Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(23): 11508-11517, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097585

RESUMO

Opsins form a family of light-activated, retinal-dependent, G protein-coupled receptors (GPCRs) that serve a multitude of visual and nonvisual functions. Opsin 3 (OPN3 or encephalopsin), initially identified in the brain, remains one of the few members of the mammalian opsin family with unknown function and ambiguous light absorption properties. We recently discovered that OPN3 is highly expressed in human epidermal melanocytes (HEMs)-the skin cells that produce melanin. The melanin pigment is a critical defense against ultraviolet radiation (UVR), and its production is mediated by the Gαs-coupled melanocortin 1 receptor (MC1R). The physiological function and light sensitivity of OPN3 in melanocytes are yet to be determined. Here, we show that in HEMs, OPN3 acts as a negative regulator of melanin production by modulating the signaling of MC1R. OPN3 negatively regulates the cyclic adenosine monophosphate (cAMP) response evoked by MC1R via activation of the Gαi subunit of G proteins, thus decreasing cellular melanin levels. In addition to their functional relationship, OPN3 and MC1R colocalize at both the plasma membrane and in intracellular structures, and can form a physical complex. Remarkably, OPN3 can bind retinal, but does not mediate light-induced signaling in melanocytes. Our results identify a function for OPN3 in the regulation of the melanogenic pathway in epidermal melanocytes; we have revealed a light-independent function for the poorly characterized OPN3 and a pathway that greatly expands our understanding of melanocyte and skin physiology.


Assuntos
Epiderme/metabolismo , Melanócitos/metabolismo , Pigmentação/fisiologia , Receptor Tipo 1 de Melanocortina/metabolismo , Opsinas de Bastonetes/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Melaninas/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo
2.
Front Zool ; 13: 27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313654

RESUMO

BACKGROUND: The swimming activity of sea urchin larvae is dependent on the ciliary band (CB) on the larval surface and is regulated by several neurotransmitters, including serotonin (5HT), dopamine, and γ-aminobutyric acid (GABA). However, the CB signal transmission mechanism remains unknown. The present study investigated the structural relationship between the CB and external signal receptors by immunohistochemical and transmission electron microscopic analyses of sea urchin, Hemicentrotus pulcherrimus, larvae. RESULTS: Glutamate decarboxylase (GAD; GABA synthetase) was detected in a strand of multiple cells along the circumoral CB in 6-arm plutei. The GAD-expressing strand was closely associated with the CB on the oral ectoderm side. The ciliary band-associated strand (CBAS) also expressed the 5HT receptor (5HThpr) and encephalopsin (ECPN) throughout the cytoplasm and comprised 1- to 2-µm diameter axon-like long stretched regions and sporadic 6- to 7-µm diameter bulbous nucleated regions (perikarya) that protruded into the oral ectoderm side. Besides the laterally polarized morphology of the CBAS cells, Epith-2, which is the epithelial lateral cell surface-specific protein of the sea urchin embryo and larva, was expressed exclusively by perikarya but not by the axon-like regions. The CBAS exposed its narrow apical surface on the larval epithelium between the CB and squamous cells and formed adherens junctions (AJs) on the apical side between them. Despite the presence of the CBAS axon-like regions, tubulins, such as α-, ß-, and acetylated α-tubulins, were not detected. However, the neuroendocrine cell marker protein synaptophysin was detected in the axon-like regions and in bouton-like protrusions that contained numerous small ultrastructural vesicles. CONCLUSIONS: The unique morphology of the CBAS in the sea urchin larva epithelium had not been reported. The CBAS expresses a remarkable number of receptors to environmental stimuli and proteins that are probably involved in signal transmission to the CB. The properties of the CBAS explain previous reports that larval swimming is triggered by environmental stimuli and suggest crosstalk among receptors and potential plural sensory functions of the CBAS.

3.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36041828

RESUMO

Opsin-3 (Opn3, encephalopsin) was the first nonvisual opsin gene discovered in mammals. Since then, several Opn3 functions have been described, and in two cases (adipose tissue, smooth muscle) light sensing activity is implicated. In addition to peripheral tissues, Opn3 is robustly expressed within the central nervous system, for which it derives its name. Despite this expression, no studies have investigated developmental or adult CNS consequences of Opn3 loss-of-function. Here, the behavioral consequences of mice deficient in Opn3 were investigated. Opn3-deficient mice perform comparably to wild-type mice in measures of motor coordination, socialization, anxiety-like behavior, and various aspects of learning and memory. However, Opn3-deficient mice have an attenuated acoustic startle reflex (ASR) relative to littermates. This deficit is not because of changes in hearing sensitivity, although Opn3 was shown to be expressed in auditory and vestibular structures, including cochlear outer hair cells. Interestingly, the ASR was not acutely light-dependent and did not vary between daytime and nighttime trials, despite known functions of Opn3 in photoreception and circadian gene amplitude. Together, these results demonstrate the first role of Opn3 on behavior, although the role of this opsin in the CNS remains largely elusive.


Assuntos
Reflexo de Sobressalto , Opsinas de Bastonetes , Estimulação Acústica , Animais , Mamíferos/metabolismo , Camundongos , Opsinas , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
4.
Photobiomodul Photomed Laser Surg ; 40(2): 123-135, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935507

RESUMO

Objective: To investigate the potential relationship between opsins and photobiomodulation. Background: Opsins and other photoreceptors occur in all phyla and are important in light-activated signaling and organism homeostasis. In addition to the visual opsin systems of the retina (OPN1 and OPN2), there are several non-visual opsins found throughout the body tissues, including encephalopsin/panopsin (OPN3), melanopsin (OPN4), and neuropsin (OPN5), as well as other structures that have light-sensitive properties, such as enzymes, ion channels, particularly those located in cell membranes, lysosomes, and neuronal structures such as the nodes of Ranvier. The influence of these structures on exposure to light, including self-generated light within the body (autofluorescence), on circadian oscillators, and circadian and ultradian rhythms have become increasingly reported. The visual and non-visual phototransduction cascade originating from opsins and other structures has potential significant mechanistic effects on tissues and health. Methods: A PubMed and Google Scholar search was made using the search terms "photobiomodulation", "light", "neuron", "opsins", "neuropsin", "melanopsin", "encephalopsin", "rhodopsin", and "chromophore". Results: This review was examined the influence of neuropsin (also known as kallikrein 8), encephalopsin, and melanopsin specifically on ion channel function, and more broadly on the central and peripheral nervous systems. The relationship between opsins 3, 4, and 5 and photobiomodulation mechanisms was evaluated, along with a proposed role of photobiomodulation through opsins and light-sensitive organelles as potential alleviators of symptoms and accelerators of beneficial regenerative processes. The potential clinical implications of this in musculoskeletal conditions, wounds, and in the symptomatic management of neurodegenerative disease was also examined. Conclusions: Systematic research into the pleotropic therapeutic role of photobiomodulation, mediated through its action on opsins and other light-sensitive organelles may assist in the future execution of safe, low-risk precision medicine for a variety of chronic and complex disease conditions, and for health maintenance in aging.


Assuntos
Doenças Neurodegenerativas , Opsinas , Humanos , Opsinas/metabolismo , Retina/metabolismo , Opsinas de Bastonetes/metabolismo
5.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34417283

RESUMO

Opsin 3 (Opn3) is highly expressed in the adult brain, however, information for spatial and temporal expression patterns during embryogenesis is significantly lacking. Here, an Opn3-eGFP reporter mouse line was used to monitor cell body expression and axonal projections during embryonic and early postnatal to adult stages. By applying 2D and 3D fluorescence imaging techniques, we have identified the onset of Opn3 expression, which predominantly occurred during embryonic stages, in various structures during brain/head development. In addition, this study defines over twenty Opn3-eGFP-positive neural structures never reported before. Opn3-eGFP was first observed at E9.5 in neural regions, including the ganglia that will ultimately form the trigeminal, facial and vestibulocochlear cranial nerves (CNs). As development proceeds, expanded Opn3-eGFP expression coincided with the formation and maturation of critical components of the central and peripheral nervous systems (CNS, PNS), including various motor-sensory tracts, such as the dorsal column-medial lemniscus (DCML) sensory tract, and olfactory, acoustic, and optic tracts. The widespread, yet distinct, detection of Opn3-eGFP already at early embryonic stages suggests that Opn3 might play important functional roles in the developing brain and spinal cord to regulate multiple motor and sensory circuitry systems, including proprioception, nociception, ocular movement, and olfaction, as well as memory, mood, and emotion. This study presents a crucial blueprint from which to investigate autonomic and cognitive opsin-dependent neural development and resultant behaviors under physiological and pathophysiological conditions.


Assuntos
Opsinas , Opsinas de Bastonetes , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Camundongos , Medula Espinal
6.
J Biol Rhythms ; 36(2): 109-126, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33765865

RESUMO

Animals have evolved light-sensitive G protein-coupled receptors, known as opsins, to detect coherent and ambient light for visual and nonvisual functions. These opsins have evolved to satisfy the particular lighting niches of the organisms that express them. While many unique patterns of evolution have been identified in mammals for rod and cone opsins, far less is known about the atypical mammalian opsins. Using genomic data from over 400 mammalian species from 22 orders, unique patterns of evolution for each mammalian opsins were identified, including photoisomerases, RGR-opsin (RGR) and peropsin (RRH), as well as atypical opsins, encephalopsin (OPN3), melanopsin (OPN4), and neuropsin (OPN5). The results demonstrate that OPN5 and rhodopsin show extreme conservation across all mammalian lineages. The cone opsins, SWS1 and LWS, and the nonvisual opsins, OPN3 and RRH, demonstrate a moderate degree of sequence conservation relative to other opsins, with some instances of lineage-specific gene loss. Finally, the photoisomerase, RGR, and the best-studied atypical opsin, OPN4, have high sequence diversity within mammals. These conservation patterns are maintained in human populations. Importantly, all mammalian opsins retain key amino acid residues important for conjugation to retinal-based chromophores, permitting light sensitivity. These patterns of evolution are discussed along with known functions of each atypical opsin, such as in circadian or metabolic physiology, to provide insight into the observed patterns of evolutionary constraint.


Assuntos
Evolução Molecular , Mamíferos/metabolismo , Opsinas/metabolismo , Opsinas/efeitos da radiação , Animais , Ritmo Circadiano/efeitos da radiação , Sequência Conservada , Humanos , Camundongos , Opsinas/química , Opsinas/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/efeitos da radiação , Retina/metabolismo , Retina/efeitos da radiação , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Rodopsina/efeitos da radiação
7.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32737180

RESUMO

The opsins have been studied extensively for their functions in visual phototransduction; however, the mechanisms underlying extraocular opsin signaling remain poorly understood. The first mammalian extraocular opsin to be discovered, opsin 3 (OPN3), was found in the brain more than two decades ago, yet its function remains unknown. A significant hindrance to studying OPN3 has been a lack of specific antibodies against mammalian OPN3, resulting in an incomplete understanding of its expression in the brain. Although Opn3 promoter-driven reporter mice have been generated to examine general OPN3 localization, they lack the regulated expression of the endogenous protein and the ability to study its subcellular localization. To circumvent these issues, we have created a knock-in OPN3-mCherry mouse model in which the fusion protein OPN3-mCherry is expressed under the endogenous Opn3 promoter. Viable and fertile homozygotes for the OPN3-mCherry allele were used to create an extensive map of OPN3-mCherry expression across the adult mouse brain. OPN3-mCherry was readily visualized in distinct layers of the cerebral cortex (CTX), the hippocampal formation (HCF), distinct nuclei of the thalamus, as well as many other regions in both neuronal and non-neuronal cells. Our mouse model offers a new platform to investigate the function of OPN3 in the brain.


Assuntos
Opsinas , Opsinas de Bastonetes , Animais , Encéfalo/metabolismo , Camundongos , Opsinas/genética , Opsinas de Bastonetes/metabolismo , Transdução de Sinais
8.
Cell Rep ; 30(3): 672-686.e8, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968245

RESUMO

Almost all life forms can detect and decode light information for adaptive advantage. Examples include the visual system, in which photoreceptor signals are processed into virtual images, and the circadian system, in which light entrains a physiological clock. Here we describe a light response pathway in mice that employs encephalopsin (OPN3, a 480 nm, blue-light-responsive opsin) to regulate the function of adipocytes. Germline null and adipocyte-specific conditional null mice show a light- and Opn3-dependent deficit in thermogenesis and become hypothermic upon cold exposure. We show that stimulating mouse adipocytes with blue light enhances the lipolysis response and, in particular, phosphorylation of hormone-sensitive lipase. This response is Opn3 dependent. These data establish a key mechanism in which light-dependent, local regulation of the lipolysis response in white adipocytes regulates energy metabolism.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos da radiação , Adipócitos Brancos/metabolismo , Adipócitos Brancos/efeitos da radiação , Luz , Opsinas de Bastonetes/metabolismo , Termogênese/efeitos da radiação , Animais , Temperatura Baixa , Metabolismo Energético/efeitos da radiação , Perfilação da Expressão Gênica , Lipólise/efeitos da radiação , Camundongos Endogâmicos C57BL , Fenótipo , Fótons , Termogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA