Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(11): 2361-2373.e9, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33838104

RESUMO

Toxin-antitoxin (TA) systems are widespread in bacteria, but their activation mechanisms and bona fide targets remain largely unknown. Here, we characterize a type III TA system, toxIN, that protects E. coli against multiple bacteriophages, including T4. Using RNA sequencing, we find that the endoribonuclease ToxN is activated following T4 infection and blocks phage development primarily by cleaving viral mRNAs and inhibiting their translation. ToxN activation arises from T4-induced shutoff of host transcription, specifically of toxIN, leading to loss of the intrinsically unstable toxI antitoxin. Transcriptional shutoff is necessary and sufficient for ToxN activation. Notably, toxIN does not strongly protect against another phage, T7, which incompletely blocks host transcription. Thus, our results reveal a critical trade-off in blocking host transcription: it helps phage commandeer host resources but can activate potent defense systems. More generally, our results now reveal the native targets of an RNase toxin and activation mechanism of a phage-defensive TA system.


Assuntos
Bacteriófago T4/genética , Bacteriófago T7/genética , Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/virologia , Sistemas Toxina-Antitoxina/genética , Antibiose/genética , Bacteriófago T4/crescimento & desenvolvimento , Bacteriófago T4/metabolismo , Bacteriófago T7/crescimento & desenvolvimento , Bacteriófago T7/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568967

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Endorribonucleases/metabolismo , Transdução de Sinais , Antivirais
3.
J Biol Chem ; 300(2): 105636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199572

RESUMO

The sequence-specific endoribonuclease MazF is widely conserved among prokaryotes. Approximately 20 different MazF cleavage sequences have been discovered, varying from three to seven nucleotides in length. Although MazFs from various prokaryotes were found, the cleavage sequences of most MazFs are unknown. Here, we characterized the conserved MazF of Salmonella enterica subsp. arizonae (MazF-SEA). Using massive parallel sequencing and fluorometric assays, we revealed that MazF-SEA preferentially cleaves the sequences U∧ACG and U∧ACU (∧ represents cleavage sites). In addition, we predicted the 3D structure of MazF-SEA using AlphaFold2 and aligned it with the crystal structure of RNA-bound Bacillus subtilis MazF to evaluate RNA interactions. We found Arg-73 of MazF-SEA interacts with RNAs containing G and U at the third position from the cleavage sites (U∧ACG and U∧ACU). We then obtained the mutated MazF-SEA R73L protein to evaluate the significance of Arg-73 interaction with RNAs containing G and U at this position. We also used fluorometric and kinetic assays and showed the enzymatic activity of MazF-SEA R73L for the sequence UACG and UACU was significantly decreased. These results suggest Arg-73 is essential for recognizing G and U at the third position from the cleavage sites. This is the first study to our knowledge to identify a single residue responsible for RNA recognition by MazF. Owing to its high specificity and ribosome-independence, MazF is useful for RNA cleavage in vitro. These results will likely contribute to increasing the diversity of MazF specificity and to furthering the application of MazF in RNA engineering.


Assuntos
Salmonella enterica , Endonucleases , Endorribonucleases/metabolismo , Guanina , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Salmonella enterica/enzimologia , Salmonella enterica/genética , Uracila
4.
RNA ; 29(10): 1481-1499, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37369528

RESUMO

Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.


Assuntos
Bacillus subtilis , RNA Bacteriano , RNA Bacteriano/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA não Traduzido/metabolismo , Ribonuclease Pancreático/metabolismo , Estabilidade de RNA/genética
5.
Mol Cell ; 65(1): 3-4, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28061331

RESUMO

In this issue of Molecular Cell, Chao et al. (2017) investigate the important role of the low-specificity endonuclease RNase E in shaping the transcriptome of a bacterial pathogen by functioning as both a degradative enzyme and an RNA maturase.


Assuntos
Escherichia coli/enzimologia , RNA Mensageiro/genética , Endorribonucleases/genética , RNA Bacteriano
6.
Genes Dev ; 31(2): 88-100, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202538

RESUMO

The eukaryotic RNA exosome is an essential and conserved protein complex that can degrade or process RNA substrates in the 3'-to-5' direction. Since its discovery nearly two decades ago, studies have focused on determining how the exosome, along with associated cofactors, achieves the demanding task of targeting particular RNAs for degradation and/or processing in both the nucleus and cytoplasm. In this review, we highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes.


Assuntos
Exossomos/metabolismo , Homeostase/genética , RNA/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Animais , Domínio Catalítico , Exossomos/química , Humanos , Transporte de RNA , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
7.
Immunol Rev ; 304(1): 97-110, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514623

RESUMO

Dynamic changes in gene expression are key factors in the development and activation of immune cells. RNA metabolism is one of the critical steps for the control of gene expression. Together with transcriptional regulation, mRNA decay by specific ribonucleases (RNases) plays a vital role in shaping gene expression. In addition to the canonical exoribonuclease-mediated mRNA degradation through the recognition of cis-elements in mRNA 3' untranslated regions by RNA-binding proteins (RBPs), endoribonucleases are involved in the control of mRNAs in immune cells. In this review, we gleam insights on how Regnase-1, an endoribonuclease necessary for regulating immune cell activation and maintenance of immune homeostasis, degrades RNAs involved in immune cell activation. Additionally, we provide insights on recent studies which uncover the role of Regnase-1-related RNases, including Regnase-2, Regnase-3, and Regnase-4, as well as N4BP1 and KHNYN, in immune regulation and antiviral immunity. As the dysregulation of immune mRNA decay leads to pathologies such as autoimmune diseases or impaired activation of immune responses, RNases are deemed as essential components of regulatory feedback mechanisms that modulate inflammation. Given the critical role of RNases in autoimmunity, RNases can be perceived as emerging targets in the development of novel therapeutics.


Assuntos
Doenças Autoimunes , Endorribonucleases , Ribonucleases/imunologia , Fatores de Transcrição/imunologia , Humanos , RNA Mensageiro , Proteínas de Ligação a RNA
8.
Crit Rev Biochem Mol Biol ; 57(3): 244-260, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34886717

RESUMO

Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.


Assuntos
Ribonuclease Pancreático , Ribonucleases , Endorribonucleases , RNA , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
9.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572740

RESUMO

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Assuntos
Herpesvirus Humano 1 , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribonucleases , DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleases/metabolismo , Estabilidade de RNA , Vírion/genética , Vírion/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Genes Cells ; 28(5): 383-389, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823718

RESUMO

The RNA-binding protein (RBP) Regnase-1 is an endonuclease that regulates immune responses by modulating target mRNA stability. Regnase-1 degrades a group of inflammation-associated mRNAs, which contributes to a balanced immune response and helps prevent autoimmune diseases. Regnase-1 also cleaves its own mRNA by binding stem-loop (SL) RNA structures in its 3'UTR. To understand how this autoregulation is important for immune responses, we generated mice with a 2-bp genome deletion in the target SL of the Regnase-1 3'-untranslated region (3'UTR). Deletion of these nucleotides inhibited SL formation and limited Regnase-1-mediated mRNA degradation. Mutant mice had normal hematopoietic cell differentiation. Biochemically, mutation of the 3'UTR SL increased Regnase-1 mRNA stability and enhanced both Regnase-1 mRNA and protein levels in mouse embryonic fibroblasts (MEFs). The expression of Il6, a Regnase-1 target gene, was constitutively suppressed at steady-state in mutant MEFs. Additionally, Regnase-1 protein expression in mutant MEFs was significantly elevated compared to that in wild-type MEFs at steady state and upon proinflammatory cytokine stimulation. These data suggest a negative feedback mechanism for Regnase-1 expression and represent a unique mouse model to probe Regnase-1 overexpression in vivo.


Assuntos
Ribonucleases , Autocontrole , Animais , Camundongos , Ribonucleases/genética , Regiões 3' não Traduzidas/genética , Fibroblastos/metabolismo , Inflamação/genética
11.
RNA ; 28(2): 227-238, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815358

RESUMO

The Bacillus subtilis genome is predicted to encode numerous ribonucleases, including four 3' exoribonucleases that have been characterized to some extent. A strain containing gene knockouts of all four known 3' exoribonucleases is viable, suggesting that one or more additional RNases remain to be discovered. A protein extract from the quadruple RNase mutant strain was fractionated and RNase activity was followed, resulting in the identification of an enzyme activity catalyzed by the YloC protein. YloC is an endoribonuclease and is a member of the highly conserved "YicC family" of proteins that is widespread in bacteria. YloC is a metal-dependent enzyme that catalyzes the cleavage of single-stranded RNA, preferentially at U residues, and exists in an oligomeric form, most likely a hexamer. As such, YloC shares some characteristics with the SARS-CoV Nsp15 endoribonuclease. While the in vivo function of YloC in B. subtilis is yet to be determined, YloC was found to act similarly to YicC in an Escherichia coli in vivo assay that assesses decay of the small RNA, RyhB. Thus, YloC may play a role in small RNA regulation.


Assuntos
Bacillus subtilis/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Mutação , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Especificidade por Substrato , Proteínas não Estruturais Virais/metabolismo
12.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396815

RESUMO

The gaseous phytohormone ethylene plays a crucial role in plant growth, development, and stress responses. In the ethylene signal transduction cascade, the F-box proteins EIN3-BINDING F-BOX 1 (EBF1) and EBF2 are identified as key negative regulators governing ethylene sensitivity. The translation and processing of EBF1/2 mRNAs are tightly controlled, and their 3' untranslated regions (UTRs) are critical in these regulations. However, despite their significance, the exact mechanisms modulating the processing of EBF1/2 mRNAs remain poorly understood. In this work, we identified the gene DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1), which encodes an endoribonuclease and is induced by ethylene treatment, as a positive regulator of ethylene response. The loss of function mutant dne1-2 showed mild ethylene insensitivity, highlighting the importance of DNE1 in ethylene signaling. We also found that DNE1 colocalizes with ETHYLENE INSENSITIVE 2 (EIN2), the core factor manipulating the translation of EBF1/2, and targets the P-body in response to ethylene. Further analysis revealed that DNE1 negatively regulates the abundance of EBF1/2 mRNAs by recognizing and cleaving their 3'UTRs, and it also represses their translation. Moreover, the dne1 mutant displays hypersensitivity to 1,4-dithiothreitol (DTT)-induced ER stress and oxidative stress, indicating the function of DNE1 in stress responses. This study sheds light on the essential role of DNE1 as a modulator of ethylene signaling through regulation of EBF1/2 mRNA processing. Our findings contribute to the understanding of the intricate regulatory process of ethylene signaling and provide insights into the significance of ribonuclease in stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Nucleares/genética , Etilenos/farmacologia , Etilenos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas F-Box/genética
13.
Crit Rev Biochem Mol Biol ; 56(1): 88-108, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349060

RESUMO

HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.


Assuntos
Endorribonucleases/metabolismo , Proteólise , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , Domínio Catalítico , Endorribonucleases/química , Endorribonucleases/genética , Humanos , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Estabilidade de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Sistemas Toxina-Antitoxina
14.
J Biol Chem ; 298(2): 101557, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974059

RESUMO

It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remain unanswered. MqsRA is a TA system activated by various stresses, including oxidation. Here, we reconstituted the Escherichia coli ClpXP proteolytic machinery in vitro to monitor degradation of MqsRA TA components. We show that the MqsA antitoxin is a ClpXP proteolysis substrate, and that its degradation is regulated by both zinc occupancy in MqsA and MqsR toxin binding. Using NMR chemical shift perturbation mapping, we show that MqsA is targeted directly to ClpXP via the ClpX substrate targeting N-domain, and ClpX mutations that disrupt N-domain binding inhibit ClpXP-mediated degradation in vitro. Finally, we discovered that MqsA contains a cryptic N-domain recognition sequence that is accessible only in the absence of zinc and MqsR toxin, both of which stabilize the MqsA fold. This recognition sequence is transplantable and sufficient to target a fusion protein for degradation in vitro and in vivo. Based on these results, we propose a model in which stress selectively targets nascent and zinc-free MqsA, resulting in exposure of the ClpX recognition motif for ClpXP-mediated degradation.


Assuntos
Antitoxinas , Proteínas de Ligação a DNA , Endopeptidase Clp , Proteínas de Escherichia coli , Escherichia coli , Zinco , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxirredução , Peptídeo Hidrolases/metabolismo , Proteólise , Zinco/metabolismo
15.
Mol Genet Genomics ; 298(2): 455-472, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36604348

RESUMO

The PumAB type-II toxin-antitoxin (TA) system is encoded by pumAB genes that are organized into an operon. This system is encoded by the pUM505 plasmid, isolated from a Pseudomonas aeruginosa clinical strain. The pumA gene encodes a putative RelE toxin protein (toxic component), whereas the pumB gene encodes a putative HTH antitoxin protein. The expression of the PumAB system in Escherichia coli confers plasmid stability. In addition, PumA toxin overexpression in P. aeruginosa possesses the capability to increase bacterial virulence, an effect that is neutralized by the PumB antitoxin. The aim of this study was to establish the mechanism of regulation of the PumAB toxin-antitoxin system from pUM505. By an in silico analysis of the putative regulatory elements, we identified two putative internal promoters, PpumB and PpumB-AlgU (in addition to the already reported PpumAB), located upstream of pumB. By RT-qPCR assays, we determined that the pumAB genes are transcribed differentially, in that the mRNA of pumB is more abundant than the pumA transcript. We also observed that pumB could be expressed individually and that its mRNA levels decreased under oxidative stress, during individual expression as well as co-expression of pumAB. However, under stressful conditions, the pumA mRNA levels were not affected. This suggests the negative regulation of pumB by stressful conditions. The PumB purified protein was found to bind to a DNA region located between the PpumAB and the pumA coding region, and PumA participates in PumB binding, suggesting that a PumA-PumB complex co-regulates the transcription of the pumAB operon. Interestingly, the pumA mRNA levels decreased after incubation in vitro with PumB protein. This effect was repressed by ribonuclease inhibitors, suggesting that PumB could function as an RNAse toward the mRNA of the toxin. Taken together, we conclude that the PumAB TA system possesses multiple mechanisms to regulate its expression, as well as that the PumB antitoxin generates a decrease in the mRNA toxin levels, suggesting an RNase function. Our analysis provides new insights into the understanding of the control of TA systems from mobile plasmid-encoded genes from a human pathogen.


Assuntos
Antitoxinas , Toxinas Bacterianas , Sistemas Toxina-Antitoxina , Humanos , Antitoxinas/genética , Antitoxinas/metabolismo , Toxinas Bacterianas/genética , Sistemas Toxina-Antitoxina/genética , Proteínas Reguladoras de Apoptose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA Mensageiro , Ribonucleases/genética , Ribonucleases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
16.
RNA ; 27(11): 1374-1389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34429367

RESUMO

Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.


Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Bradyrhizobiaceae/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , RNA de Transferência de Metionina/metabolismo , Sistemas Toxina-Antitoxina/genética , Antitoxinas/genética , Proteínas de Bactérias , Toxinas Bacterianas/genética , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/isolamento & purificação , Bradyrhizobiaceae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Líquens/fisiologia , Óperon , Regiões Promotoras Genéticas
17.
J Virol ; 96(14): e0192621, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758691

RESUMO

Virion host shutoff (vhs) protein is an endoribonuclease encoded by herpes simplex virus 1 (HSV1). vhs causes several changes to the infected cell environment that favor the translation of late (L) virus proteins: cellular mRNAs are degraded, immediate early (IE) and early (E) viral transcripts are sequestered in the nucleus with polyA binding protein (PABPC1), and dsRNA is degraded to help dampen the PKR-dependent stress response. To further our understanding of the cell biology of vhs, we constructed a virus expressing vhs tagged at its C terminus with GFP. When first expressed, vhs-GFP localized to juxtanuclear clusters, and later it colocalized and interacted with its binding partner VP16, and was packaged into virions. Despite vhs-GFP maintaining activity when expressed in isolation, it failed to degrade mRNA or relocalise PABPC1 during infection, while viral transcript levels were similar to those seen for a vhs knockout virus. PKR phosphorylation was also enhanced in vhs-GFP infected cells, which is in line with a failure to degrade dsRNA. Nonetheless, mRNA FISH revealed that as in Wt but not Dvhs infection, IE and E, but not L transcripts were retained in the nucleus of vhs-GFP infected cells at late times. These results revealed that the vhs-induced nuclear retention of IE and E transcripts was dependent on vhs expression but not on its endoribonuclease activity, uncoupling these two functions of vhs. IMPORTANCE Like many viruses, herpes simplex virus 1 (HSV1) expresses an endoribonuclease, the virion host shutoff (vhs) protein, which regulates the RNA environment of the infected cell and facilitates the classical cascade of virus protein translation. It does this by causing the degradation of some mRNA molecules and the nuclear retention of others. Here, we describe a virus expressing vhs tagged at its C terminus with a green fluorescent protein (GFP) and show that the vhs-GFP fusion protein retains the physical properties of native vhs but does not induce the degradation of mRNA. Nonetheless, vhs-GFP maintains the ability to trap the early virus transcriptome in the nucleus to favor late protein translation, proving for the first time that mRNA degradation is not a prerequisite for vhs effects on the nuclear transcriptome. This virus, therefore, has uncoupled the nuclear retention and degradation activities of vhs, providing a new understanding of vhs during infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Estabilidade de RNA , Ribonucleases , Proteínas Virais , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Proteínas de Fluorescência Verde/genética , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Estabilidade de RNA/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo
18.
J Virol ; 96(12): e0068622, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638780

RESUMO

Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.


Assuntos
Infecções por Coronavirus , Endorribonucleases , Vírus da Bronquite Infecciosa , Grânulos de Estresse , Replicação Viral , Animais , Antivirais/farmacologia , Embrião de Galinha , Galinhas , Infecções por Coronavirus/veterinária , Endorribonucleases/genética , Vírus da Bronquite Infecciosa/enzimologia , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , RNA de Cadeia Dupla
19.
Mol Divers ; 27(6): 2715-2728, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36456773

RESUMO

Many countries in the world have recently experienced an outbreak of COVID-19, turned out to be a pandemic which significantly affected the world economy. Among many attempts to treat/control infection or to modulate host immunity, many small molecules including steroids were prescribed based on their use against other viral infection or inflammatory conditions. A recent report established the possibility of usage of a corticosteroid against the virus through inhibiting NSP-15; an mRNA endonuclease of SARS-CoV-2 and thereby viral replication. This study aimed to identify potential anti-viral agents for the virus through computational approaches and to validate binding properties with the protein target through molecular dynamics simulation. Unlike the conventional approaches, dedicated data base of steroid like compounds was used for initial screening along with dexamethasone and cortisone, which are used in the treatment of COVID-19 affected population in some countries. Molecular docking was performed for three compounds filtered from data base in addition to dexamethasone and Cortisone followed by molecular dynamics simulation analysis to validate the dynamics of binding at the active site. In addition, analysis of ADME properties established that these compounds have favorable drug-like properties. Based on docking, molecular dynamics simulation studies and various other trajectory analyses, compounds that are identified could be suggested as therapeutics or precursors towards designing new anti-viral agents against SARS-CoV-2, to combat COVID-19. Also, this is an attempt to study the impact of steroid compounds on NSP-15 of SARS-CoV-2, since many steroid like compounds are used during the treatment of COVID-19 patients.


Assuntos
COVID-19 , Cortisona , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Antivirais/química , Endorribonucleases , Dexametasona/farmacologia
20.
Proc Natl Acad Sci U S A ; 117(14): 8094-8103, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198201

RESUMO

Coronaviruses (CoVs) are positive-sense RNA viruses that can emerge from endemic reservoirs and infect zoonotically, causing significant morbidity and mortality. CoVs encode an endoribonuclease designated EndoU that facilitates evasion of host pattern recognition receptor MDA5, but the target of EndoU activity was not known. Here, we report that EndoU cleaves the 5'-polyuridines from negative-sense viral RNA, termed PUN RNA, which is the product of polyA-templated RNA synthesis. Using a virus containing an EndoU catalytic-inactive mutation, we detected a higher abundance of PUN RNA in the cytoplasm compared to wild-type-infected cells. Furthermore, we found that transfecting PUN RNA into cells stimulates a robust, MDA5-dependent interferon response, and that removal of the polyuridine extension on the RNA dampens the response. Overall, the results of this study reveal the PUN RNA to be a CoV MDA5-dependent pathogen-associated molecular pattern (PAMP). We also establish a mechanism for EndoU activity to cleave and limit the accumulation of this PAMP. Since EndoU activity is highly conserved in all CoVs, inhibiting this activity may serve as an approach for therapeutic interventions against existing and emerging CoV infections.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Coronavirus/metabolismo , Endorribonucleases/metabolismo , Poli U/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Coronavirus/enzimologia , Coronavirus/imunologia , Endorribonucleases/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Interferons/farmacologia , Poli U/química , RNA Viral/genética , RNA Viral/metabolismo , Uridina/química , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA