Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 73-98, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126422

RESUMO

Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.


Assuntos
Adenosina , RNA , Humanos , Animais , Sistema Imunitário
2.
Annu Rev Biochem ; 93(1): 109-137, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38598854

RESUMO

Methylation of RNA nucleotides represents an important layer of gene expression regulation, and perturbation of the RNA methylome is associated with pathophysiology. In cells, RNA methylations are installed by RNA methyltransferases (RNMTs) that are specialized to catalyze particular types of methylation (ribose or different base positions). Furthermore, RNMTs must specifically recognize their appropriate target RNAs within the RNA-dense cellular environment. Some RNMTs are catalytically active alone and achieve target specificity via recognition of sequence motifs and/or RNA structures. Others function together with protein cofactors that can influence stability, S-adenosyl-L-methionine binding, and RNA affinity as well as aiding specific recruitment and catalytic activity. Association of RNMTs with guide RNAs represents an alternative mechanism to direct site-specific methylation by an RNMT that lacks intrinsic specificity. Recently, ribozyme-catalyzed methylation of RNA has been achieved in vitro, and here, we compare these different strategies for RNA methylation from structural and mechanistic perspectives.


Assuntos
Conformação de Ácido Nucleico , RNA Catalítico , RNA , RNA Catalítico/metabolismo , RNA Catalítico/química , RNA Catalítico/genética , Metilação , RNA/metabolismo , RNA/genética , RNA/química , Humanos , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Nucleotídeos/metabolismo , Nucleotídeos/química , Nucleotídeos/genética , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/química , Especificidade por Substrato , Animais , Modelos Moleculares
3.
Annu Rev Biochem ; 92: 175-198, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37018844

RESUMO

Chemical modifications on mRNA represent a critical layer of gene expression regulation. Research in this area has continued to accelerate over the last decade, as more modifications are being characterized with increasing depth and breadth. mRNA modifications have been demonstrated to influence nearly every step from the early phases of transcript synthesis in the nucleus through to their decay in the cytoplasm, but in many cases, the molecular mechanisms involved in these processes remain mysterious. Here, we highlight recent work that has elucidated the roles of mRNA modifications throughout the mRNA life cycle, describe gaps in our understanding and remaining open questions, and offer some forward-looking perspective on future directions in the field.


Assuntos
Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA/genética , RNA/metabolismo
4.
Annu Rev Biochem ; 92: 145-173, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37068770

RESUMO

Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, N6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.


Assuntos
Adenosina , Regulação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenosina/genética , Adenosina/metabolismo , Proteínas/genética , Proteínas/metabolismo , Transcriptoma
5.
Cell ; 186(12): 2544-2555.e13, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295402

RESUMO

In poikilotherms, temperature changes challenge the integration of physiological function. Within the complex nervous systems of the behaviorally sophisticated coleoid cephalopods, these problems are substantial. RNA editing by adenosine deamination is a well-positioned mechanism for environmental acclimation. We report that the neural proteome of Octopus bimaculoides undergoes massive reconfigurations via RNA editing following a temperature challenge. Over 13,000 codons are affected, and many alter proteins that are vital for neural processes. For two highly temperature-sensitive examples, recoding tunes protein function. For synaptotagmin, a key component of Ca2+-dependent neurotransmitter release, crystal structures and supporting experiments show that editing alters Ca2+ binding. For kinesin-1, a motor protein driving axonal transport, editing regulates transport velocity down microtubules. Seasonal sampling of wild-caught specimens indicates that temperature-dependent editing occurs in the field as well. These data show that A-to-I editing tunes neurophysiological function in response to temperature in octopus and most likely other coleoids.


Assuntos
Octopodiformes , Proteoma , Animais , Proteoma/metabolismo , Octopodiformes/genética , Edição de RNA , Temperatura , Sistema Nervoso/metabolismo , Adenosina Desaminase/metabolismo , RNA/metabolismo
6.
Cell ; 181(4): 914-921.e10, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32330414

RESUMO

SARS-CoV-2 is a betacoronavirus responsible for the COVID-19 pandemic. Although the SARS-CoV-2 genome was reported recently, its transcriptomic architecture is unknown. Utilizing two complementary sequencing techniques, we present a high-resolution map of the SARS-CoV-2 transcriptome and epitranscriptome. DNA nanoball sequencing shows that the transcriptome is highly complex owing to numerous discontinuous transcription events. In addition to the canonical genomic and 9 subgenomic RNAs, SARS-CoV-2 produces transcripts encoding unknown ORFs with fusion, deletion, and/or frameshift. Using nanopore direct RNA sequencing, we further find at least 41 RNA modification sites on viral transcripts, with the most frequent motif, AAGAA. Modified RNAs have shorter poly(A) tails than unmodified RNAs, suggesting a link between the modification and the 3' tail. Functional investigation of the unknown transcripts and RNA modifications discovered in this study will open new directions to our understanding of the life cycle and pathogenicity of SARS-CoV-2.


Assuntos
Betacoronavirus/genética , RNA Viral/genética , Transcriptoma , Animais , Chlorocebus aethiops , Epigênese Genética , Processamento Pós-Transcricional do RNA , SARS-CoV-2 , Análise de Sequência de RNA , Células Vero
7.
Cell ; 178(1): 122-134.e12, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31230714

RESUMO

Epitranscriptomic regulation controls information flow through the central dogma and provides unique opportunities for manipulating cells at the RNA level. However, both fundamental studies and potential translational applications are impeded by a lack of methods to target specific RNAs with effector proteins. Here, we present CRISPR-Cas-inspired RNA targeting system (CIRTS), a protein engineering strategy for constructing programmable RNA control elements. We show that CIRTS is a simple and generalizable approach to deliver a range of effector proteins, including nucleases, degradation machinery, translational activators, and base editors to target transcripts. We further demonstrate that CIRTS is not only smaller than naturally occurring CRISPR-Cas programmable RNA binding systems but can also be built entirely from human protein parts. CIRTS provides a platform to probe fundamental RNA regulatory processes, and the human-derived nature of CIRTS provides a potential strategy to avoid immune issues when applied to epitranscriptome-modulating therapies.


Assuntos
Edição de Genes/métodos , Engenharia de Proteínas/métodos , RNA Guia de Cinetoplastídeos/metabolismo , RNA/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Biossíntese de Proteínas , Proteólise , RNA Interferente Pequeno , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Transfecção
8.
Cell ; 175(7): 1872-1886.e24, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30449621

RESUMO

Generation of the "epitranscriptome" through post-transcriptional ribonucleoside modification embeds a layer of regulatory complexity into RNA structure and function. Here, we describe N4-acetylcytidine (ac4C) as an mRNA modification that is catalyzed by the acetyltransferase NAT10. Transcriptome-wide mapping of ac4C revealed discretely acetylated regions that were enriched within coding sequences. Ablation of NAT10 reduced ac4C detection at the mapped mRNA sites and was globally associated with target mRNA downregulation. Analysis of mRNA half-lives revealed a NAT10-dependent increase in stability in the cohort of acetylated mRNAs. mRNA acetylation was further demonstrated to enhance substrate translation in vitro and in vivo. Codon content analysis within ac4C peaks uncovered a biased representation of cytidine within wobble sites that was empirically determined to influence mRNA decoding efficiency. These findings expand the repertoire of mRNA modifications to include an acetylated residue and establish a role for ac4C in the regulation of mRNA translation.


Assuntos
Citidina/análogos & derivados , Acetiltransferase N-Terminal E/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Acetilação , Citidina/genética , Citidina/metabolismo , Células HeLa , Humanos , Acetiltransferase N-Terminal E/genética , Acetiltransferases N-Terminal , RNA Mensageiro/genética
9.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37100060

RESUMO

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Assuntos
Interleucina-6 , RNA , Células Endoteliais/metabolismo , Receptor gp130 de Citocina , Endotélio/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
10.
Cell ; 169(2): 191-202.e11, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388405

RESUMO

RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP.


Assuntos
Evolução Biológica , Cefalópodes/genética , Edição de RNA , Transcriptoma , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Cefalópodes/classificação , Cefalópodes/metabolismo , Sistema Nervoso/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Alinhamento de Sequência
11.
Mol Cell ; 84(8): 1611-1625.e3, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640896

RESUMO

We recently reported the distribution of N4-acetylcytidine (ac4C) in HeLa mRNA at base resolution through chemical reduction and the induction of C:T mismatches in sequencing (RedaC:T-seq). Our results contradicted an earlier report from Schwartz and colleagues utilizing a similar method termed ac4C-seq. Here, we revisit both datasets and reaffirm our findings. Through RedaC:T-seq reanalysis, we establish a low basal error rate at unmodified nucleotides that is not skewed to any specific mismatch type and a prominent increase in C:T substitutions as the dominant mismatch type in both treated wild-type replicates, with a high degree of reproducibility across replicates. In contrast, through ac4C-seq reanalysis, we uncover significant data quality issues including insufficient depth, with one wild-type replicate yielding 2.7 million reads, inconsistencies in reduction efficiencies between replicates, and an overall increase in mismatches involving thymine that could obscure ac4C detection. These analyses bolster the detection of ac4C in HeLa mRNA through RedaC:T-seq.


Assuntos
Citidina/análogos & derivados , Nucleotídeos , Humanos , Reprodutibilidade dos Testes , RNA Mensageiro/genética
12.
Mol Cell ; 84(8): 1601-1610.e2, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640895

RESUMO

Cytidine acetylation (ac4C) of RNA is a post-transcriptional modification catalyzed by Nat10. Recently, an approach termed RedaC:T was employed to map ac4C in human mRNA, relying on detection of C>T mutations in WT but not in Nat10-KO cells. RedaC:T suggested widespread ac4C presence. Here, we reanalyze RedaC:T data. We find that mismatch signatures are not reproducible, as C>T mismatches are nearly exclusively present in only one of two biological replicates. Furthermore, all mismatch types-not only C>T-are highly enriched in WT samples, inconsistent with an acetylation signature. We demonstrate that the originally observed enrichment in mutations in one of the WT samples is due to its low complexity, resulting in the technical amplification of all classes of mismatch counts. Removal of duplicate reads abolishes the skewed mismatch patterns. These analyses account for the irreproducible mismatch patterns across samples while failing to find evidence for acetylation of RedaC:T sites.


Assuntos
Citidina , RNA , Humanos , RNA Mensageiro/genética , Acetilação , Mutação
13.
Annu Rev Cell Dev Biol ; 33: 319-342, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28759256

RESUMO

In recent years, m6A has emerged as an abundant and dynamically regulated modification throughout the transcriptome. Recent technological advances have enabled the transcriptome-wide identification of m6A residues, which in turn has provided important insights into the biology and regulation of this pervasive regulatory mark. Also central to our current understanding of m6A are the discovery and characterization of m6A readers, writers, and erasers. Over the last few years, studies into the function of these proteins have led to important discoveries about the regulation and function of m6A. However, during this time our understanding of these proteins has also evolved considerably, sometimes leading to the reversal of early concepts regarding the reading, writing and erasing of m6A. In this review, we summarize recent advances in m6A research, and we highlight how these new findings have reshaped our understanding of how m6A is regulated in the transcriptome.


Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Metilação de DNA/genética , Humanos , RNA/metabolismo
14.
Mol Cell ; 82(15): 2797-2814.e11, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35679869

RESUMO

mRNA function is influenced by modifications that modulate canonical nucleobase behavior. We show that a single modification mediates distinct impacts on mRNA translation in a position-dependent manner. Although cytidine acetylation (ac4C) within protein-coding sequences stimulates translation, ac4C within 5' UTRs impacts protein synthesis at the level of initiation. 5' UTR acetylation promotes initiation at upstream sequences, competitively inhibiting annotated start codons. Acetylation further directly impedes initiation at optimal AUG contexts: ac4C within AUG-flanking Kozak sequences reduced initiation in base-resolved transcriptome-wide HeLa results and in vitro utilizing substrates with site-specific ac4C incorporation. Cryo-EM of mammalian 80S initiation complexes revealed that ac4C in the -1 position adjacent to an AUG start codon disrupts an interaction between C and hypermodified t6A at nucleotide 37 of the initiator tRNA. These findings demonstrate the impact of RNA modifications on nucleobase function at a molecular level and introduce mRNA acetylation as a factor regulating translation in a location-specific manner.


Assuntos
Citidina , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Animais , Códon de Iniciação , Citidina/análogos & derivados , Citidina/genética , Mamíferos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Mol Cell ; 82(3): 645-659.e9, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051350

RESUMO

Pseudouridine is a modified nucleotide that is prevalent in human mRNAs and is dynamically regulated. Here, we investigate when in their life cycle mRNAs become pseudouridylated to illuminate the potential regulatory functions of endogenous mRNA pseudouridylation. Using single-nucleotide resolution pseudouridine profiling on chromatin-associated RNA from human cells, we identified pseudouridines in nascent pre-mRNA at locations associated with alternatively spliced regions, enriched near splice sites, and overlapping hundreds of binding sites for RNA-binding proteins. In vitro splicing assays establish a direct effect of individual endogenous pre-mRNA pseudouridines on splicing efficiency. We validate hundreds of pre-mRNA sites as direct targets of distinct pseudouridine synthases and show that PUS1, PUS7, and RPUSD4-three pre-mRNA-modifying pseudouridine synthases with tissue-specific expression-control widespread changes in alternative pre-mRNA splicing and 3' end processing. Our results establish a vast potential for cotranscriptional pre-mRNA pseudouridylation to regulate human gene expression via alternative pre-mRNA processing.


Assuntos
Processamento Alternativo , Transferases Intramoleculares/metabolismo , Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Transferases Intramoleculares/genética , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Precursores de RNA/genética , RNA Mensageiro/genética
16.
Mol Cell ; 82(12): 2236-2251, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714585

RESUMO

Information in mRNA has largely been thought to be confined to its nucleotide sequence. However, the advent of mapping techniques to detect modified nucleotides has revealed that mRNA contains additional information in the form of chemical modifications. The most abundant modified nucleotide is N6-methyladenosine (m6A), a methyl modification of adenosine. Although early studies viewed m6A as a dynamic and tissue-specific modification, it is now clear that the mRNAs that contain m6A and the location of m6A in those transcripts are largely universal and are influenced by gene architecture, i.e., the size and location of exons and introns. m6A can affect nuclear processes such as splicing and epigenetic regulation, but the major effect of m6A on mRNAs is to promote degradation in the cytoplasm. m6A marks a functionally related cohort of mRNAs linked to certain biological processes, including cell differentiation and cell fate determination. m6A is also enriched in other cohorts of mRNAs and can therefore affect their respective cellular processes and pathways. Future work will focus on understanding how the m6A pathway is regulated to achieve control of m6A-containing mRNAs.


Assuntos
Adenosina , Epigênese Genética , Adenosina/genética , Adenosina/metabolismo , Expressão Gênica , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Nucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Immunity ; 52(6): 1007-1021.e8, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32497523

RESUMO

N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.


Assuntos
Adenosina/química , Hematopoese/genética , Hematopoese/imunologia , Imunidade Inata/genética , RNA de Cadeia Dupla/metabolismo , Animais , Biomarcadores , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/metabolismo , Transtornos da Insuficiência da Medula Óssea/patologia , Diferenciação Celular/genética , Modelos Animais de Doenças , Epigênese Genética , Expressão Gênica , Células-Tronco Hematopoéticas , Imunofenotipagem , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , RNA de Cadeia Dupla/química
18.
Mol Cell ; 81(16): 3368-3385.e9, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34375583

RESUMO

The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , RNA/genética , Fatores de Transcrição/genética , Adenosina/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Humanos , Metilação , Elementos Reguladores de Transcrição/genética , Ativação Transcricional/genética
19.
Mol Cell ; 77(2): 426-440.e6, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31676230

RESUMO

N6-methyladenosine (m6A), the most abundant internal mRNA modification, and N6,2'-O-dimethyladenosine (m6Am), found at the first-transcribed nucleotide, are two reversible epitranscriptomic marks. However, the profiles and distribution patterns of m6A and m6Am across human and mouse tissues are poorly characterized. Here, we report the m6A and m6Am methylome through profiling of 43 human and 16 mouse tissues and demonstrate strongest tissue specificity for the brain tissues. A small subset of tissue-specific m6A peaks can also readily classify tissue types. The overall m6A and m6Am level is partially correlated with the expression level of their writers and erasers. Additionally, the m6A-containing regions are enriched for SNPs. Furthermore, cross-species analysis revealed that species rather than tissue type is the primary determinant of methylation. Collectively, our study provides an in-depth resource for dissecting the landscape and regulation of the m6A and m6Am epitranscriptomic marks across mammalian tissues.


Assuntos
RNA Mensageiro/genética , Animais , Encéfalo/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HT29 , Células HeLa , Humanos , Células Jurkat , Células K562 , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/genética
20.
Mol Cell ; 77(3): 542-555.e8, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810760

RESUMO

The RNA modification N6-methyladenosine (m6A) modulates mRNA fate and thus affects many biological processes. We analyzed m6A across the transcriptome following infection by dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), and hepatitis C virus (HCV). We found that infection by these viruses in the Flaviviridae family alters m6A modification of specific cellular transcripts, including RIOK3 and CIRBP. During viral infection, the addition of m6A to RIOK3 promotes its translation, while loss of m6A in CIRBP promotes alternative splicing. Importantly, viral activation of innate immune sensing or the endoplasmic reticulum (ER) stress response contributes to the changes in m6A in RIOK3 or CIRBP, respectively. Further, several transcripts with infection-altered m6A profiles, including RIOK3 and CIRBP, encode proteins that influence DENV, ZIKV, and HCV infection. Overall, this work reveals that cellular signaling pathways activated during viral infection lead to alterations in m6A modification of host mRNAs to regulate infection.


Assuntos
Adenosina/análogos & derivados , Infecções por Flaviviridae/genética , RNA Mensageiro/genética , Adenosina/genética , Linhagem Celular , Dengue/virologia , Vírus da Dengue/genética , Flaviviridae/genética , Hepacivirus/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/genética , Zika virus/genética , Infecção por Zika virus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA