Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Biol Sci ; 290(1992): 20222326, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750186

RESUMO

Forage fishes are key energy conduits that transfer primary and secondary productivity to higher trophic levels. As novel environmental conditions caused by climate change alter ecosystems and predator-prey dynamics, there is a critical need to understand how forage fish control bottom-up forcing of food web dynamics. In the northeast Pacific, northern anchovy (Engraulis mordax) is an important forage species with high interannual variability in population size that subsequently impacts the foraging and reproductive ecology of marine predators. Anchovy habitat suitability from a species distribution model (SDM) was assessed as an indicator of the diet, distribution and reproduction of four predator species. Across 22 years (1998-2019), this anchovy ecosystem indicator (AEI) was significantly positively correlated with diet composition of all species and the distribution of common murres (Uria aalge), Brandt's cormorants (Phalacrocorax penicillatus) and California sea lions (Zalophus californianus), but not rhinoceros auklets (Cerorhinca monocerata). The capacity for the AEI to explain variability in predator reproduction varied by species but was strongest with cormorants and sea lions. The AEI demonstrates the utility of forage SDMs in creating ecosystem indicators to guide ecosystem-based management.


Assuntos
Charadriiformes , Ecossistema , Animais , Cadeia Alimentar , Aves , Peixes , Reprodução
2.
Environ Sci Technol ; 57(48): 19214-19222, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37963111

RESUMO

Pacific herring (Clupea pallasii), a cornerstone of marine food webs, generally spawn on marine macroalgae in shallow nearshore areas that are disproportionately at risk from oil spills. Herring embryos are also highly susceptible to toxicity from chemicals leaching from oil stranded in intertidal and subtidal zones. The water-soluble components of crude oil trigger an adverse outcome pathway that involves disruption of the physiological functions of cardiomyocytes in the embryonic herring heart. In previous studies, impaired ionoregulation (calcium and potassium cycling) in response to specific polycyclic aromatic hydrocarbons (PAHs) corresponds to lethal embryolarval heart failure or subtle chamber malformations at the high and low ends of the PAH exposure range, respectively. Sublethal cardiotoxicity, which involves an abnormal outgrowth (ballooning) of the cardiac ventricular chamber soon after hatching, subsequently compromises juvenile heart structure and function, leading to pathological hypertrophy of the ventricle and reduced individual fitness, measured as cardiorespiratory performance. Previous studies have not established a threshold for these sublethal and delayed-in-time effects, even with total (∑)PAH exposures as low as 29 ng/g of wet weight (tissue dose). Here, we extend these earlier findings showing that (1) cyp1a gene expression provides an oil exposure metric that is more sensitive than typical quantitation of PAHs via GC-MS and (2) heart morphometrics in herring embryos provide a similarly sensitive measure of toxic response. Early life stage injury to herring (impaired heart development) thus occurs below the quantitation limits for PAHs in both water and embryonic tissues as a conventional basis for assessing oil-induced losses to coastal marine ecosystems.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Água , Ecossistema , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Petróleo/toxicidade , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Peixes/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
3.
Glob Chang Biol ; 28(4): 1315-1331, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902203

RESUMO

The sustainability of global seafood supply to meet increasing demand is facing several challenges, including increasing consumption levels due to a growing human population, fisheries resources over-exploitation and climate change. Whilst growth in seafood production from capture fisheries is limited, global mariculture production is expanding. However, climate change poses risks to the potential seafood production from mariculture. Here, we apply a global mariculture production model that accounts for changing ocean conditions, suitable marine area for farming, fishmeal and fish oil production, farmed species dietary demand, farmed fish price and global seafood demand to project mariculture production under two climate and socio-economic scenarios. We include 85 farmed marine fish and mollusc species, representing about 70% of all mariculture production in 2015. Results show positive global mariculture production changes by the mid and end of the 21st century relative to the 2000s under the SSP1-2.6 scenario with an increase of 17%±5 and 33%±6, respectively. However, under the SSP5-8.5 scenario, an increase of 8%±5 is projected, with production peaking by mid-century and declining by 16%±5 towards the end of the 21st century. More than 25% of mariculture-producing nations are projected to lose 40%-90% of their current mariculture production potential under SSP5-8.5 by mid-century. Projected impacts are mainly due to the direct ocean warming effects on farmed species and suitable marine areas, and the indirect impacts of changing availability of forage fishes supplies to produce aquafeed. Fishmeal replacement with alternative protein can lower climate impacts on a subset of finfish production. However, such adaptation measures do not apply to regions dominated by non-feed-based farming (i.e. molluscs) and regions losing substantial marine areas suitable for mariculture. Our study highlights the importance of strong mitigation efforts and the need for different climate adaptation options tailored to the diversity of mariculture systems, to support climate-resilient mariculture development.


Assuntos
Mudança Climática , Pesqueiros , Aclimatação , Animais , Dieta , Peixes , Humanos
4.
Ecol Appl ; 32(2): e2498, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787943

RESUMO

Sustainable human exploitation of living marine resources stems from a delicate balance between yield stability and population persistence to achieve socioeconomic and conservation goals. But our imperfect knowledge of how oceanic oscillations regulate temporal variation in an exploited species can obscure the risk of missing management targets. We illustrate how applying a management policy to suppress fluctuations in fishery yield in variable environments (prey density and regional climate) can present unintended outcomes in harvested predators and the sustainability of harvesting. Using Atlantic cod (Gadus morhua, an apex predatory fish) in the Barents Sea as a case study we simulate age-structured population and harvest dynamics through time-varying, density-dependent and density-independent processes with a stochastic, process-based model informed by 27-year monitoring data. In this model, capelin (Mallotus villosus, a pelagic forage fish), a primary prey of cod, fluctuations modulate the strength of density-dependent regulation primarily through cannibalistic pressure on juvenile cod survival; sea temperature fluctuations modulate thermal regulation of cod feeding, growth, maturation, and reproduction. We first explore how capelin and temperature fluctuations filtered through cod intrinsic dynamics modify catch stability and then evaluate how management to suppress short-term variability in catch targets alters overharvest risk. Analyses revealed that suppressing year-to-year catch variability impedes management responses to adjust fishing pressure, which becomes progressively out of sync with variations in cod abundance. This asynchrony becomes amplified in fluctuating environments, magnifying the amplitudes of both fishing pressure and cod abundance and then intensifying the density-dependent regulation of juvenile survival through cannibalism. Although these transient dynamics theoretically give higher average catches, emergent, quasicyclic behaviors of the population would increase long-term yield variability and elevate overharvest risk. Management strategies that overlook the interplay of extrinsic (fishing and environment) and intrinsic (life history and demography) fluctuations thus can inadvertently destabilize fish stocks, thereby jeopardizing the sustainability of harvesting. These policy implications underscore the value of ecosystem approaches to designing management measures to sustainably harvest ecologically connected resources while achieving socioeconomic security.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Gadus morhua , Animais , Gadus morhua/fisiologia , Oceanos e Mares , Dinâmica Populacional
5.
Restor Ecol ; 30(8): e13652, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36589387

RESUMO

Restoration of degraded coastal and estuarine habitats owing to human activities is a major global concern. In Puget Sound, Washington, U.S.A., removal of hard armor from beaches and intertidal zones has become a priority for state and local agencies. However, the effectiveness of these shoreline restoration programs for subtidal habitats and fish is unknown. We surveyed six restoration sites in Puget Sound over 2 years to evaluate associations between shoreline restoration and subtidal fish abundance. We measured the abundance of juvenile salmonids and forage fishes along armored, restored, and reference shorelines. Bayesian generalized linear models showed limited support for associations between shoreline restoration and these fishes in the 3-7 years since armor removal. Pacific herring were more abundant at reference shorelines; the shoreline effect for surf smelt varied by survey site. Shoreline restoration was not an important predictor of salmonid abundance; the best models for Chinook and chum salmon included predictors for survey site and eelgrass, respectively. The retention of survey site in several species' top models reveals the influence of the broader landscape context. We also found seasonal variation in abundance for chum salmon and surf smelt. Our results suggest that juvenile forage fish and salmonids in estuaries likely have unique responses to shoreline features, and that the positive effects of armor removal either do not extend into subtidal areas or are not detectable at local scales. To be most effective, coastal restoration programs should consider broader landscape patterns as well as species-specific habitat needs when prioritizing investments.

6.
J Fish Biol ; 101(1): 312-316, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596625

RESUMO

The authors estimated life-history parameters of a clupeid forage fish, Opisthonema medirastre, by sampling juveniles over the course of a year in the central region of the Galápagos Islands, Ecuador. They collected 160 juveniles on the south coast of Santa Cruz Island during the wet/warm season that were 16-48 mm standard length, were 30-88 days old, had hatched at the beginning of the wet/warm season and had grown at 0.4 mm day-1 . The results suggest that in Galápagos, O. medirastre reproduce during the wet/warm season mostly under neutral ENSO conditions.


Assuntos
Peixes , Animais , Equador , Estações do Ano
7.
Glob Chang Biol ; 27(9): 1859-1878, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577102

RESUMO

During the Pacific marine heatwave of 2014-2016, abundance and quality of several key forage fish species in the Gulf of Alaska were simultaneously reduced throughout the system. Capelin (Mallotus catervarius), sand lance (Ammodytes personatus), and herring (Clupea pallasii) populations were at historically low levels, and within this community abrupt declines in portfolio effects identify trophic instability at the onset of the heatwave. Although compensatory changes in age structure, size, growth or energy content of forage fish were observed to varying degrees among all these forage fish, none were able to fully mitigate adverse impacts of the heatwave, which likely included both top-down and bottom-up forcing. Notably, changes to the demographic structure of forage fish suggested size-selective removals typical of top-down regulation. At the same time, changes in zooplankton communities may have driven bottom-up regulation as copepod community structure shifted toward smaller, warm water species, and euphausiid biomass was reduced owing to the loss of cold-water species. Mediated by these impacts on the forage fish community, an unprecedented disruption of the normal pelagic food web was signaled by higher trophic level disruptions during 2015-2016, when seabirds, marine mammals, and groundfish experienced shifts in distribution, mass mortalities, and reproductive failures. Unlike decadal-scale variability underlying ecosystem regime shifts, the heatwave appeared to temporarily overwhelm the ability of the forage fish community to buffer against changes imposed by warm water anomalies, thereby eliminating any ecological advantages that may have accrued from having a suite of coexisting forage species with differing life-history compensations.


Assuntos
Ecossistema , Peixes , Alaska , Animais , Cadeia Alimentar , Zooplâncton
8.
Ecol Appl ; 31(7): e02401, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218492

RESUMO

Fisheries for forage fish may affect the survival and reproduction of piscivorous predators, especially seabirds. However, seabirds have evolved life history strategies to cope with natural fluctuations in prey and it is difficult to separate effects of fishing on seabirds from impacts of natural variability. To date, potential impacts of forage fisheries on seabirds have mainly been explored using ecosystem models that simplify seabird-forage-fish dynamics. We sought to explore how different forage fish harvest policies affect seabirds, accounting for structured population dynamics, life history specifics, and variation in forage fish dependencies across life stages; and how impacts vary across seabird and forage fish life histories. To explore these impacts, we developed an age-stage structured seabird model that incorporates seabird diet specialization, foraging behavior, and reproductive strategy, as well as different functional responses between prey availability and adult survival, juvenile survival, reproductive success, and breeder propensity. We parameterized this model for two contrasting seabird life histories: (1) a low fecundity, limited foraging range, diet specialist ("restricted"); and (2) a high fecundity, wide ranging, diet generalist ("flexible"). Each was paired with two different forage fish prey archetypes that were fished under various control rules. The restricted seabird population was expectedly less robust to constant fishing pressure than the flexible seabird, and this sensitivity was mainly due to functional response parameterization, rather than other life history parameters. Particularly, the restricted seabird was highly sensitive to the relationship between prey availability and adult survival but was not sensitive to the relationship between prey and reproductive success. An adaptive biomass-limit harvest rule for forage fish resulted in substantially higher seabird abundance compared to constant fishing across all scenarios, with minimal trade-offs to the fishery (depending on fishery management objectives). However, mechanisms governing the impact of the forage fish fishery on the seabird varied by forage fish type. Therefore, tailoring forage fish management strategies to forage fish life history can lead to mutually acceptable outcomes for fisheries and seabirds. If data or time are limited, an adaptive control rule is likely a safe bet for meeting seabird conservation objectives with limited impacts to fisheries.


Assuntos
Ecossistema , Pesqueiros , Animais , Biomassa , Aves , Conservação dos Recursos Naturais , Dinâmica Populacional
9.
Conserv Biol ; 35(5): 1540-1551, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33899227

RESUMO

Forage fish-small, low trophic level, pelagic fish such as herrings, sardines, and anchovies-are important prey species in marine ecosystems and also support large commercial fisheries. In many parts of the world, forage fish fisheries are managed using precautionary principles that target catch limits below the maximum sustainable yield. However, there are increasing calls to further limit forage fish catch to safeguard their fish, seabird, and marine mammal predators. The effectiveness of these extra-precautionary regulations, which assume that increasing prey abundance increases predator productivity, are under debate. In this study, we used prey-linked population models to measure the influence of forage fish abundance on the population growth rates of 45 marine predator populations representing 32 fish, seabird, and mammal species from 5 regions around the world. We used simulated data to confirm the ability of the statistical model to accurately detect prey influences under varying levels of influence strength and process variability. Our results indicate that predator productivity was rarely influenced by the abundance of their forage fish prey. Only 6 predator populations (13% of the total) were positively influenced by increasing prey abundance and the model exhibited high power to detect prey influences when they existed. These results suggest that additional limitation of forage fish harvest to levels well below sustainable yields would rarely result in detectable increases in marine predator populations.


Evaluación de los Efectos de la Abundancia de Peces Forrajeros sobre los Depredadores Marinos Resumen Los peces forrajeros-peces pequeños, pelágicos y de bajo nivel trófico como el arenque, las sardinas y las anchoas-son especies presa importantes en los ecosistemas marinos y además mantienen a grandes pesquerías comerciales. En muchas partes del mundo, las pesquerías de los peces forrajeros son manejadas mediante el uso de principios precautorios que se enfocan en los límites de captura por debajo de la producción máxima sostenible. Sin embargo, cada vez hay más peticiones para incrementar la limitación de la captura de peces forrajeros para salvaguardar a las especies depredadoras de peces, aves y mamíferos marinos asociadas a estos peces. La efectividad de estas regulaciones, que están basadas en el supuesto de que al incrementar la abundancia de presas incrementa la productividad de los depredadores, está en debate. Usamos modelos poblacionales vinculados a la presa para medir la influencia de la abundancia de los peces forrajeros sobre las tasas de crecimiento poblacional de 45 poblaciones de depredadores marinos (28 peces, 10 aves marinas y 7 mamíferos) en cinco regiones alrededor del mundo. Usamos datos simulados para confirmar la habilidad del modelo estadístico para detectar certeramente las influencias de la presa bajo niveles variantes de fuerza de influencia y de proceso de variabilidad. La productividad del depredador rara vez afectó a la abundancia de su presa forrajera. Sólo seis poblaciones de depredadores (13% del total) estuvieron afectadas positivamente por la creciente abundancia de la presa y el modelo exhibió un poder alto para detectar las influencias de la presa cuando estuvieron presentes. Estos resultados sugieren que las limitaciones sobre la pesca de peces forrajeros a niveles muy por debajo de la productividad sostenible pocas veces resultarían en incrementos detectables en las poblaciones de depredadores marinos.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Conservação dos Recursos Naturais , Pesqueiros , Peixes , Comportamento Predatório
10.
J Fish Biol ; 99(1): 153-163, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33624835

RESUMO

Research evaluating the toxicity of the harmful dinoflagellate Cochlodinium (a.k.a. Margalefidinium) polykrikoides has been dominated by acute bioassays while the sublethal effects remain less well understood. This study examined the sublethal effects of C. polykrikoides exposure on the feeding behavior of larval estuarine fish. Sheepshead minnow (Cyprinodon variegatus) larvae were used in feeding experiments which assessed the total consumption of zooplankton prey (i.e., Artemia nauplii) over defined time periods. Larvae exposed to intermediate concentrations (i.e., 102 cells ml-1 ) of clonal cultures of C. polykrikoides saw statistically significant reductions (range = 10%-81%) in the Artemia consumed compared to controls (i.e., filtered seawater, culture media or nontoxin producing dinoflagellate). These reductions were found independent of whether the larvae were fed or starved prior to experimentation. As these concentrations are similar to those typically found during mild blooms or at the periphery of dense blooms, these findings have significant implications for the feeding behavior of ichthyoplankton.


Assuntos
Cyprinidae , Dinoflagellida , Peixes Listrados , Animais , Comportamento Alimentar , Proliferação Nociva de Algas , Larva
11.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29343602

RESUMO

Global forage-fish landings are increasing, with potentially grave consequences for marine ecosystems. Predators of forage fish may be influenced by this harvest, but the nature of these effects is contentious. Experimental fishery manipulations offer the best solution to quantify population-level impacts, but are rare. We used Bayesian inference to examine changes in chick survival, body condition and population growth rate of endangered African penguins Spheniscus demersus in response to 8 years of alternating time-area closures around two pairs of colonies. Our results demonstrate that fishing closures improved chick survival and condition, after controlling for changing prey availability. However, this effect was inconsistent across sites and years, highlighting the difficultly of assessing management interventions in marine ecosystems. Nevertheless, modelled increases in population growth rates exceeded 1% at one colony; i.e. the threshold considered biologically meaningful by fisheries management in South Africa. Fishing closures evidently can improve the population trend of a forage-fish-dependent predator-we therefore recommend they continue in South Africa and support their application elsewhere. However, detecting demographic gains for mobile marine predators from small no-take zones requires experimental time frames and scales that will often exceed those desired by decision makers.


Assuntos
Teorema de Bayes , Pesqueiros , Cadeia Alimentar , Spheniscidae/fisiologia , Animais , Conservação dos Recursos Naturais , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , África do Sul
12.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814656

RESUMO

Plastic pollution is an anthropogenic stressor in marine ecosystems globally. Many species of marine fish (more than 50) ingest plastic debris. Ingested plastic has a variety of lethal and sublethal impacts and can be a route for bioaccumulation of toxic compounds throughout the food web. Despite its pervasiveness and severity, our mechanistic understanding of this maladaptive foraging behaviour is incomplete. Recent evidence suggests that the chemical signature of plastic debris may explain why certain species are predisposed to mistaking plastic for food. Anchovy (Engraulis sp.) are abundant forage fish in coastal upwelling systems and a critical prey resource for top predators. Anchovy ingest plastic in natural conditions, though the mechanism they use to misidentify plastic as prey is unknown. Here, we presented wild-caught schools of northern anchovy (Engraulis mordax) with odour solutions made of plastic debris and clean plastic to compare school-wide aggregation and rheotactic responses relative to food and food odour presentations. Anchovy schools responded to plastic debris odour with increased aggregation and reduced rheotaxis. These results were similar to the effects food and food odour presentations had on schools. Conversely, these behavioural responses were absent in clean plastic and control treatments. To our knowledge, this is the first experimental evidence that adult anchovy use odours to forage. We conclude that the chemical signature plastic debris acquires in the photic zone can induce foraging behaviours in anchovy schools. These findings provide further support for a chemosensory mechanism underlying plastic consumption by marine wildlife. Given the trophic position of forage fish, these findings have considerable implications for aquatic food webs and possibly human health.


Assuntos
Comportamento Apetitivo , Peixes/fisiologia , Odorantes , Plásticos/química , Poluentes Químicos da Água/química , Animais , Cadeia Alimentar
13.
J Exp Biol ; 220(Pt 15): 2717-2725, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495869

RESUMO

In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax, during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration.


Assuntos
Comportamento Alimentar , Peixes/fisiologia , Natação , Animais , Fenômenos Biomecânicos
14.
Ecol Appl ; 27(2): 378-388, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28221708

RESUMO

Populations of small pelagic fish are strongly influenced by climate. The inability of managers to anticipate environment-driven fluctuations in stock productivity or distribution can lead to overfishing and stock collapses, inflexible management regulations inducing shifts in the functional response to human predators, lost opportunities to harvest populations, bankruptcies in the fishing industry, and loss of resilience in the human food supply. Recent advances in dynamical global climate prediction systems allow for sea surface temperature (SST) anomaly predictions at a seasonal scale over many shelf ecosystems. Here we assess the utility of SST predictions at this "fishery relevant" scale to inform management, using Pacific sardine as a case study. The value of SST anomaly predictions to management was quantified under four harvest guidelines (HGs) differing in their level of integration of SST data and predictions. The HG that incorporated stock biomass forecasts informed by skillful SST predictions led to increases in stock biomass and yield, and reductions in the probability of yield and biomass falling below socioeconomic or ecologically acceptable levels. However, to mitigate the risk of collapse in the event of an erroneous forecast, it was important to combine such forecast-informed harvest controls with additional harvest restrictions at low biomass.


Assuntos
Clima , Conservação dos Recursos Naturais/métodos , Pesqueiros , Peixes , Animais , Biomassa , Oceano Pacífico , Estados do Pacífico , Estações do Ano , Temperatura , Tempo (Meteorologia)
15.
Proc Natl Acad Sci U S A ; 111(9): E807-16, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550468

RESUMO

Pacific herring (Clupea pallasii), a foundation of coastal social-ecological systems, is in decline throughout much of its range. We assembled data on fish bones from 171 archaeological sites from Alaska, British Columbia, and Washington to provide proxy measures of past herring distribution and abundance. The dataset represents 435,777 fish bones, dating throughout the Holocene, but primarily to the last 2,500 y. Herring is the single-most ubiquitous fish taxon (99% ubiquity) and among the two most abundant taxa in 80% of individual assemblages. Herring bones are archaeologically abundant in all regions, but are superabundant in the northern Salish Sea and southwestern Vancouver Island areas. Analyses of temporal variability in 50 well-sampled sites reveals that herring exhibits consistently high abundance (>20% of fish bones) and consistently low variance (<10%) within the majority of sites (88% and 96%, respectively). We pose three alternative hypotheses to account for the disjunction between modern and archaeological herring populations. We reject the first hypothesis that the archaeological data overestimate past abundance and underestimate past variability. We are unable to distinguish between the second two hypotheses, which both assert that the archaeological data reflect a higher mean abundance of herring in the past, but differ in whether variability was similar to or less than that observed recently. In either case, sufficient herring was consistently available to meet the needs of harvesters, even if variability is damped in the archaeological record. These results provide baseline information prior to herring depletion and can inform modern management.


Assuntos
Distribuição Animal/fisiologia , Conservação dos Recursos Naturais/tendências , Pesqueiros/estatística & dados numéricos , Peixes/fisiologia , Alaska , Animais , Arqueologia , Colúmbia Britânica , Conservação dos Recursos Naturais/métodos , Coleta de Dados , Pesqueiros/história , Pesqueiros/métodos , História Antiga , Oceano Pacífico , Dinâmica Populacional , Washington
16.
Environ Monit Assess ; 189(12): 610, 2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29103197

RESUMO

Twenty specially designed fishing nets were used to catch broodstock of the forage fish roach and rudd (Rutilus rutilus and Scardinius erythrophthalmus). The monofilament gill nets were of different mesh sizes (18, 22, 24, and 26 mm) but of identical dimensions (4 × 50 m). The fish, caught in Sidi Salem reservoir in 2014, amounted to a total of 8901 roach and rudd caught at 41 different times; 3335 broodstock forage fish were transferred to 11 forage fish-deficient Tunisian reservoirs. The best yields (0.464 fish/m2) were obtained with fishing gear fitted with 18-mm mesh size; however, fish mortality with this net was very high, exceeding 83.36%. The greatest efficiency was obtained using nets of 22- and 24-mm mesh with a number of fish per unit effort (NPUE) of 0.181 and 0.173 fish/m2, and a mortality of 54.34 and 53.85%, respectively. Gill nets of 26-mm mesh size were inappropriate (lowest yield 0.129 fish/m2). Length of rudd and roach at first maturity and Gonadosomatic index (GSI) were measured, indicating that all transferred fish were mature. Transfer techniques were improved by holding the captured fish for 5 days before release into the host reservoir.


Assuntos
Conservação dos Recursos Naturais/métodos , Cyprinidae/fisiologia , Pesqueiros/estatística & dados numéricos , Animais , Monitoramento Ambiental , Pesqueiros/provisão & distribuição , Brânquias , Tunísia
17.
Glob Chang Biol ; 22(3): 1214-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26599719

RESUMO

Large, migratory predators are often cited as sentinel species for ecosystem processes and climate-related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20-year period (1993-2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi-decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change.


Assuntos
Mudança Climática , Dieta , Ecossistema , Jubarte/fisiologia , Animais , California , Feminino , Cadeia Alimentar , Masculino , Oceanos e Mares , Oceano Pacífico , Estações do Ano , Temperatura
18.
Oecologia ; 180(1): 111-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26427990

RESUMO

Demographic, functional, or habitat diversity can confer stability on populations via portfolio effects (PEs) that integrate across multiple ecological responses and buffer against environmental impacts. The prevalence of these PEs in aquatic organisms is as yet unknown, and can be difficult to quantify; however, understanding mechanisms that stabilize populations in the face of environmental change is a key concern in ecology. Here, we examine PEs in Pacific herring (Clupea pallasii) in Puget Sound (USA) using a 40-year time series of biomass data for 19 distinct spawning population units collected using two survey types. Multivariate auto-regressive state-space models show independent dynamics among spawning subpopulations, suggesting that variation in herring production is partially driven by local effects at spawning grounds or during the earliest life history stages. This independence at the subpopulation level confers a stabilizing effect on the overall Puget Sound spawning stock, with herring being as much as three times more stable in the face of environmental perturbation than a single population unit of the same size. Herring populations within Puget Sound are highly asynchronous but share a common negative growth rate and may be influenced by the Pacific Decadal Oscillation. The biocomplexity in the herring stock shown here demonstrates that preserving spatial and demographic diversity can increase the stability of this herring population and its availability as a resource for consumers.


Assuntos
Biomassa , Ecossistema , Peixes , Animais , Ecologia , Peixes/fisiologia , Dinâmica Populacional , Reprodução , Washington
19.
Conserv Biol ; 29(1): 154-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25195954

RESUMO

Identifying drivers of ecosystem change in large marine ecosystems is central for their effective management and conservation. This is a sizable challenge, particularly in ecosystems transcending international borders, where monitoring and conservation of long-range migratory species and their habitats are logistically and financially problematic. Here, using tools borrowed from epidemiology, we elucidated common drivers underlying species declines within a marine ecosystem, much in the way epidemiological analyses evaluate risk factors for negative health outcomes to better inform decisions. Thus, we identified ecological traits and dietary specializations associated with species declines in a community of marine predators that could be reflective of ecosystem change. To do so, we integrated count data from winter surveys collected in long-term marine bird monitoring programs conducted throughout the Salish Sea--a transboundary large marine ecosystem in North America's Pacific Northwest. We found that decadal declines in winter counts were most prevalent among pursuit divers such as alcids (Alcidae) and grebes (Podicipedidae) that have specialized diets based on forage fish, and that wide-ranging species without local breeding colonies were more prone to these declines. Although a combination of factors is most likely driving declines of diving forage fish specialists, we propose that changes in the availability of low-trophic prey may be forcing wintering range shifts of diving birds in the Salish Sea. Such a synthesis of long-term trends in a marine predator community not only provides unique insights into the types of species that are at risk of extirpation and why, but may also inform proactive conservation measures to counteract threats--information that is paramount for species-specific and ecosystem-wide conservation.


Assuntos
Organismos Aquáticos/fisiologia , Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Animais , Biomassa , Colúmbia Britânica , Metabolismo Energético , Comportamento Alimentar , Cadeia Alimentar , Dinâmica Populacional , Estações do Ano , Washington
20.
Sci Total Environ ; 886: 163996, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164101

RESUMO

Estuarine systems have received ongoing mercury (Hg) inputs from both point sources and regional contamination and have high legacy Hg in sediments. This is an environmental concern given that coastal seafood is an important vector for human exposure to methylmercury (MeHg). The base of the food chain represents the most important trophic steps for MeHg bioaccumulation. The magnitude of the uptake by phytoplankton, and their consumers, is influenced by many factors, in addition to sediment and water MeHg concentrations, that impact MeHg assimilation into phytoplankton and the trophic transfer to higher trophic levels, both benthic and pelagic. For forage fish, such as mummichogs (Fundulus heteroclitus), abiotic and biotic (bioenergetic) factors can influence their MeHg content, and diet is also important as they feed both on benthic and pelagic prey. Given that the importance of sediment MeHg versus pelagic MeHg sources has been debated, we updated a phytoplankton bioaccumulation model, and coupled this with a bioaccumulation model for MeHg concentration in mummichog tissue to examine the controlling factors for sites, from Maine to Maryland, USA, ranging widely in their Hg concentrations and other variables. The study highlighted the importance of DOC in modulating uptake into the pelagic food web, but also demonstrated the importance of diet in controlling mummichog MeHg. Finally, the relative importance of MeHg source - sediment or water column - was correlated with the level of Hg contamination. Sediment-derived MeHg was a more important source for highly Hg contaminated systems. As water column and sediment MeHg are not strongly correlated for the studied ecosystems, their importance as a source of MeHg to mummichogs varies with location. The study highlights the differences across ecosystems in MeHg bioaccumulation pathways, and that uptake into phytoplankton is an important variable controlling forage fish concentration.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Humanos , Compostos de Metilmercúrio/metabolismo , Cadeia Alimentar , Ecossistema , Bioacumulação , Mercúrio/análise , Peixes/metabolismo , Fitoplâncton/metabolismo , Água/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA