Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2407062121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900794

RESUMO

Particular frost patterns on natural leaves had prompted Yao et al. [Y. Yao et al., Proc. Natl. Acad. Sci. U.S.A. 117, 6323-6329 (2020)] to investigate the underlying physics. Their work revealed why on corrugated surfaces ice forms on crests and dries out adjacent grooves. In the absence of frost, in contrast, grooves tend to constitute niches on a leaf where microorganisms are less limited by moisture than in other locations. Here, we show that microorganisms able to nucleate ice before it forms on crests can modify the frosting pattern to their advantage. This ability might drive in cold arid environments the association between certain microorganisms and plants.


Assuntos
Congelamento , Folhas de Planta , Gelo
2.
Proc Natl Acad Sci U S A ; 119(31): e2200748119, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35905317

RESUMO

When materials freeze, they often undergo damage due to ice growth. Although this damage is commonly ascribed to the volumetric expansion of water upon freezing, it is usually driven by the flow of water toward growing ice crystals that feeds their growth. The freezing of this additional water can cause a large buildup of stress. Here, we demonstrate a technique for characterizing this stress buildup with unprecedented spatial resolution. We create a stable ice-water interface in a controlled temperature gradient and measure the deformation of the confining boundary. Analysis of the deformation field reveals stresses applied to the boundary with [Formula: see text](micrometers) spatial resolution. Globally, stresses increase steadily over time as liquid water is transported to more deeply undercooled regions. Locally, stresses increase until ice growth is stalled by the confining stresses. Importantly, we find a strong localization of stresses, which significantly increases the likelihood of damage caused by the presence of ice, even in apparently benign freezing situations. Ultimately, the limiting stress that the ice exerts is proportional to the local undercooling, in accordance with the Clapeyron equation, which describes the equilibrium between a stressed solid and its melt. Our results are closely connected to the condensation pressure during liquid-liquid phase separation and the crystallization pressure for growing crystals. Thus, they are highly relevant in fields ranging from cryopreservation and frost heave to food science, rock weathering, and art conservation.

3.
Proc Natl Acad Sci U S A ; 119(18): e2117464119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476522

RESUMO

As northern latitudes experience rapid winter warming, there is an urgent need to assess the effect of varying winter conditions on tree growth and forest carbon sequestration potential. We examined tree growth responses to variability in cold-season (November­April) frequency of freeze days (FFD) over 1951 to 2018 using tree-ring data from 35,217 trees and 57 species at 4,375 sites distributed across Canada. We found that annual radial growth responses to FFD varied by species, with some commonalities across genera and clades. The growth of gymnosperms with late spring leaf-out strategies was negatively related to FFD; years with high FFD were most detrimental to the annual growth of Pinus banksiana, Pinus contorta, Larix lyalli, Abies amabilis, and Abies lasiocarpa. In contrast, the growth of angiosperms with early leaf-out strategies, namely, Populus tremuloides and Betula papyrifera, was better in the coldest years, and gymnosperms with intermediate leaf-out timing, such as widespread Picea mariana and Picea glauca, had no consistent relationship to FFD. Tree growth responses to FFD were further modulated by tree size, tree age, regional climate (i.e., mean cold-season temperature), and local site conditions. Overall, our results suggest that moderately warming winters may temporarily improve the growth of widespread pines and some high-elevation conifers in western Canada, whereas warming winters may be detrimental to the growth of widespread boreal angiosperms. Our findings also highlight the value of using species-specific climate-growth relationships to refine predictions of forest carbon dynamics.


Assuntos
Florestas , Árvores , Sequestro de Carbono , Mudança Climática , Estações do Ano
4.
New Phytol ; 241(1): 114-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753537

RESUMO

The Mediterranean alpine is one of the most vulnerable ecosystems under future environmental change. Yet, patterns, timing and environmental controls of plant growth are poorly investigated. We aimed at an improved understanding of growth processes, as well as stem swelling and shrinking patterns, by examining two common coexisting green-stemmed shrub species. Using dendrometers to measure daily stem diameter changes, we separated these changes into water-related shrinking and swelling and irreversible growth. Implementing correlation analysis, linear mixed effects models, and partial least squares regression on time series of stem diameter changes, with corresponding soil temperature and moisture data as environmental predictors, we found species-specific growth patterns related to different drought-adaptive strategies. We show that the winter-cold-adapted species Cytisus galianoi uses a drought tolerance strategy combined with a high ecological plasticity, and is, thus, able to gain competitive advantages under future climate warming. In contrast, Genista versicolor is restricted to a narrower ecological niche using a winter-cold escape and drought avoidance strategy, which might be of disadvantage in a changing climate. Pregrowth environmental conditions were more relevant than conditions during growth, controlling the species' resource availability. Thus, studies focusing on current driver constellations of growth may fail to predict a species' ecological niche and its potential future performance.


Assuntos
Clima , Ecossistema , Estações do Ano , Temperatura , Secas , Mudança Climática
5.
Plant Cell Environ ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253967

RESUMO

Freezing air temperatures kill most leaves, yet the leaves of some species can survive these events. Tracking the temporal and spatial dynamics of freezing remains an impediment to characterizing frost tolerance. Here we deploye time-lapse imaging and image subtraction analysis, coupled with fine wire thermocouples, to discern the in situ spatial dynamics of freezing and thawing. Our method of analysis of pixel brightness reveals that ice formation in leaves exposed to natural frosts initiates in mesophyll before spreading to veins, and that while ex situ xylem sap freezes near 0°C, in situ xylem sap has a freezing point of -2°C in our model freezing-resistant species of Lonicera. Photosynthetic rates in leaves that have been exposed to a rapid freeze or thaw do not recover, but leaves exposed to a slow, natural freezing and thawing to -10°C do recover. Using this method, we are able to quantify the spatial formation and timing of freezing events in leaves, and suggest that in situ and ex situ freezing points for xylem sap can differ by more than 4°C depending on the rate of temperature decline.

6.
Plant Cell Environ ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873953

RESUMO

Allotetraploid white clover (Trifolium repens) formed during the last glaciation through hybridisation of two European diploid progenitors from restricted niches: one coastal, the other alpine. Here, we examine which hybridisation-derived molecular events may have underpinned white clover's postglacial niche expansion. We compared the transcriptomic frost responses of white clovers (an inbred line and an alpine-adapted ecotype), extant descendants of its progenitor species and a resynthesised white clover neopolyploid to identify genes that were exclusively frost-induced in the alpine progenitor and its derived subgenomes. From these analyses we identified galactinol synthase, the rate-limiting enzyme in biosynthesis of the cryoprotectant raffinose, and found that the extant descendants of the alpine progenitor as well as the neopolyploid white clover rapidly accumulated significantly more galactinol and raffinose than the coastal progenitor under cold stress. The frost-induced galactinol synthase expression and rapid raffinose accumulation derived from the alpine progenitor likely provided an advantage during early postglacial colonisation for white clover compared to its coastal progenitor.

7.
J Exp Bot ; 75(20): 6405-6422, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39066622

RESUMO

Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, indicating that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.


Assuntos
Evolução Biológica , Secas , Congelamento , Poaceae , Estações do Ano , Poaceae/fisiologia , Adaptação Fisiológica , Resistência à Seca
8.
Ann Bot ; 134(2): 283-294, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38742700

RESUMO

BACKGROUND AND AIMS: Reduced snow cover and increased air temperature variability are predicted to expose overwintering herbaceous plants to more severe freezing in some northern temperate regions. Legumes are a key functional group that may exhibit lower freezing tolerance than other species in these regions, but this trend has been observed only for non-native legumes. Our aim was to confirm if this trend is restricted to non-native legumes or whether native legumes in these regions also exhibit low freezing tolerance. METHODS: First, we transplanted legumes (five non-native species and four native species) into either an old field (non-native) or a prairie (native) and used snow removal to expose the plots to increased soil freezing. Second, we grew plants in mesocosms (old field) and pots (prairie species) and exposed them in controlled environment chambers to a range of freezing treatments (control, 0, -5 or -10 °C) in winter or spring. We assessed freezing responses by comparing differences in biomass, cover and nodulation between freezing (or snow removal) treatments and controls. KEY RESULTS: Among legume species, lower freezing tolerance was positively correlated with a lower proportion of nodulated plants and active nodules, and under controlled conditions, freezing-induced reductions in above-ground biomass were lower on average in native legumes than in non-native legumes. Nevertheless, both non-native and native legumes (except Desmodium canadense) exhibited greater reductions in biomass in response to increased freezing than their non-leguminous neighbours, both in controlled environments and in the field. CONCLUSIONS: These results demonstrate that both native and non-native legumes exhibit low freezing tolerance relative to other herbaceous species in northern temperate plant communities. By reducing legume biomass and nodulation, increased soil freezing could reduce nitrogen inputs into these systems.


Assuntos
Fabaceae , Congelamento , Fabaceae/fisiologia , Fabaceae/crescimento & desenvolvimento , Biomassa , Estações do Ano , Solo , Aclimatação/fisiologia , Nodulação/fisiologia , Neve
9.
Am J Bot ; 111(10): e16424, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39432397

RESUMO

PREMISE: Reduced snow cover and increasing temperature variability can increase freezing stress for herbaceous plants in northern temperate regions. Legumes have emerged as a plant functional group that is highly sensitive to these changes relative to other herbaceous species in these regions. We explored root-nodulating bacterial associations and cyanogenesis as potential mechanisms explaining this relatively low freezing tolerance of legumes. METHODS: To examine the influence of bacterial associations, we grew four legume species with or without crushed-nodule inoculum at three severities of freezing, and three concentrations of nitrogen to disambiguate the direct benefits of increased nitrogen from the total bacterial effect. We quantified cyanogenesis via hydrogen cyanide production in both true leaves and cotyledons for nine legume species. RESULTS: Root nodulation generally only affected legume survival under low nitrogen, when freezing severity was moderate or low. However, for the frost-surviving plants, the growth advantage provided by nodulation decreased (it was often no longer significant with increasing freezing severity), and greater freezing severity reduced total nodule mass. In contrast, cyanogenesis was only detected in two of the nine species. CONCLUSIONS: The diminished performance of nodulated plants in response to freezing could place legumes at a competitive disadvantage and potentially explain their high sensitivity to freezing relative to other herbaceous species in northern temperate regions. Overall, this result has important implications for changes in soil fertility, community composition, and plant productivity in these ecosystems in the context of a changing winter climate.


Assuntos
Fabaceae , Congelamento , Nodulação , Fabaceae/fisiologia , Fabaceae/microbiologia , Cianeto de Hidrogênio/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Simbiose , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
10.
Cryobiology ; 117: 104954, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39151874

RESUMO

The present study analyzed four cations (K+, Ca2+, Mg2+, Fe2+) in leachate from freeze-injured spinach (Spinacia oleracea L. 'Reflect') leaves exposed for four freezing-durations (FDs) (0.5, 3.0, 5.5, 10.5 h) at -4.8 °C. Comparison of electrolyte leakage from right-after-thaw with that after 6-d recovery revealed that injury at 0.5 or 3 h FDs was recoverable but irreversible at 5.5 or 10.5 h FDs. Data suggests leakage of K+, the most abundant cation in leachate, can serve as a proxy for total electrolyte-leakage in determining plant freezing-tolerance and an ionic marker discerning moderate vs. severe injury. Quantitative correspondence between Ca2+- and K+-leakage supports earlier proposition that leaked K+ induces loss of membrane-Ca2+, which, in turn, promotes further K+-leakage due to weakened membrane. Reduced/undetectable Fe2+ in leachate at longer FDs suggests activation of Fenton reaction converting soluble Fe2+ into insoluble Fe3+. Enhanced Mg2+-leakage at greater freeze-injury suggests structural/functional impairment of chlorophyll/chloroplast complex.

11.
Int J Biometeorol ; 68(9): 1741-1755, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38850441

RESUMO

Riparian corridors often act as low-land climate refugia for temperate tree species in their southern distribution range. A plausible mechanism is the buffering of regional climate extremes by local physiographic and biotic factors. We tested this idea using a 3-year-long microclimate dataset collected along the Ciron river, a refugia for European beech (Fagus sylvatica) in southwestern France. Across the whole network, canopy gap fraction was the main predictor for spatial microclimatic variations, together with two other landscape features (elevation above the river and woodland fraction within a 300m radius). However, within the riparian forest only (canopy gap fraction < 25%, distance to the river < 150m), variations of up to -4°C and + 15% in summertime daily maximum air temperature and minimum relative humidity, respectively, were still found from the plateau to the cooler, moister river banks, only ~ 5-10m below. Elevation above the river was then identified as the main predictor, and explained the marked variations from the plateau to the banks much better than canopy gap fraction. The microclimate measured near the river is as cool but moister than the macroclimate encountered at 700-1000m asl further east in F. sylvatica's main distribution range. Indeed, at all locations, we found that air relative humidity was higher than expected from a temperature-only effect, suggesting that extra moisture is brought by the river. Our results explain well why beech trees in this climate refugium are restricted to the river gorges where microtopographic variations are the strongest and canopy gaps are rare.


Assuntos
Fagus , Florestas , Rios , França , Microclima , Temperatura , Clima , Umidade , Refúgio de Vida Selvagem
12.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338824

RESUMO

In nature, plants are exposed to a range of climatic conditions. Those negatively impacting plant growth and survival are called abiotic stresses. Although abiotic stresses have been extensively studied separately, little is known about their interactions. Here, we investigate the impact of long-term mild metal exposure on the cold acclimation of Salix viminalis roots using physiological, transcriptomic, and proteomic approaches. We found that, while metal exposure significantly affected plant morphology and physiology, it did not impede cold acclimation. Cold acclimation alone increased glutathione content and glutathione reductase activity. It also resulted in the increase in transcripts and proteins belonging to the heat-shock proteins and related to the energy metabolism. Exposure to metals decreased antioxidant capacity but increased catalase and superoxide dismutase activity. It also resulted in the overexpression of transcripts and proteins related to metal homeostasis, protein folding, and the antioxidant machinery. The simultaneous exposure to both stressors resulted in effects that were not the simple addition of the effects of both stressors taken separately. At the antioxidant level, the response to both stressors was like the response to metals alone. While this should have led to a reduction of frost tolerance, this was not observed. The impact of the simultaneous exposure to metals and cold acclimation on the transcriptome was unique, while at the proteomic level the cold acclimation component seemed to be dominant. Some genes and proteins displayed positive interaction patterns. These genes and proteins were related to the mitigation and reparation of oxidative damage, sugar catabolism, and the production of lignans, trehalose, and raffinose. Interestingly, none of these genes and proteins belonged to the traditional ROS homeostasis system. These results highlight the importance of the under-studied role of lignans and the ROS damage repair and removal system in plants simultaneously exposed to multiple stressors.


Assuntos
Lignanas , Metais Pesados , Salix , Antioxidantes/metabolismo , Salix/genética , Salix/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Plantas/metabolismo , Aclimatação , Lignanas/metabolismo , Temperatura Baixa
13.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892204

RESUMO

Winter plants acclimate to frost mainly during the autumn months, through the process of cold acclimation. Global climate change is causing changes in weather patterns such as the occurrence of warmer periods during late autumn or in winter. An increase in temperature after cold acclimation can decrease frost tolerance, which is particularly dangerous for winter crops. The aim of this study was to investigate the role of brassinosteroids (BRs) and BR analogues as protective agents against the negative results of deacclimation. Plants were cold-acclimated (3 weeks, 4 °C) and deacclimated (1 week, 16/9 °C d/n). Deacclimation generally reversed the cold-induced changes in the level of the putative brassinosteroid receptor protein (BRI1), the expression of BR-induced COR, and the expression of SERK1, which is involved in BR signal transduction. The deacclimation-induced decrease in frost tolerance in oilseed rape could to some extent be limited by applying steroid regulators. The deacclimation in plants could be detected using non-invasive measurements such as leaf reflectance, chlorophyll a fluorescence, and gas exchange monitoring.


Assuntos
Aclimatação , Brassica napus , Brassinosteroides , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Brassinosteroides/metabolismo , Brassica napus/fisiologia , Brassica napus/metabolismo , Estações do Ano , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
14.
J Hist Dent ; 72(2): 105-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39180729

RESUMO

The Antikamnia (AK) Chemical Company founded in 1890, which eventually was renamed The Antikamnia Remedy Company in 1819, was an important medicine company that thrived prior to passage of the 1906 Food and Drug act using smart worldwide marketing. As dangerous as the AK products were, success continued after 1906 by pursuing methods to flout regulations and stick to the marketing methods and legal maneuvering that kept AK sales strong. This article describes the tumultuous history of one of the most successful drug companies between 1890 and well into the 1920s.


Assuntos
Indústria Farmacêutica , História do Século XIX , História do Século XX , Humanos , Indústria Farmacêutica/história , Estados Unidos , Indústria Química/história , Indústria Química/legislação & jurisprudência
15.
BMC Plant Biol ; 23(1): 379, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37528348

RESUMO

BACKGROUND: Late-spring frost is one of the major factors limiting and reducing yield of Persian walnut (Juglans regia L.) in temperate regions, including Iran. Therefore, in the present study, seedling-originated genotypes of walnut were investigated to identify late-leafing genotypes with high-quality kernels for direct cultivation in orchards or as parents in breeding programs. In the first step, the variation of the selected trees was investigated in terms of traits related to phenology, vegetation, and fruit. In the second step, late-leafing trees were identified and their traits related to kernel quality were investigated to identify superior genotypes. RESULTS: Strong variabilities were exhibited among the studied genotypes based on the traits recorded. The genotypes showed high variation based on dates of leafing, full male flowering date, and full female flowering date, including very early, early, moderate, and late. After recording the leafing date, 21 late-leaf genotypes were identified and evaluated to select the superiors among them in terms of kernel quantity and quality. Among them, the values of nut-related traits ranged as follows: nut length: 30.12-49.74 mm, nut width: 29.31-37.17 mm, nut weight: 8.77-16.47 g, and shell thickness: 1.15-2.25 mm. The values of kernel-related traits ranged as follows: kernel length: 22.35-35.73 mm, kernel width: 21.79-29.03 mm, kernel weight: 3.22-8.17 g, and kernel percentage: 35.08-53.95%. CONCLUSIONS: According to the ideal values and situations of commercial characteristics of walnut, twelve promising late-leafing genotypes (No. 9, 13, 32, 33, 72, 77, 78, 82, 83, 86, 92, and 98) were identified and are recommended for cultivation in orchards.


Assuntos
Juglans , Nozes , Juglans/genética , Melhoramento Vegetal , Genótipo , Folhas de Planta/genética
16.
New Phytol ; 239(6): 2153-2165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36942966

RESUMO

Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited. Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering). Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions. Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.


Assuntos
Ecossistema , Urbanização , Humanos , Mudança Climática , Flores , Estações do Ano , Temperatura , Reprodução , Plantas
17.
Glob Chang Biol ; 29(8): 2351-2362, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36630538

RESUMO

Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.


Assuntos
Mudança Climática , Ecossistema , Árvores , Solo , Secas
18.
Glob Chang Biol ; 29(24): 6888-6899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37795645

RESUMO

In response to climate warming, migratory animals can alter their migration so that different events in the annual cycle are better aligned in space and time with suitable environmental conditions. Although such responses have been studied extensively during spring migration and the breeding season, much less is known about the influence of temperature on movements throughout autumn migration and how those movements result in a winter range and shifts therein. We use multi-year GPS tracking data to quantify how daily autumn movement and annual winter distance from the breeding grounds are related to temperature in the Western Palearctic Bewick's swan, a long-lived migratory waterbird whose winter range has shifted more than 350 km closer to the breeding grounds since 1970 due to individuals increasingly 'short-stopping' their autumn migration. We show that the migratory movement of swans is driven by lower temperatures throughout the autumn season, with individuals during late autumn moving only substantially when temperatures drop below freezing. As a result, there is large flexibility in their annual winter distance as a response to winter temperature. On average, individuals overwinter 118 km closer to the breeding grounds per 1°C increase in mean December-January temperature. Given the observed temperature increase in the Bewick's swan winter range during the last decades, our results imply that the observed range shift is for a substantial part driven by individual responses to a warming climate. We thus present an example of individual flexibility towards climatic conditions driving the range shift of a migratory species. Our study adds to the understanding of the processes that shape autumn migration decisions, winter ranges and shifts therein, which is crucial to be able to predict how climate change may impact these processes in the future.


Assuntos
Migração Animal , Anseriformes , Humanos , Animais , Estações do Ano , Migração Animal/fisiologia , Anseriformes/fisiologia , Temperatura , Mudança Climática
19.
Glob Chang Biol ; 29(14): 3924-3940, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165918

RESUMO

Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.


Assuntos
Secas , Ecossistema , Estações do Ano , Florestas , Aquecimento Global , Mudança Climática , Árvores
20.
Ann Bot ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642263

RESUMO

BACKGROUND AND AIMS: Geoxyles, a distinctive feature of Afrotropical savannas and grasslands, survive recurrent disturbances by resprouting subshrub branches from large belowground woody structures. Underground trees are a type of geoxyle that independently evolved within woody genera of at least 40 plant families in Africa. The environmental limits and determinants of underground tree biogeography are poorly understood with the relative influence of frost and fire debated in particular. We aim to quantify variability in the niche of underground tree species relative to their taller, woody tree/shrub congeners. METHODS: Using occurrence records of four Afrotropical genera, Parinari (Chrysobalanaceae), Ozoroa (Anacardiaceae), Syzygium (Myrtaceae) and Lannea (Anacardiaceae), and environmental data of nine climate and disturbance variables, the biogeography and niche of underground trees are compared with their open and closed ecosystem congeners. KEY RESULTS: Along multiple environmental gradients and in a multidimensional environmental space, underground trees inhabit significantly distinct and extreme environments relative to open and closed ecosystem congeners. Niche overlap is low among underground trees and their congeners, and also among underground trees of the four genera. Of the study taxa, Parinari underground trees inhabit hotter, drier and more seasonal environments where herbivory pressure is greatest. Ozoroa underground trees occupy relatively more fire prone environments, while Syzygium underground trees sustain the highest frost frequency and occur in relatively wetter conditions with seasonal waterlogging. Lannea underground trees are associated with the lowest temperatures, highest precipitation, and varying exposure to disturbance. CONCLUSIONS: While underground trees exhibit repeated convergent evolution, distinct environments shape the ecology and biogeography of this iconic plant functional group. The multiplicity of extreme environments related to fire, frost, herbivory and waterlogging that different underground tree taxa occupy, and the distinctiveness of these environments, should be recognised in the management of African grassy ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA