Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Syst Biol ; 73(2): 434-454, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38490727

RESUMO

Across the Tree of Life, most studies of phenotypic disparity and diversification have been restricted to adult organisms. However, many lineages have distinct ontogenetic phases that differ from their adult forms in morphology and ecology. Focusing disproportionately on the evolution of adult forms unnecessarily hinders our understanding of the pressures shaping evolution over time. Non-adult disparity patterns are particularly important to consider for coastal ray-finned fishes, which can have juvenile phases with distinct phenotypes. These juvenile forms are often associated with sheltered nursery environments, with phenotypic shifts between adults and juvenile stages that are readily apparent in locomotor morphology. Whether this ontogenetic variation in locomotor morphology reflects a decoupling of diversification dynamics between life stages remains unknown. Here we investigate the evolutionary dynamics of locomotor morphology between adult and juvenile triggerfishes. We integrate a time-calibrated phylogenetic framework with geometric morphometric approaches and measurement data of fin aspect ratio and incidence, and reveal a mismatch between morphospace occupancy, the evolution of morphological disparity, and the tempo of trait evolution between life stages. Collectively, our results illuminate how the heterogeneity of morpho-functional adaptations can decouple the mode and tempo of morphological diversification between ontogenetic stages.


Assuntos
Evolução Biológica , Fenótipo , Filogenia , Animais , Nadadeiras de Animais/anatomia & histologia
2.
Proc Biol Sci ; 291(2026): 20240820, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981526

RESUMO

Unravelling the functional steps that underlie major transitions in the fossil record is a significant challenge for biologists owing to the difficulties of interpreting functional capabilities of extinct organisms. New computational modelling approaches provide exciting avenues for testing function in the fossil record. Here, we conduct digital bending experiments to reconstruct vertebral function in non-mammalian synapsids, the extinct forerunners of mammals, to provide insights into the functional underpinnings of the synapsid-mammal transition. We estimate range of motion and stiffness of intervertebral joints in eight non-mammalian synapsid species alongside a comparative sample of extant tetrapods, including salamanders, reptiles and mammals. We show that several key aspects of mammalian vertebral function evolved outside crown Mammalia. Compared to early diverging non-mammalian synapsids, cynodonts stabilized the posterior trunk against lateroflexion, while evolving axial rotation in the anterior trunk. This was later accompanied by posterior sagittal bending in crown mammals, and perhaps even therians specifically. Our data also support the prior hypothesis that functional diversification of the mammalian trunk occurred via co-option of existing morphological regions in response to changing selective demands. Thus, multiple functional and evolutionary steps underlie the origin of remarkable complexity in the mammalian backbone.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Coluna Vertebral , Animais , Mamíferos/fisiologia , Fósseis/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/fisiologia , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Répteis/fisiologia , Répteis/anatomia & histologia
3.
J Anat ; 244(4): 557-593, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38037880

RESUMO

Piatnitzkysauridae were Jurassic theropods that represented the earliest diverging branch of Megalosauroidea, being one of the earliest lineages to have evolved moderate body size. This clade's typical body size and some unusual anatomical features raise questions about locomotor function and specializations to aid in body support; and other palaeobiological issues. Biomechanical models and simulations can illuminate how extinct animals may have moved, but require anatomical data as inputs. With a phylogenetic context, osteological evidence, and neontological data on anatomy, it is possible to infer the musculature of extinct taxa. Here, we reconstructed the hindlimb musculature of Piatnitzkysauridae (Condorraptor, Marshosaurus, and Piatnitzkysaurus). We chose this clade for future usage in biomechanics, for comparisons with myological reconstructions of other theropods, and for the resulting evolutionary implications of our reconstructions; differential preservation affects these inferences, so we discuss these issues as well. We considered 32 muscles in total: for Piatnitzkysaurus, the attachments of 29 muscles could be inferred based on the osteological correlates; meanwhile, in Condorraptor and Marshosaurus, we respectively inferred 21 and 12 muscles. We found great anatomical similarity within Piatnitzkysauridae, but differences such as the origin of M. ambiens and size of M. caudofemoralis brevis are present. Similarities were evident with Aves, such as the division of the M. iliofemoralis externus and M. iliotrochantericus caudalis and a broad depression for the M. gastrocnemius pars medialis origin on the cnemial crest. Nevertheless, we infer plesiomorphic features such as the origins of M. puboischiofemoralis internus 1 around the "cuppedicus" fossa and M. ischiotrochantericus medially on the ischium. As the first attempt to reconstruct muscles in early tetanurans, our study allows a more complete understanding of myological evolution in theropod pelvic appendages.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Extremidade Inferior , Membro Posterior/anatomia & histologia , Dinossauros/anatomia & histologia , Músculo Esquelético/anatomia & histologia
4.
J Anat ; 244(6): 929-942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308591

RESUMO

Premaxillary protrusion and the performance advantages it confers are implicated in the success of diverse lineages of teleost fishes, such as Cypriniformes and Acanthomorpha. Although premaxillary protrusion has evolved independently at least five times within bony fishes, much of the functional work investigating this kinesis relates to mechanisms found only in these two clades. Few studies have characterized feeding mechanisms in less-diverse premaxilla-protruding lineages and fewer yet have investigated the distinctive anatomy underlying jaw kinesis in these lineages. Here, we integrated dissection, clearing and staining, histology, micro-CT, and high-speed videography to investigate an isolated and independent origin of jaw protrusion in the hingemouth, Phractolaemus ansorgii, which employs a complex arrangement of bones, musculature, and connective tissues to feed on benthic detritus via a deployable proboscis. Our goals were to provide an integrative account of the underlying architecture of P. ansorgii's feeding apparatus and to assess the functional consequences of this drastic deviation from the more typical teleost condition. Phractolaemus ansorgii's cranial anatomy is distinct from all other fishes in that its adducted lower jaw is caudally oriented, and it possesses a mouth at the terminal end of an elongated, tube-like proboscis that is unique in its lack of skeletal support from the oral jaws. Instead, its mouth is supported primarily by hyaline-cell cartilage and other rigid connective tissues, and features highly flexible lips that are covered in rows of keratinous unculi. Concomitant changes to the adductor musculature likely allow for the flexibility to protrude the mouth dorsally and ventrally as observed during different feeding behaviors, while the intrinsic compliance of the lips allows for more effective scraping of irregular surfaces. From our feeding videos, we find that P. ansorgii is capable of modulating the distance of protrusion, with maximum anterior protrusion exceeding 30% of head length. This represents a previously undescribed example of extreme jaw protrusion on par with many acanthomorph species. Protrusion is much slower in P. ansorgii-reaching an average speed of 2.74 cm/s-compared to acanthomorphs feeding on elusive prey or even benthivorous cypriniforms. However, this reorganization of cranial anatomy may reflect a greater need for dexterity to forage more precisely in multiple directions and on a wide variety of surface textures. Although this highly modified mechanism may have limited versatility over evolutionary timescales, it has persisted in solitude within Gonorynchiformes, representing a novel functional solution for benthic feeding in tropical West African rivers.


Assuntos
Comportamento Alimentar , Arcada Osseodentária , Animais , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Fenômenos Biomecânicos , Comportamento Alimentar/fisiologia , Peixes/anatomia & histologia , Peixes/fisiologia , Microtomografia por Raio-X
5.
J Anat ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039731

RESUMO

Talpid moles (Talpidae, Eulipotyphla) are mammals highly specialised in burrowing using their forelimbs. Fossoriality has allowed moles to expand their ecological niche by enabling access to subterranean resources and spaces. This specialisation in burrowing has led to adaptations in the forelimb bones of moles for humeral rotation digging, a distinctive strategy unparalleled among other diggers. While bone robustness has been examined in moles through external morphology, the adaptation of bone microstructure to digging strategy remains unclear. Based on two assumptions, (1) the humerus of moles is subjected to a torsional load due to humeral rotation digging, and (2) the magnitude of torsional load correlates with the compactness of the substrate in which the individuals can dig, we hypothesised that humeral rotation digging influences bone microstructure. Comparative analyses of transverse sections from the humeri and femora of three mole species (Mogera imaizumii, Mogera wogura and Urotrichus talpoides; Talpidae) and an outgroup eulipotyphlan (Suncus murinus; Soricidae) revealed that (1) vascular canals distributed in the humeri of moles align more predominantly circumferential along the bone walls, indicating an adaptation to the torsion generated by humeral rotation digging, and (2) the laminarity of vascular canals, particularly in Mogera species compared with Urotrichus, potentially reflects differences in the magnitude of load due to substrate compactness during digging. The aligned vascular canals are distinctive traits not observed in mammals employing other digging strategies. This suggests that vascular canal laminarity can be an indicator of not only humeral rotation digging in fossorial animals, but also the variation of eco-spaces in talpid species.

6.
J Anat ; 245(3): 451-466, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38733157

RESUMO

The family Bovidae [Mammalia: Artiodactyla] is speciose and has extant representatives on every continent, forming key components of mammal communities. For these reasons, bovids are ideal candidates for studies of ecomorphology. In particular, the morphology of the bovid humerus has been identified as highly related to functional variables such as body mass and habitat. This study investigates the functional morphology of the bovid distal humerus in isolation due to its increased likelihood of preservation in the fossil record, and the resulting opportunity for a better understanding of the ecomorphology of extinct bovids. A landmark scheme of 30 landmarks was used to capture the 3D distal humerus morphology in 111 extant bovid specimens. We find that the distal humerus has identifiable morphologies associated with body mass, habitat preference and tribe affiliation and that some characteristics are shared between high body mass bovids and those living on hard, flat terrain which is likely due to the high stress on the bone in both cases. We directly apply our findings regarding extant bovids to the extinct alcelaphine bovid, Rusingoryx atopocranion from the mid to late Pleistocene (>33-45 ka) Lake Victoria region of Kenya. This species is known for some peculiar morphologies including a domed cranium with hollow nasal crests, and having small hooves for a bovid of its size. Another interesting aspect of Rusingoryx's skeletal morphology which has not been addressed is an unusual protrusion on the lateral epicondyle of the distal humerus. Despite considerable individual variation in the Rusingoryx specimens, we find evidence to support its historical assignment to the tribe Alcelaphini, and that it likely preferred open grassland habitats, which is consistent with independent reconstructions of the palaeoenvironment. We also provide the most accurate body mass estimate for Rusingoryx to date, based on distal humerus centroid size. Overall, we are able to conclude that the distal humerus in extant bovids is highly informative regarding body mass, habitat preference and tribe, and that this can be applied directly to a fossil taxon with promising results.


Assuntos
Fósseis , Úmero , Animais , Úmero/anatomia & histologia , Fósseis/anatomia & histologia , Imageamento Tridimensional , Ruminantes/anatomia & histologia
7.
J Anat ; 245(1): 156-180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381116

RESUMO

Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.


Assuntos
Osso Esponjoso , Fêmur , Hominidae , Animais , Masculino , Feminino , Fêmur/anatomia & histologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Humanos , Osso Esponjoso/anatomia & histologia , Locomoção/fisiologia , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologia
8.
J Hum Evol ; 188: 103496, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412694

RESUMO

Among extant great apes, orangutans climb most frequently. However, Bornean orangutans (Pongo pygmaeus) exhibit higher frequencies of terrestrial locomotion than do Sumatran orangutans (Pongo abelii). Variation in long bone cross-sectional geometry is known to reflect differential loading of the limbs. Thus, Bornean orangutans should show greater relative leg-to-arm strength than their Sumatran counterparts. Using skeletal specimens from museum collections, we measured two cross-sectional geometric measures of bone strength: the polar section modulus (Zpol) and the ratio of maximum to minimum area moments of inertia (Imax/Imin), at the midshaft of long bones in Bornean (n = 19) and Sumatran adult orangutans (n = 12) using medical CT and peripheral quantitative CT scans, and compared results to published data of other great apes. Relative leg-to-arm strength was quantified using ratios of femur and tibia over humerus, radius, and ulna, respectively. Differences between orangutan species and between sexes in median ratios were assessed using Wilcoxon rank sum tests. The tibia of Bornean orangutans was stronger relative to the humerus and the ulna than in Sumatran orangutans (p = 0.008 and 0.025, respectively), consistent with behavioral studies that indicate higher frequencies of terrestrial locomotion in the former. In three Zpol ratios, adult female orangutans showed greater leg-to-arm bone strength compared to flanged males, which may relate to females using their legs more during arboreal locomotion than in adult flanged males. A greater amount of habitat discontinuity on Borneo compared to Sumatra has been posited as a possible explanation for observed interspecific differences in locomotor behaviors, but recent camera trap studies has called this into question. Alternatively, greater frequencies of terrestriality in Pongo pygmaeus may be due to the absence of tigers on Borneo. The results of this study are consistent with the latter explanation given that habitat continuity was greater a century ago when our study sample was collected.


Assuntos
Hominidae , Pongo abelii , Feminino , Masculino , Animais , Pongo pygmaeus , Ecossistema , Comportamento Animal , Indonésia
9.
J Exp Biol ; 227(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38989535

RESUMO

The ability to communicate through vocalization plays a key role in the survival of animals across all vertebrate groups. Although avian reptiles have received much attention relating to their stunning sound repertoire, non-avian reptiles have been wrongfully assumed to have less elaborate vocalization types, and little is known about the biomechanics of sound production and their underlying neural pathways in this group. We investigated alarm calls of Gekko gecko using audio and cineradiographic recordings. Acoustic analysis revealed three distinct call types: a sinusoidal call type (type 1); a train-like call type, characterized by distinct pulse trains (type 3); and an intermediate type, which showed both sinusoidal and pulse train components (type 2). Kinematic analysis of cineradiographic recordings showed that laryngeal movements differ significantly between respiratory and vocal behavior. During respiration, animals repeatedly moved their jaws to partially open their mouths, which was accompanied by small glottal movements. During vocalization, the glottis was pulled back, contrasting with what has previously been reported. In vitro retrograde tracing of the nerve innervating the laryngeal constrictor and dilator muscles revealed round to fusiform motoneurons in the hindbrain-spinal cord transition ipsilateral to the labeled nerve. Taken together, our observations provide insight into the alarm calls generated by G. gecko, the biomechanics of this sound generation and the underlying organization of motoneurons involved in the generation of vocalizations. Our observations suggest that G. gecko may be an excellent non-avian reptile model organism for enhancing our understanding of the evolution of vertebrate vocalization.


Assuntos
Evolução Biológica , Laringe , Lagartos , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Lagartos/fisiologia , Laringe/fisiologia , Fenômenos Biomecânicos , Modelos Animais , Masculino
10.
J Exp Biol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39054887

RESUMO

The physical interactions between organisms and their environment ultimately shape diversification rates, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here we estimated a performance landscape for biting in an adaptive radiation of Cyprinodon pupfishes, including scale-biting and molluscivore specialists, and compared performance peaks to previous estimates of the fitness landscape in this system. We used high-speed video to film feeding strikes on gelatin cubes by scale-eater, molluscivore, generalist, and hybrid pupfishes and measured bite dimensions. We then measured five kinematic variables from 227 strikes using the SLEAP machine-learning model. We found a complex performance landscape with two distinct peaks best predicted gel-biting performance, corresponding to a significant nonlinear interaction between peak gape and peak jaw protrusion. Only scale-eaters and their hybrids were able to perform strikes within the highest performance peak, characterized by larger peak gapes and greater jaw protrusion. A performance valley separated this peak from a lower performance peak accessible to all species, characterized by smaller peak gapes and less jaw protrusion. However, most individuals exhibited substantial variation in strike kinematics and species could not be reliably distinguished by their strikes, indicating many-to-many mapping of morphology to performance. The two performance peaks observed in lab were partially consistent with estimates of a two-peak fitness landscape measured in the wild, with the exception of the new performance peak for scale-eaters. We thus reveal a new bimodal nonlinear biomechanical model that connects morphology to performance to fitness in a sympatric radiation of trophic niche specialists.

11.
BMC Biol ; 21(1): 268, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996928

RESUMO

BACKGROUND: Mayflies are basal winged insects of crucial importance for the understanding of the early evolution of Pterygota. Unlike all other insects, they have two successive winged stages, the subimago and the imago. Their forewings feature so-called bullae, which are desclerotized spots in the anterior main veins. Up to now, they have been considered to play a major role in wing bending during flight. RESULTS: We investigated bullae by multiple methods to reveal their structure and arrangement and to gain new information on the evolution of insect flight. Bullae are mostly present in the anterior negative wing veins, disrupting the otherwise rigid veins. High-speed videography reveals that mayfly wings do not bend during flight. Likewise, different arrangements of bullae in different species do not correlate with different modes of flying. Observations on the moulting of subimagines unravel that they are essential for wing bending during the extraction of the imaginal wing from the subimaginal cuticle. Bullae define predetermined bending lines, which, together with a highly flexible wing membrane enriched with resilin, permit wing bending during subimaginal moulting. Bullae are only absent in those species that remain in the subimaginal stage or that use modified modes of moulting. Bullae are also visible in fossil mayflies and can be traced back to stemgroup mayflies of the Early Permian, the 270 million years old Protereismatidae, which most probably had bullae in both fore- and hind wings. CONCLUSIONS: Bullae in mayfly wings do not play a role in flight as previously thought, but are crucial for wing bending during subimaginal moulting. Thus, the presence of bullae is a reliable morphological marker for a subimaginal life stage, confirming the existence of the subimago already in Permian Protereismatidae. A thorough search for bullae in fossils of other pterygote lineages may reveal wheather they also had subimagines and at what point in evolution this life stage was lost. In mayflies, however, the subimago may have been retained due to selective advantages in connection with the transition from aquatic to terrestrial life or due to morphological requirements for a specialized mating flight.


Assuntos
Ephemeroptera , Animais , Pterigotos , Vesícula , Insetos , Fósseis , Asas de Animais/anatomia & histologia , Voo Animal
12.
Annu Rev Entomol ; 68: 401-429, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36689304

RESUMO

While Mesozoic, Paleogene, and Neogene insect faunas greatly resemble the modern one, the Paleozoic fauna provides unique insights into key innovations in insect evolution, such as the origin of wings and modifications of postembryonic development including holometaboly. Deep-divergence estimates suggest that the majority of contemporary insect orders originated in the Late Paleozoic, but these estimates reflect divergences between stem groups of each lineage rather than the later appearance of the crown groups. The fossil record shows the initial radiations of the extant hyperdiverse clades during the Early Permian, as well as the specialized fauna present before the End Permian mass extinction. This review summarizes the recent discoveries related to the documented diversity of Paleozoic hexapods, as well as current knowledge about what has actually been verified from fossil evidence as it relates to postembryonic development and the morphology of different body parts.


Assuntos
Evolução Biológica , Insetos , Animais , Insetos/anatomia & histologia , Fósseis , Extinção Biológica , Asas de Animais/anatomia & histologia , Filogenia
13.
Am Nat ; 202(5): 699-720, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963119

RESUMO

AbstractDifferences among hummingbird species in bill length and shape have rightly been viewed as adaptive in relation to the morphology of the flowers they visit for nectar. In this study we examine functional variation in a behaviorally related but neglected feature: hummingbird feet. We gathered records of hummingbirds clinging by their feet to feed legitimately as pollinators or illegitimately as nectar robbers-"unorthodox" feeding behaviors. We measured key features of bills and feet for 220 species of hummingbirds and compared the 66 known "clinger" species (covering virtually the entire scope of hummingbird body size) with the 144 presumed "non-clinger" species. Once the effects of phylogenetic signal, body size, and elevation above sea level are accounted for statistically, hummingbirds display a surprising but functionally interpretable negative correlation. Clingers with short bills and long hallux (hind-toe) claws have evolved-independently-more than 20 times and in every major clade. Their biomechanically enhanced feet allow them to save energy by clinging to feed legitimately on short-corolla flowers and by stealing nectar from long-corolla flowers. In contrast, long-billed species have shorter hallux claws, as plant species with long-corolla flowers enforce hovering to feed, simply by the way they present their flowers.


Assuntos
Flores , Néctar de Plantas , Animais , Filogenia , Flores/anatomia & histologia , Aves/anatomia & histologia , Comportamento Alimentar , Polinização
14.
Proc Biol Sci ; 290(2000): 20230873, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312551

RESUMO

All extant toothed whales (Cetacea, Odontoceti) are aquatic mammals with homodont dentitions. Fossil evidence from the late Oligocene suggests a greater diversity of tooth forms among odontocetes, including heterodont species with a variety of tooth shapes and orientations. A new fossil dolphin from the late Oligocene of New Zealand, Nihohae matakoi gen. et sp. nov., consisting of a near complete skull, earbones, dentition and some postcranial material, represents this diverse dentition. Several preserved teeth are horizontally procumbent, including all incisors and canines. These tusk-like teeth suggest adaptive advantages for horizontally procumbent teeth in basal dolphins. Phylogenetic analysis places Nihohae among the poorly constrained basal waipatiid group, many with similarly procumbent teeth. Features of N. matakoi such as its dorsoventrally flattened and long rostrum, long mandibular symphysis, unfused cervical vertebrae, lack of attritional or occlusal wear on the teeth and thin enamel cover suggest the rostrum and horizontally procumbent teeth were used to injure and stun prey though swift lateral head movements, a feeding mode that did not persist in extant odontocetes.


Assuntos
Golfinhos , Animais , Nova Zelândia , Filogenia , Cabeça , Cetáceos
15.
Proc Biol Sci ; 290(1992): 20221907, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750185

RESUMO

Evolutionary adaptation to novel, specialized modes of life is often associated with a close mapping of form to the new function, resulting in narrow morphological disparity. For bivalve molluscs, endolithy (rock-boring) has biomechanical requirements thought to diverge strongly from those of ancestral functions. However, endolithy in bivalves has originated at least eight times. Three-dimensional morphometric data representing 75 species from approximately 94% of extant endolithic genera and families, along with 310 non-endolithic species in those families, show that endolithy is evolutionarily accessible from many different morphological starting points. Although some endoliths appear to converge on certain shell morphologies, the range of endolith shell form is as broad as that belonging to any other bivalve substrate use. Nevertheless, endolithy is a taxon-poor function in Bivalvia today. This limited richness does not derive from origination within source clades having significantly low origination or high extinction rates, and today's endoliths are not confined to low-diversity biogeographic regions. Instead, endolithy may be limited by habitat availability. Both determinism (as reflected by convergence among distantly related taxa) and contingency (as reflected by the endoliths that remain close to the disparate morphologies of their source clades) underlie the occupation of endolith morphospace.


Assuntos
Evolução Biológica , Bivalves , Animais , Ecossistema , Adaptação Fisiológica , Aclimatação , Filogenia
16.
Proc Biol Sci ; 290(1994): 20222020, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883281

RESUMO

Avian skeletal morphology is associated with locomotor function, including flight style, swimming and terrestrial locomotion, and permits informed inferences on locomotion in extinct taxa. The fossil taxon Ichthyornis (Avialae: Ornithurae) has long been regarded as highly aerial, with flight similar to terns or gulls (Laridae), and skeletal features resembling foot-propelled diving adaptations. However, rigorous testing of locomotor hypotheses has yet to be performed on Ichthyornis, despite its notable phylogenetic position as one of the most crownward stem birds. We analysed separate datasets of three-dimensional sternal shape (geometric morphometrics) and skeletal proportions (linear measurements across the skeleton), to examine how well these data types predict locomotor traits in Neornithes. We then used this information to infer locomotor capabilities of Ichthyornis. We find strong support for both soaring and foot-propelled swimming capabilities in Ichthyornis. Further, sternal shape and skeletal proportions provide complementary information on avian locomotion: skeletal proportions allow better predictions of the capacity for flight, whereas sternal shape predicts variation in more specific locomotor abilities such as soaring, foot-propelled swimming and escape burst flight. These results have important implications for future studies of extinct avialan ecology and underscore the importance of closely considering sternum morphology in investigations of fossil bird locomotion.


Assuntos
Charadriiformes , Esterno , Animais , Filogenia , Natação , Aclimatação
17.
Proc Biol Sci ; 290(2009): 20231446, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37848066

RESUMO

Shoulder shape directly impacts forelimb function by contributing to glenohumeral (GH) range-of-motion (ROM). However, identifying traits that contribute most to ROM and visualizing how they do so remains challenging, ultimately limiting our ability to reconstruct function and behaviour in fossil species. To address these limitations, we developed an in silico proximity-driven model to simulate and visualize three-dimensional (3D) GH rotations in living primate species with diverse locomotor profiles, identify those shapes that are most predictive of ROM using geometric morphometrics, and apply subsequent insights to interpret function and behaviour in the fossil hominin Australopithecus sediba. We found that ROM metrics that incorporated 3D rotations best discriminated locomotor groups, and the magnitude of ROM (mobility) was decoupled from the anatomical location of ROM (e.g. high abduction versus low abduction). Morphological traits that enhanced mobility were decoupled from those that enabled overhead positions, and all non-human apes possessed the latter but not necessarily the former. Model simulation in A. sediba predicted high mobility and a ROM centred at lower abduction levels than in living apes but higher than in modern humans. Together these results identify novel form-to-function relationships in the shoulder and enhance visualization tools to reconstruct past function and behaviour.


Assuntos
Hominidae , Ombro , Animais , Ombro/anatomia & histologia , Hominidae/anatomia & histologia , Amplitude de Movimento Articular , Fósseis
18.
J Anat ; 242(2): 164-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36302086

RESUMO

The primate scapula has been studied widely since its shape has been shown to correlate with how the forelimb is used in daily activities. In this study, we expand on the existing literature and use an image-based methodology that was originally developed for orthopaedic practice to quantify and compare the three-dimensional (3D) morphology of the scapula across humans and great apes. We expect that this image-based approach will allow us to identify differences between great apes and humans that can be related to differences in mobility and loading regime of the shoulder. We hypothesize that gorillas and chimpanzees will have a similar scapular morphology, geared towards stability and weight-bearing in knuckle-walking, whilst the scapular morphology of orangutans is expected to be more similar to that of humans given their high glenohumeral mobility associated with their suspensory lifestyle. We made 3D reconstructions of computed tomography scans of 69 scapulae from four hominid genera (Pongo, Gorilla, Pan and Homo). On these 3D bone meshes, the inferior glenoid plane was determined, and subsequently, a set of bony landmarks on the scapular body, coracoid, and acromion were defined. These landmarks allowed us to measure a set of functionally relevant angles which represent acromial overhang, subacromial space and coracoacromial space. The angles that were measured are: the delto-fulcral triangle (DFT), comprising the alpha, beta, and delta angle, the acromion-glenoid angle (AGA), the coracoid-glenoid centre-posterior acromial angle (CGA), the anterior tilt (TA CGA) and the posterior tilt of the CGA (PT CGA). Three observers placed the landmarks on the 3D bone meshes, allowing us to calculate the inter-observer error. The main differences in the DFT were found between humans and the great apes, with small differences between the great apes. The DFT of humans was significantly lower compared to that of the great apes, with the smallest alpha (32.7°), smallest delta (45.7°) and highest beta angle (101.6°) of all genera. The DFT of chimpanzees was significantly higher compared to that of humans (p < 0.01), with a larger alpha (37.6°) and delta angle (54.5°) and smaller beta angle (87.9°). The mean AGA of humans (59.1°) was significantly smaller (p < 0.001) than that of gorillas (68.8°). The mean CGA of humans (110.1°) was significantly higher (p < 0.001) than in orangutans (92.9°). Humans and gorillas showed mainly a posterior tilt of their coracoacromial complex whilst chimpanzees showed mainly an anterior tilt. The coracoacromial complex of the orangutans was not tilted anteriorly or posteriorly. With our image-based method, we were able to identify morphological features of the scapula that differed significantly between hominid genera. However, we did not find an overall dichotomy in scapular morphology geared towards high stability (Pan/Gorilla) or high mobility (Homo/Pongo). Further research is needed to investigate the functional implications of these differences in scapular morphology.


Assuntos
Hominidae , Articulação do Ombro , Animais , Humanos , Gorilla gorilla , Pan troglodytes , Escápula/diagnóstico por imagem , Escápula/anatomia & histologia , Hominidae/anatomia & histologia , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/anatomia & histologia , Tomografia Computadorizada por Raios X , Pongo , Pongo pygmaeus
19.
J Anat ; 243(5): 770-785, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37289996

RESUMO

Camelids are the only living representatives of the Suborder Tylopoda, and present a unique set of osteo-myological masticatory features, differing from all other extant euungulates. They combine selenodont dentition and rumination with a fused symphysis, and roughly plesiomorphic muscle proportions. Despite its potential relevance as an euungulate model in comparative anatomy studies, the available data is strikingly scarce. The present study represents the first description of the masticatory muscles of a Lamini, analyzing the functional morphology of Lama glama and other camelids in a comparative framework. Both sides of the head of three adult specimens from Argentinean Puna were dissected. Descriptions, illustrations, muscular maps, and weighing of all masticatory muscles were performed. Some facial muscles are also described. The myology of llamas confirms that camelids possess relatively large temporalis muscles, with Lama being less extreme than Camelus. This plesiomorphic feature is also recorded in suines and some basal euungulates. Conversely, the direction of the fibers of the M. temporalis is mainly horizontal, resembling grinding euungulates such as equids, pecorans, and some derived suines. Although the M. masseter of camelids and equids do not reach the particularly modified configuration of pecorans, in which it is rostrally extended and arranged horizontally, the posterior sectors of Mm. masseter superficialis and pterygoideus medialis have acquired relatively horizontal disposition in the former lineages, suitable for protraction. The pterygoidei complex presents several bundles, and its relative size is intermediate between suines and derived grinding euungulates. The whole masticatory muscles are relatively light when compared to jaw weight. The evolution of the masticatory muscles and chewing of camelids implied that grinding abilities were reached with less extreme modifications of the topography and/or proportions than pecoran ruminants and equids. A relatively large M. temporalis recruited as a powerful retractor during the power stroke is a key feature of camelids. The relaxed pressure on chewing derived from the acquisition of rumination explains the slenderer build masticatory musculature of camelids compared to other euungulates except ruminants.


Assuntos
Camelídeos Americanos , Animais , Camelídeos Americanos/anatomia & histologia , Camelidae , Músculos da Mastigação/anatomia & histologia , Músculo Temporal , Ruminantes
20.
J Anat ; 242(5): 891-916, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807199

RESUMO

The water-to-land transition by the first tetrapod vertebrates represents a key stage in their evolution. Selection pressures exerted by this new environment on animals led to the emergence of new locomotor and postural strategies that favoured access to different ecological niches and contributed to their evolutionary success. Today, amniotes show great locomotor and postural diversity, particularly among Reptilia, whose extant representatives include parasagittally locomoting erect and crouched bipeds (birds), sub-parasagittal 'semi-erect' quadrupeds (crocodylians) and sprawling quadrupeds (squamates and turtles). But the different steps leading to such diversity remain enigmatic and the type of locomotion adopted by many extinct species raises questions. This is notably the case of certain Triassic taxa such as Euparkeria and Marasuchus. The exploration of the bone microanatomy in reptiles could help to overcome these uncertainties. Indeed, this locomotor and postural diversity is accompanied by great microanatomical disparity. On land, the bones of the appendicular skeleton support the weight of the body and are subject to multiple constraints that partly shape their external and internal morphology. Here we show how microanatomical parameters measured in cross-section, such as bone compactness or the position of the medullocortical transition, can be related to locomotion. We hypothesised that this could be due to variations in cortical thickness. Using statistical methods that take phylogeny into account (phylogenetic flexible discriminant analyses), we develop different models of locomotion from a sample of femur cross-sections from 51 reptile species. We use these models to infer locomotion and posture in 7 extinct reptile taxa for which they remain debated or not fully clear. Our models produced reliable inferences for taxa that preceded and followed the quadruped/biped and sprawling/erect transitions, notably within the Captorhinidae and Dinosauria. For taxa contemporary with these transitions, such as Terrestrisuchus and Marasuchus, the inferences are more questionable. We use linear models to investigate the effect of body mass and functional ecology on our inference models. We show that body mass seems to significantly impact our model predictions in most cases, unlike the functional ecology. Finally, we illustrate how taphonomic processes can impact certain microanatomical parameters, especially the eccentricity of the section, while addressing some other potential limitations of our methods. Our study provides insight into the evolution of enigmatic locomotion in various early reptiles. Our models and methods could be used by palaeontologists to infer the locomotion and posture in other extinct reptile taxa, especially when considered in combination with other lines of evidence.


Assuntos
Dinossauros , Répteis , Animais , Filogenia , Répteis/anatomia & histologia , Fêmur/anatomia & histologia , Locomoção , Dinossauros/anatomia & histologia , Evolução Biológica , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA