Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2310837, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38644345

RESUMO

Gallium Nitride (GaN), as the representative of wide bandgap semiconductors, has great prospects in accomplishing rapid charge delivery under high-temperature environments thanks to excellent structural stability and electron mobility. However, there is still a gap in wafer-scale GaN single-crystal integrated electrodes applied in the energy storage field. Herein, Si-doped GaN nanochannel with gallium oxynitride (GaON) layer on a centimeter scale (denoted by GaN NC) is reported. The Si atoms modulate electronic redistribution to improve conductivity and drive nanochannel formation. Apart from that, the distinctive nanochannel configuration with a GaON layer provides adequate active sites and extraordinary structural stability. The GaN-based supercapacitors are assembled and deliver outstanding charge storage capabilities at 140 °C. Surprisingly, 90% retention is maintained after 50 000 cycles. This study opens the pathway toward wafer-scale GaN single-crystal integrated electrodes with self-powered characteristics that are compatible with various (opto)-electronic devices.

2.
Microsc Microanal ; 30(2): 208-225, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578956

RESUMO

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed.

3.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894156

RESUMO

The nonlinear characteristics of avalanche photodiodes (APDs) inhibit their performance in high-speed communication systems, thereby limiting their widespread application as optical detectors. Existing theoretical models have not fully elucidated complex phenomena encountered in actual device structures. In this study, actual APD structures exhibiting lower linearity than their ideal counterparts were revealed. Simulation analysis and physical inference based on GaN APDs reveal that electrode size is a noteworthy factor influencing response linearity. This discovery expands the nonlinear theory of APDs, suggesting that APD linearity can be enhanced by suppressing the electrode size effect. A physical model was developed to explain this phenomenon, which is attributed to charge accumulation at the edge of the contact layer. Therefore, we proposed an improved APD design that incorporates an additional gap layer and a buffer layer to stabilize the internal gain under high-current-density conditions, thereby enhancing linearity. Our improved APD design increases the linear threshold for optical input power by 4.46 times. This study not only refines the theoretical model for APD linearity but also opens new pathways for improving the linearity of high-speed optoelectronic detectors.

4.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400244

RESUMO

A 28 GHz digitally controlled 6-bit phase shifter with a precision calibration technique in GaN high-electron mobility transistor (HEMT) technology is presented for Ka-band phased-array systems and applications. It comprises six stages, in which stages 1 and 2 for 5.625° and 11.25° are designed in the form of a switched-line circuit, and stages 3, 4, and 5 for 22.5°, 45°, and 90° are designed in the form of a switched-filter circuit. The final stage 6 for 180° is designed in a single-to-differential balun followed by a single-pole double-throw (SPDT) switch for achieving an efficient phase inversion. A novel continuous tuning calibration technique is proposed to improve the phase accuracy. It controls the gate bias voltage of off-state HEMTs at the stage 6 SPDT switch for fine calibration of the output phase. Fabricated in a 0.15 µm GaN HEMT process using a die size of 1.75 mm2, the circuit produces 64 phase states at 28 GHz with a 5.625° step. The experimental results show that the Root-Mean-Square (RMS) phase error is significantly improved from 8.56° before calibration to 1.08° after calibration. It is also found that the calibration does not induce significant changes for other performances such as the insertion loss, RMS amplitude error, and input-referred P1dB. This work successfully demonstrates that the GaN technology can be applied to millimeter-wave high-power phased-array transceiver systems.

5.
Nano Lett ; 23(22): 10505-10511, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955625

RESUMO

Phased-array metasurfaces enable the imprinting of complex beam structures onto coherent incident light. Recent demonstrations of photoluminescent phased-array metasurfaces highlight possibilities for achieving similar control in electroluminescent light-emitting diodes (LEDs). However, phased-array metasurface LEDs have not yet been demonstrated owing to the complexities of integrating device stacks and electrodes within nanopatterned metasurfaces. Here, we demonstrate metasurface LEDs that emit directional or focused light. We first design nanoribbon elements that achieve the requisite phase control within typical LED device constraints. Subsequently, we demonstrate unidirectional emission that can be engineered at will via phased-array concepts. This control is further exhibited in metasurface LEDs that directly emit focused beams. Finally, we show that these metasurface LEDs exhibit external quantum efficiencies (EQEs) superior to those of unpatterned LEDs. These results demonstrate metasurface designs that are compatible with high-EQE metal-free LED devices and portend opportunities for new classes of metasurface LEDs that directly produce complex beam structures.

6.
Nanotechnology ; 34(31)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116476

RESUMO

Last decades have witnessed the rapid development of ultraviolet (UV) photodetectors in diversity of applications. The III-nitride semiconductor and metal halide perovskite have both performed promising UV-sensing optoelectronic properties. However, they are still suffering from either the high temperature epitaxial-growth or low photocurrent generated in UV range. In this work, we demonstrate an innovative MAPbCl3/GaN particle hybrid device with all-solution-processed deposition methods. Comparing to the control MAPbCl3photoconductors, the photo-sensing ability of the hybrid device with the optimal concentration of GaN particles is more than one order of magnitude enhanced, and report a responsivity of 86 mA W-1, a detectivity of 3.1 × 1011Jones and a rise/fall time of 1.1/10.7 ms at 360 nm. The photocurrent increment could be attributed to the enhanced UV absorption of GaN particles and facilitated charge separation and photoconductive gain at MAPbCl3/GaN heterojunction. This work paves a pathway towards the large-scale low-cost UV photodetectors in versatile applications.

7.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904668

RESUMO

Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity and strong electromechanical coupling. In this study, we investigated the affect of the presence of a guiding layer made from titanium/gold on the surface acoustic wave propagation of the GaN/sapphire substrate. By fixing the minimum thickness of the guiding layer at 200 nm, we could observe a slight frequency shift compared to the sample without a guiding layer, with the presence of different types of surface mode waves (Rayleigh and Sezawa). This thin guiding layer could be efficient in transforming the propagation modes, acting as a sensing layer for the binding of biomolecules to the gold layer, and influencing the output signal in terms of frequency or velocity. The proposed GaN/sapphire device integrated with a guiding layer could possibly be used as a biosensor and in wireless telecommunication applications.

8.
Sensors (Basel) ; 23(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37050525

RESUMO

We investigated the hydrogen gas sensors based on AlGaN/GaN high electron mobility transistors (HEMTs) for high temperature sensing operation. The gate area of the sensor was functionalized using a 10 nm Pd catalyst layer for hydrogen gas sensing. A thin WO3 layer was deposited on top of the Pd layer to enhance the sensor selectivity toward hydrogen gas. At 200 °C, the sensor exhibited high sensitivity of 658% toward 4%-H2, while exhibiting only a little interaction with NO2, CH4, CO2, NH3, and H2S. From 150 °C to 250 °C, the 10 ppm hydrogen response of the sensor was at least eight times larger than other target gases. These results showed that this sensor is suitable for H2 detection in a complex gas environment at a high temperature.

9.
Sensors (Basel) ; 23(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067975

RESUMO

In this paper, the precise design of a high-power amplifier (HPA) is shown, along with the problems associated with the stability of "on-wafer" measurements. Here, techniques to predict possible oscillations are discussed to ensure the stability of a monolithic microwave-integrated circuit (MMIC). In addition, a deep reflection is made on the instabilities that occur when measuring both on wafer and using a mounted chip. Stability techniques are used as tools to characterize measurement results. Both a precise design and instabilities are shown through the design of a three-stage X-band HPA in gallium nitride (GaN) from the WIN Semiconductors Corp. foundry. As a result, satisfactory performance was obtained, achieving a maximum output power equal to 42 dBm and power-added efficiency of 32% at a 20 V drain bias. In addition to identifying critical points in the design or measurement of the HPA, this research shows that the stability of the amplifier can be verified through a simple analysis and that instabilities are often linked to errors in the measurement process or in the characterization of the measurement process.

10.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514670

RESUMO

In this paper, a microwave monolithic integrated circuit (MMIC) high-power amplifier (HPA) for Ku-band active radar applications based on gallium nitride on silicon (GaN-on-Si) is presented. The design is based on a three-stage architecture and was implemented using the D01GH technology provided by OMMIC foundry. Details on the architecture definition and design process to maximize delivered power are provided along with stability and thermal analyses. To optimize the amplifier performance, an asymmetry was included at the output combiner. Experimental results show that the HPA achieves a 39.5 dBm pulsed-mode output power, a peak linear gain of 23 dB, a drain efficiency of 27%, and good input/output matching in the 16-19 GHz frequency range. The chip area is 5 × 3.5 mm2 and for the measurements was mounted on a custom-made module. These results demonstrate that GaN-on-Si-based Solid-State Power Amplifiers (SSPAs) can be used for the implementation of Ku-band active radars.

11.
Sensors (Basel) ; 23(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37430754

RESUMO

This paper describes Monolithic Microwave Integrated Circuits (MMICs) for an X-band radar transceiver front-end implemented in 0.25 µm GaN High Electron Mobility Transistor (HEMT) technology. Two versions of single pole double throw (SPDT) T/R switches are introduced to realize a fully GaN-based transmit/receive module (TRM), each of which achieves an insertion loss of 1.21 dB and 0.66 dB at 9 GHz, IP1dB higher than 46.3 dBm and 44.7 dBm, respectively. Therefore, it can substitute a lossy circulator and limiter used for a conventional GaAs receiver. A driving amplifier (DA), a high-power amplifier (HPA), and a robust low-noise amplifier (LNA) are also designed and verified for a low-cost X-band transmit-receive module (TRM). For the transmitting path, the implemented DA achieves a saturated output power (Psat) of 38.0 dBm and output 1-dB compression (OP1dB) of 25.84 dBm. The HPA reaches a Psat of 43.0 dBm and power-added efficiency (PAE) of 35.6%. For the receiving path, the fabricated LNA measures a small-signal gain of 34.9 dB and a noise figure of 2.56 dB, and it can endure higher than 38 dBm input power in the measurement. The presented GaN MMICs can be useful in implementing a cost-effective TRM for Active Electronically Scanned Array (AESA) radar systems at X-band.

12.
Sensors (Basel) ; 23(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514806

RESUMO

A three-phase GaN-based motor inverter IC with three integrated phase current mirror sensors (sense-FETs or sense-HEMTs, 1200:1 ratio), a temperature sensor, and an amplifier is presented and experimentally operated. The three low-side currents are read out by virtual grounding transimpedance amplifiers. A modified summed DC current readout circuit using only one amplifier is also discussed. During continuous 24 V motor operation with space-vector pulse width modulation (SVPWM), the sensor signal is measured and a bidirectional measurement capability is verified. The measured risetime of the sensor signal is 51 ns, indicating around 7 MHz bandwidth (without intentional optimization for high bandwidth). The IC is operated up to 32 V on DC-biased semi-floating substrate to limit negative static back-gating of the high-side transistors to around -7% of the DC-link voltage. Analysis of the capacitive coupling from the three switch-nodes to the substrate is calculated for SVPWM based on capacitance measurement, resulting in four discrete semi-floating substrate voltage levels, which is experimentally verified. Integrated advanced power converter topologies with sensors improve the power density of power electronics applications, such as for low-voltage motor drive.

13.
Nano Lett ; 22(20): 8174-8180, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36223431

RESUMO

A wafer-thin chip-scale portable spectrometer suitable for wearable applications based on a reconstructive algorithm was demonstrated. A total of 16 spectral encoders that simultaneously functioned as photodetectors were monolithically integrated on a chip area of 0.16 mm2 by applying local strain engineering in compressively strained InGaN/GaN multiple quantum well heterostructures. The built-in GaN pn junction enabled a direct photocurrent measurement. A non-negative least-squares (NNLS) algorithm with total-variation regularization and a choice of a proper kernel function was shown to deliver a decent spectral reconstruction performance in the wavelength range of 400-645 nm. The accuracies of spectral peak positions and intensity ratios between peaks were found to be 0.97% and 10.4%, respectively. No external optics, such as collimation optics and apertures, were used, enabled by angle-insensitive light-harvesting structures, including an array of cone-shaped backreflectors fabricated on the underside of the sapphire substrate.


Assuntos
Gálio , Gálio/química , Semicondutores , Iluminação , Análise de Falha de Equipamento , Desenho de Equipamento , Óxido de Alumínio/química
14.
Nanotechnology ; 33(30)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35439737

RESUMO

Integration of nanolayered metal chalcogenides with wide-bandgap semiconductors forming pn heterojunction leads to the way of high-performance photodetection. This work demonstrates the fabrication of a few nanometer thick Molybdenum diselenide (MoSe2)/Mg-doped Gallium Nitride (p-GaN) heterostructure for light detection purposes. The device exhibits low noise broadband spectral response from ultraviolet to near-infrared range (300-950 nm). The band-alignment and the charge transfer at the MoSe2/p-GaN interface promote self-powered photodetection with high photocurrent to dark current ratio of 2000 and 1000 at 365 nm and 640 nm, respectively. A high responsivity of 130 A W-1, detectivity of 4.8 × 1010Jones, and low noise equivalent power of 18 fW/Hz1/2at 365 nm is achieved at an applied bias of 1 V. Moreover, the transient measurements reveal a fast rise/fall time of 407/710µsec for the fabricated device. These outcomes exemplify the viability of MoSe2/p-GaN heterostructure for high-speed and low-noise broadband photodetector applications.

15.
Nanotechnology ; 33(47)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35977452

RESUMO

This work employs femtosecond transient absorption spectroscopy to investigate the ultrafast carrier dynamics of bound states in In0.14Ga0.86N/GaN quantum wells. The ground state (GS) dynamics usually dominate these characteristics, appearing as a prominent peak in the absorption spectra. It is observed that the excited state also contributes to the overall dynamics, with its signature showing up later. The contributions of both the ground and excited states in the absorption spectra and time-resolved dynamics are decoupled in this work. The carrier density in the GS first increases and then decays with time. The carriers populate the excited state only at a delayed time. The dynamics are studied considering the Quantum-Confined Stark Effect-induced wavelength shift in the absorption. The relevant microscopic optoelectronic processes are understood phenomenologically, and their time constants are extracted. An accurate study of these dynamics provides fundamentally essential insights into the time-resolved dynamics in quantum-confined heterostructures and can facilitate the development of efficient light sources using GaN heterostructures.

16.
Nano Lett ; 21(19): 8304-8310, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597518

RESUMO

An ultrathin tactile sensor with directional sensitivity and capable of mapping at a high spatial resolution is proposed and demonstrated. Each sensor node consists of two gallium nitride (GaN) nanopillar light-emitting diodes. Shear stress applied on the nanopillars causes the electrons and holes to separate in the radial direction and reduces the light intensity emitted from the nanopillars. A sensor array comprising 64 sensor nodes was designed and fabricated. Two-dimensional directional sensitivity was experimentally confirmed with a dynamic range of 1-30 mN and an accuracy of ±1.3 mN. Tracking and mapping of an external force moving across the sensor array were also demonstrated. Finally, the proposed tactile sensor's sensitivity was tested with a fingertip gently moving across the sensor array. The sensor successfully registered the finger movement's direction and fingerprint pattern.


Assuntos
Fenômenos Mecânicos , Tato , Luz
17.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555844

RESUMO

In recent years, the application of (In, Al, Ga)N materials in photovoltaic devices has attracted much attention. Like InGaN, it is a direct band gap material with high absorption at the band edge, suitable for high efficiency photovoltaic devices. Nonetheless, it is important to deposit high-quality GaN material as a foundation. Plasma-enhanced atomic layer deposition (PEALD) combines the advantages of the ALD process with the use of plasma and is often used to deposit thin films with different needs. However, residual oxygen during growth has always been an unavoidable issue affecting the quality of the resulting film, especially in growing gallium nitride (GaN) films. In this study, the NH3-containing plasma was used to capture the oxygen absorbed on the growing surface to improve the quality of GaN films. By diagnosing the plasma, NH2, NH, and H radicals controlled by the plasma power has a strong influence not only on the oxygen content in growing GaN films but also on the growth rate, crystallinity, and surface roughness. The NH and NH2 radicals contribute to the growth of GaN films while the H radicals selectively dissociate Ga-OH bonds on the film surface and etch the grown films. At high plasma power, the GaN film with the lowest Ga-O bond ratio has a saturated growth rate, a better crystallinity, a rougher surface, and a lower bandgap. In addition, the deposition mechanism of GaN thin films prepared with a trimethylgallium metal source and NH3/Ar plasma PEALD involving oxygen participation or not is also discussed in the study.


Assuntos
Amônia , Filmes Cinematográficos , Oxigênio , Plasma
18.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500217

RESUMO

Gallium nitride (GaN) is a wide bandgap semiconductor with remarkable chemical and thermal stability, making it a competitive candidate for a variety of optoelectronic applications. In this study, GaN films are grown using a plasma-enhanced atomic layer deposition (PEALD) with trimethylgallium (TMG) and NH3 plasma. The effect of substrate temperature on growth mechanism and properties of the PEALD GaN films is systematically studied. The experimental results show that the self-limiting surface chemical reactions occur in the substrate temperature range of 250-350 °C. The substrate temperature strongly affects the crystalline structure, which is nearly amorphous at below 250 °C, with (100) as the major phase at below 400 °C, and (002) dominated at higher temperatures. The X-ray photoelectron spectroscopy spectra reveals the unintentional oxygen incorporation into the films in the forms of Ga2O3 and Ga-OH. The amount of Ga-O component decreases, whereas the Ga-Ga component rapidly increases at 400 and 450 °C, due to the decomposition of TMG. The substrate temperature of 350 °C with the highest amount of Ga-N bonds is, therefore, considered the optimum substrate temperature. This study is helpful for improving the quality of PEALD GaN films.


Assuntos
Plasma , Semicondutores , Oxigênio , Espectroscopia Fotoeletrônica
19.
Small ; 17(45): e2103442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569140

RESUMO

Surface-enhanced Raman scattering (SERS) based on 2D semiconductors has been rapidly developed due to their chemical stability and molecule-specific SERS activity. High signal reproducibility is urgently required towards practical SERS applications. 2D gallium nitride (GaN) with highly polar Ga-N bonds enables strong dipole-dipole interactions with the probe molecules, and abundant DOS (density of states) near its Fermi level increases the intermolecular charge transfer probability, making it a suitable SERS substrate. Herein, 2D micrometer-sized GaN crystals are demonstrated to be sensitive SERS platforms with excellent signal reproducibility and stability. Strong dipole-dipole interaction between the dye molecule and 2D GaN enhances the molecular polarizability. Furthermore, 2D GaN benefits its SERS enhancement by the combination of increased DOS and more efficient charge transfer resonances when compared with its bulk counterpart.


Assuntos
Semicondutores , Análise Espectral Raman , Gálio , Reprodutibilidade dos Testes
20.
J Synchrotron Radiat ; 28(Pt 4): 1114-1118, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212874

RESUMO

The identification of the incorporated site of magnesium (Mg) and hydrogen (H) required for p-type formation in gallium nitride (GaN) power devices has been demonstrated by X-ray absorption spectroscopy (XAS). In this study, the fluorescence line of Mg with 3 × 1019 atoms cm-3 was successfully separated from that of Ga using a superconducting tunnel junction array detector with high sensitivity and high energy resolution, and consequently the Mg K-edge XAS spectra of such dilute samples were obtained. The site of Mg atoms incorporated into the GaN lattice was identified as the Ga substitutional site by comparing the experimental XAS spectrum with the simulated spectra calculated by density functional theory. In addition, the presence or absence of H around Mg can be determined through distinctive characteristics expected from the spectrum simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA