A photocatalytic thiol-ene aqueous emulsion polymerization under visible-light is described to prepare linear semicrystalline latexes using 2,2'-dimercaptodiethyl sulfide as dithiol and various dienes. The procedure involves low irradiance (3 mW cm-2 ), LED irradiation source, eosin-Y disodium as organocatalyst, low catalyst loading (<0.05% mol), and short reaction time scales (<1 h). The resulting latexes have molecular weights of about 10 kg mol-1 , average diameters of 100 nm, and a linear structure consisting only of thioether repeating units. Electron-transfer reaction from a thiol to the triplet excited state of the photocatalyst is suggested as the primary step of the mechanism (type I), whereas oxidation by singlet oxygen generated by energy transfer has a negligible effect (type II). Only polymers prepared with aliphatic dienes such as diallyl adipate or di(ethylene glycol) divinyl ether exhibit a high crystallization tendency as revealed by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction. Ordering and crystallization are driven by molecular packing of poly(thioether) chains combining structural regularity, compactness, and flexibility.


Assuntos
Compostos de Sulfidrila , Sulfetos , Emulsões , Polimerização , Polímeros/química , Compostos de Sulfidrila/química
18.
Macromol Rapid Commun ; 43(4): e2100599, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850991

RESUMO

Mechanically robust superhydrophobic coatings have been extensively reported using chemically susceptible inorganic fillers like slica, titanium dioxide, and zinc oxide for constructing micro-nano structures. Organic particles are good candidates for improving chemical resistance, whereas the synthesis of organic particles with well-defined and stable micro-nano structures remains exclusive. Here, an all-organic, cross-linked superhydrophobic coating comprising raspberry-like fluorinated micro particles (RLFMP) and fluorinated polyurethane (FPU) is prepared via thiol-click reaction. Benefiting from the robust micro-nano structure of RLFMP and the excellent flexibility of FPU, the coating can maintain superhydrophobicity after severe alkali corrosion or mechanical damage, while the superhydrophobicity can be repaired readily by the fast recovery of micro-nano roughness and migration of branched fluoroalkyl chains to the coating surface. This design strategy is expected to provide a good application of thiol-click chemistry.


Assuntos
Poliuretanos , Rubus , Corrosão , Interações Hidrofóbicas e Hidrofílicas , Compostos de Sulfidrila
19.
Macromol Rapid Commun ; 43(12): e2100629, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34743391

RESUMO

Polymer-grafted nanoparticles (PGNs) receive great attention because they possess the advantages of both the grafted polymer and inorganic cores, and thus demonstrate superior optical, electronic, and mechanical properties. Thus, PGNs with tailorable interparticle interactions are indispensable for the formation of a superlattice with a defined and ordered structure. In this work, the synthesis of PGNs is reported which can form interparticle hydrogen-bonding to enhance the formation of well-defined 2D nanoparticle arrays. Various polymers, including poly(4-vinyl pyridine) (P4VP), poly(dimethyl aminoethyl acrylate) (PDMAEMA), and poly(4-acetoxy styrene) (PAcS), are attached to silica cores by a "grafting from" in a mini emulsion-like synthesis approach. SiO2 -PAcS brushes are deprotected by hydrazinolysis and converted into poly(4-vinyl phenol) (PVP), containing hydroxyl groups as potential hydrogen-bonding donor sites. Understanding and controlling interparticle interactions by varying grafting density in the range of 10-2 -10-3 chain nm-2 , and the formation of interparticle hydrogen bonding relevant for self-assembly of PGNs and potential formation of PGN superlattice structures are the motivations for this study.


Assuntos
Nanopartículas , Polímeros , Hidrogênio , Ligação de Hidrogênio , Nanopartículas/química , Polímeros/química , Dióxido de Silício/química , Propriedades de Superfície
20.
Macromol Rapid Commun ; 43(3): e2100566, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34813132

RESUMO

Although the preparation of nano-objects by emulsifier-free controlled/living radical emulsion polymerization has drawn much attention, the morphologies of these formed objects are difficult to predict and to reproduce because of the much more complex nucleation mechanisms of emulsion polymerization compared to only one self-assembling nucleation mechanism of controlled radical dispersion polymerization. The present study compares dispersion polymerization with emulsifier-free emulsion polymerization in terms of nucleation mechanism, polymerization kinetics, and disappearance behavior of the macrochain transfer agent, gel permeation chromatograms curves of the obtained block copolymer as well as the structural and morphological differences between the produced nano-objects on the basis of published data. Moreover, the effects of the inherently heterogeneous nature of emulsion polymerization on the mechanism of reversible addition-fragmentation transfer polymerization and the nano-object morphology are examined, and efficient agitation and adequate solubility of the core-forming monomer in water are identified as the most crucial factors for the fabrication of nonspherical nano-objects.


Assuntos
Polímeros , Água , Emulsões , Cinética , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA