Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.315
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608656

RESUMO

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Assuntos
Genoma Humano , Humanos , Europa (Continente) , Variação Genética , Países Escandinavos e Nórdicos , Reino Unido , População Branca/genética , População Branca/história , Migração Humana
2.
Proc Natl Acad Sci U S A ; 121(36): e2406343121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186654

RESUMO

The extinction risk of the giant panda has been demoted from "endangered" to "vulnerable" on the International Union for Conservation of Nature Red List, but its habitat is more fragmented than ever before, resulting in 33 isolated giant panda populations according to the fourth national survey released by the Chinese government. Further comprehensive investigations of the genetic background and in-depth assessments of the conservation status of wild populations are still necessary and urgently needed. Here, we sequenced the genomes of 612 giant pandas with an average depth of ~26× and generated a high-resolution map of genomic variation with more than 20 million variants covering wild individuals from six mountain ranges and captive representatives in China. We identified distinct genetic clusters within the Minshan population by performing a fine-grained genetic structure. The estimation of inbreeding and genetic load associated with historical population dynamics suggested that future conservation efforts should pay special attention to the Qinling and Liangshan populations. Releasing captive individuals with a genetic background similar to the recipient population appears to be an advantageous genetic rescue strategy for recovering the wild giant panda populations, as this approach introduces fewer deleterious mutations into the wild population than mating with differentiated lineages. These findings emphasize the superiority of large-scale population genomics to provide precise guidelines for future conservation of the giant panda.


Assuntos
Conservação dos Recursos Naturais , Genoma , Ursidae , Ursidae/genética , Animais , Conservação dos Recursos Naturais/métodos , Genoma/genética , China , Espécies em Perigo de Extinção , Variação Genética , Genética Populacional/métodos , Dinâmica Populacional , Sequenciamento Completo do Genoma/métodos
3.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38782570

RESUMO

Within 15,000 years, the explosive adaptive radiation of haplochromine cichlids in Lake Victoria, East Africa, generated 500 endemic species. In the 1980s, the upsurge of Nile perch, a carnivorous fish artificially introduced to the lake, drove the extinction of more than 200 endemic cichlids. The Nile perch predation particularly harmed piscivorous cichlids, including paedophages, cichlids eat eggs and fries, which is an example of the unique trophic adaptation seen in African cichlids. Here, aiming to investigate past demographic events possibly triggered by the invasion of Nile perch and the subsequent impacts on the genetic structure of cichlids, we conducted large-scale comparative genomics. We discovered evidence of recent bottleneck events in 4 species, including 2 paedophages, which began during the 1970s to 1980s, and population size rebounded during the 1990s to 2000s. The timing of the bottleneck corresponded to the historical records of endemic haplochromines" disappearance and later resurgence, which is likely associated with the introduction of Nile perch by commercial demand to Lake Victoria in the 1950s. Interestingly, among the 4 species that likely experienced bottleneck, Haplochromis sp. "matumbi hunter," a paedophagous cichlid, showed the most severe bottleneck signatures. The components of shared ancestry inferred by ADMIXTURE suggested a high genetic differentiation between matumbi hunter and other species. In contrast, our phylogenetic analyses highly supported the monophyly of the 5 paedophages, consistent with the results of previous studies. We conclude that high genetic differentiation of matumbi hunter occurred due to the loss of shared genetic components among haplochromines in Lake Victoria caused by the recent severe bottleneck.


Assuntos
Ciclídeos , Lagos , Animais , Ciclídeos/genética , Genoma , Genômica , Filogenia
4.
Am J Hum Genet ; 109(4): 727-737, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35298920

RESUMO

Inferring the structure of human populations from genetic variation data is a key task in population and medical genomic studies. Although a number of methods for population structure inference have been proposed, current methods are impractical to run on biobank-scale genomic datasets containing millions of individuals and genetic variants. We introduce SCOPE, a method for population structure inference that is orders of magnitude faster than existing methods while achieving comparable accuracy. SCOPE infers population structure in about a day on a dataset containing one million individuals and variants as well as on the UK Biobank dataset containing 488,363 individuals and 569,346 variants. Furthermore, SCOPE can leverage allele frequencies from previous studies to improve the interpretability of population structure estimates.


Assuntos
Bancos de Espécimes Biológicos , Genética Populacional , Frequência do Gene/genética , Genômica , Humanos
5.
Hum Genomics ; 18(1): 104, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289776

RESUMO

BACKGROUND: High-quality genomic datasets from under-representative populations are essential for population genetic analysis and medical relevance. Although the Tujia are the most populous ethnic minority in southwestern China, previous genetic studies have been fragmented and only partially reveal their genetic diversity landscape. The understanding of their fine-scale genetic structure and potentially differentiated biological adaptive features remains nascent. OBJECTIVES: This study aims to explore the demographic history and genetic architecture related to the natural selection of the Tujia people, focusing on a meta-Tujia population from the central regions of the Yangtze River Basin. RESULTS: Population genetic analyses conducted on the meta-Tujia people indicate that they occupy an intermediate position in the East Asian North-South genetic cline. A close genetic affinity was identified between the Tujia people and neighboring Sinitic-speaking populations. Admixture models suggest that the Tujia can be modeled as a mixture of northern and southern ancestries. Estimates of f3/f4 statistics confirmed the presence of ancestral links to ancient Yellow River Basin millet farmers and the BaBanQinCen-related groups. Furthermore, population-specific natural selection signatures were explored, revealing highly differentiated functional variants between the Tujia and southern indigenous populations, including genes associated with hair morphology (e.g., EDAR) and skin pigmentation (e.g., SLC24A5). Additionally, both shared and unique selection signatures were identified among ethnically diverse but geographically adjacent populations, highlighting their extensive admixture and the biological adaptations introduced by this admixture. CONCLUSIONS: The study unveils significant population movements and genetic admixture among the Tujia and other ethno-linguistically diverse East Asian groups, elucidating the differentiated adaptation processes across geographically diverse populations from the current genetic landscape.


Assuntos
Alelos , Genética Populacional , Seleção Genética , Humanos , Adaptação Biológica/genética , China , População do Leste Asiático/genética , Etnicidade/genética , Variação Genética , Haplótipos , Polimorfismo de Nucleotídeo Único
6.
Proc Natl Acad Sci U S A ; 119(32): e2121425119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914147

RESUMO

Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.


Assuntos
Ecossistema , Zosteraceae , Aclimatação , Animais , Evolução Biológica , Biomassa , Cadeia Alimentar , Invertebrados , Zosteraceae/genética
7.
Proc Natl Acad Sci U S A ; 119(47): e2209311119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375050

RESUMO

The complex interplay between genetics, culture, and environment forms an individual's biology, influencing their behavior, choices, and health. However, to what extent information derived from this intertwined network could be quantitatively summarized to provide a glance at an individual's lifestyle is difficult to say. Here, we focused on dietary preferences as cultural proxies and genome-wide data of 543 individuals from six historical Silk Road countries: Georgia, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, and Tajikistan. These lands favored the dispersal of innovations, foods, and DNA halfway across Eurasia, thus representing an ideal subject to explore interactions of cultural factors and genetic ancestry. We used discriminant analysis of principal components to infer cultural clusters, where mixed memberships are allowed. Five different clusters emerged. Of these, clusters 1 and 3, driven by aversion to pork and alcoholic beverages, mirrored genetic admixture patterns with the exception of Azerbaijan, which shares preferences supported by Islamic culture with Eastern countries. Cluster 3 was driven by protein-rich foods, whose preference was significantly related to steppe pastoralist ancestry. Sex and age were secondary clustering factors, with clusters formed by male and young individuals being related to alcohol preference and a reduced liking for vegetables. The soft clustering approach enabled us to model and summarize the individual's dietary information in short and informative vectors, which show meaningful interaction with other nondietary attributes of the studied individuals. Encoding other cultural variables would help summarize an individual's culture quantitatively, thus ultimately supporting its inclusion as a covariate in future association studies.


Assuntos
Preferências Alimentares , Humanos , Masculino , Alimentos , Estruturas Genéticas , República da Geórgia , Feminino
8.
BMC Biol ; 22(1): 55, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448908

RESUMO

BACKGROUND: The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS: We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS: Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.


Assuntos
Aclimatação , Genômica , Humanos , China , Alelos , Idioma
9.
BMC Biol ; 22(1): 18, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273256

RESUMO

BACKGROUND: The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources. The deep characterization of demographic history and natural-selection-relevant genetic architecture of HM people was necessary. RESULTS: We reported one HM-specific genomic resource and comprehensively explored the fine-scale genetic structure and adaptative features inferred from the genome-wide SNP data of 440 HM individuals from 33 ethnolinguistic populations, including previously unreported She. We identified solid genetic differentiation between HM people and Han Chinese at 7.64‒15.86 years ago (kya) and split events between southern Chinese inland (Miao/Yao) and coastal (She) HM people in the middle Bronze Age period and the latter obtained more gene flow from Ancient Northern East Asians. Multiple admixture models further confirmed that extensive gene flow from surrounding ST, TK, and AN people entangled in forming the gene pool of Chinese coastal HM people. Genetic findings of isolated shared unique ancestral components based on the sharing alleles and haplotypes deconstructed that HM people from the Yungui Plateau carried the breadth of previously unknown genomic diversity. We identified a direct and recent genetic connection between Chinese inland and Southeast Asian HM people as they shared the most extended identity-by-descent fragments, supporting the long-distance migration hypothesis. Uniparental phylogenetic topology and network-based phylogenetic relationship reconstruction found ancient uniparental founding lineages in southwestern HM people. Finally, the population-specific biological adaptation study identified the shared and differentiated natural selection signatures among inland and coastal HM people associated with physical features and immune functions. The allele frequency spectrum of cancer susceptibility alleles and pharmacogenomic genes showed significant differences between HM and northern Chinese people. CONCLUSIONS: Our extensive genetic evidence combined with the historical documents supported the view that ancient HM people originated from the Yungui regions associated with ancient "Three-Miao tribes" descended from the ancient Daxi-Qujialing-Shijiahe people. Then, some have recently migrated rapidly to Southeast Asia, and some have migrated eastward and mixed respectively with Southeast Asian indigenes, Liangzhu-related coastal ancient populations, and incoming southward ST people. Generally, complex population migration, admixture, and adaptation history contributed to the complicated patterns of population structure of geographically diverse HM people.


Assuntos
População do Leste Asiático , Genética Populacional , Humanos , China , Genômica , Haplótipos , Filogenia
10.
Genomics ; 116(3): 110843, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608736

RESUMO

Fenneropenaeus chinensis is a commercially important shrimp species cultured in China. This study investigated eight F. chinensis populations in China, including four geographical populations, three commercial breeds, and one wild population captured from the Yellow Sea. Population stratification analysis revealed that the Hebei geographical population and commercial breeding "Huanghai No. 4" were relatively independent and stable, reflecting a relatively closed breeding environment, whereas gene introgression was present between other populations. Selective signature analysis detected artificial selection for vision, growth, and disease resistance in the Hebei population. Neuronal development-related genes were detected to be under selection in the Changyi and Rizhao populations. Fertility of the Rizhao population was also investigated. Additionally, genes in the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate pathway were involved in the high pH tolerance of the "Huanghai No. 4" population. This study provided support for the genetic mechanism of parsing economic traits and the development of molecular breeding technologies.


Assuntos
Penaeidae , Animais , Penaeidae/genética , China , Cruzamento , Variação Genética , Seleção Genética
11.
BMC Genomics ; 25(1): 331, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565992

RESUMO

BACKGROUND: The pig (Sus Scrofa) is one of the oldest domesticated livestock species that has undergone extensive improvement through modern breeding. European breeds have advantages in lean meat development and highly-productive body type, whereas Asian breeds possess extraordinary fat deposition and reproductive performance. Consequently, Eurasian breeds have been extensively used to develop modern commercial breeds for fast-growing and high prolificacy. However, limited by the sequencing technology, the genome architecture of some nascent developed breeds and the human-mediated impact on their genomes are still unknown. RESULTS: Through whole-genome analysis of 178 individuals from an Asian locally developed pig breed, Beijing Black pig, and its two ancestors from two different continents, we found the pervasive inconsistent gene trees and species trees across the genome of Beijing Black pig, which suggests its introgressive hybrid origin. Interestingly, we discovered that this developed breed has more genetic relationships with European pigs and an unexpected introgression from Asian pigs to this breed, which indicated that human-mediated introgression could form the porcine genome architecture in a completely different type compared to native introgression. We identified 554 genomic regions occupied 63.30 Mb with signals of introgression from the Asian ancestry to Beijing Black pig, and the genes in these regions enriched in pathways associated with meat quality, fertility, and disease-resistant. Additionally, a proportion of 7.77% of genomic regions were recognized as regions that have been under selection. Moreover, combined with the results of a genome-wide association study for meat quality traits in the 1537 Beijing Black pig population, two important candidate genes related to meat quality traits were identified. DNAJC6 is related to intramuscular fat content and fat deposition, and RUFY4 is related to meat pH and tenderness. CONCLUSIONS: Our research provides insight for analyzing the origins of nascent developed breeds and genome-wide selection remaining in the developed breeds mediated by humans during modern breeding.


Assuntos
Introgressão Genética , Estudo de Associação Genômica Ampla , Humanos , Animais , Suínos/genética , Genoma , Genômica/métodos , Cruzamento , Polimorfismo de Nucleotídeo Único , Sus scrofa/genética , Seleção Genética
12.
BMC Genomics ; 25(1): 868, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285290

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) and systemic lupus erythematosus (SLE) are autoimmune diseases that often coexist clinically. This phenomenon might be due to shared genetic components. METHODS: Genome-wide association study (GWAS) data for IBD and SLE were analyzed to determine both global and local genetic correlations using three methodologies: linkage disequilibrium score regression (LDSC), genetic covariance analyzer (GNOVA), and SUPERGNOVA. The genetic overlap and risk loci were subsequently examined using the conditional/conjunctional false discovery rate (cond/conjFDR) statistical framework. Furthermore, a multi-trait analysis of MTAG was employed to validate the loci, followed by an LDSC analysis focusing on tissue-specific gene expression. RESULTS: GWAS findings demonstrated a marked global genetic correlation between IBD (including Crohn's disease and ulcerative colitis) and SLE. Locally, SLE showed a strong association with IBD and Crohn's disease on chromosomes 10, 19, and 22. ConjFDR analysis confirmed the genetic overlap and identified relevant genetic risk loci. MTAG further validated several shared susceptibility genes. Additionally, the LDSC-SEG analysis results indicate that IBD (including CD and UC) and SLE are jointly enriched in the tissues of Spleen and Whole Blood. CONCLUSION: This study confirms a genetic overlap between IBD and SLE, identifying marked comorbid genes and offering new insights for treating these diseases.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais , Desequilíbrio de Ligação , Lúpus Eritematoso Sistêmico , Lúpus Eritematoso Sistêmico/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
13.
BMC Plant Biol ; 24(1): 834, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242997

RESUMO

Conservation and management of medicinally important plants are among the necessary tasks all over the world. The genus Dracocephalum (Lamiaceae) contains about 186 perennials, or annual herb species that have been used for their medicinal values in different parts of the world as an antihyperlipidemic, analgesic, antimicrobial, antioxidant, as well as anticancer medicine. Producing detailed data on the genetic structure of these species and their response against climate change and human landscape manipulation can be very important for conservation purposes. Therefore, the present study was performed on six geographical populations of two species in the Dracocephalum genus, namely, Dracocephalum kotschyi, and Dracocephalum oligadenium, as well as their inter-specific hybrid population. We carried out, population genetic study, landscape genetics, species modeling, and genetic cline analyses on these plants. We present here, new findings on the genetic structure of these populations, and provide data on both geographical and genetic clines, as well as morphological clines. We also identified genetic loci that are potentially adaptive to the geographical spatial features and genocide conditions. Different species distribution modeling (SDM) methods, used in this work revealed that bioclimatic variables related to the temperature and moisture, play an important role in Dracocephalum population's geographical distribution within IRAN and that due to the presence of some potentially adaptive genetic loci in the studied plants, they can survive well enough by the year 2050 and under climate change. The findings can be used for the protection of these medicinally important plant.


Assuntos
Lamiaceae , Lamiaceae/genética , Hibridização Genética , Variação Genética , Geografia , Genética Populacional
14.
BMC Plant Biol ; 24(1): 89, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317071

RESUMO

BACKGROUND: Geological movements and climatic fluctuations stand as pivotal catalysts driving speciation and phylogenetic evolution. The genus Polyspora Sweet (Theaceae), prominently found across the Malay Archipelagos and Indochina Peninsula in tropical Asia, exhibits its northernmost distribution in China. In this study, we investigated the evolutionary and biogeographical history of the genus Polyspora in China, shedding light on the mechanisms by which these species respond to ancient geological and climatic fluctuations. METHODS: Phylogenetic relationships of 32 representative species of Theaceae were reconstructed based on the chloroplast genome and ribosome 18-26 S rRNA datasets. Species divergence time was estimated using molecular clock and five fossil calibration. The phylogeography and population genetics in 379 individuals from 32 populations of eight species were analyzed using chloroplast gene sequences (trnH-psbA, rpoB-trnC and petN-psbM), revealing the glacial refugia of each species, and exploring the causes of the phylogeographic patterns. RESULTS: We found that Chinese Polyspora species diverged in the middle Miocene, showing a tropical-subtropical divergence order. A total of 52 haplotypes were identified by the combined chloroplast sequences. Chinese Polyspora exhibited a distinct phylogeographical structure, which could be divided into two clades and eight genealogical subdivisions. The divergence between the two clades occurred approximately 20.67 Ma. Analysis of molecular variance revealed that the genetic variation mainly occurred between species (77.91%). At the species level, Polyspora axillaris consists of three lineages, while P. speciosa had two lineages. The major lineages of Chinese Polyspora diverged between 12 and 15 Ma during the middle to late Miocene. The peak period of haplotype differentiation in each species occurred around the transition from the last interglacial to the last glacial period, approximately 6 Ma ago. CONCLUSION: The primary geographical distribution pattern of Chinese Polyspora was established prior to the last glacial maximum, and the population historical dynamics were relatively stable. The geological and climatic turbulence during the Quaternary glacial period had minimal impact on the distribution pattern of the genus. The genus coped with Quaternary climate turbulence by glacial in situ survival in multiple refuges. The Sino-Vietnam border and Nanling corridor might be the genetic mixing center of Polyspora.


Assuntos
Variação Genética , Genética Populacional , Humanos , Filogeografia , Filogenia , China , Ásia , Haplótipos/genética , DNA de Cloroplastos/genética , Evolução Molecular
15.
BMC Plant Biol ; 24(1): 315, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654191

RESUMO

BACKGROUND: Dalbergia odorifera is a rare and precious rosewood specie, which is valued for its amber tones, abstract figural patterns, and impermeability to water and insects. However, the information on genetic diversity and marker-assisted selection breeding of D. odorifera is still limited. Simple sequence repeat (SSR) markers are an ideal tool for genetic diversity analysis and marker-assisted molecular breeding for complex traits. RESULTS: Here, we have developed SSR markers within candidate genes and used them to explore the genetic diversity among D. odorifera germplasm resources. A total of 635 SSR loci were identified. The proportions of mono-, di- and tri-nucleotide repeat motifs were 52.28%, 22.99% and 21.42%, respectively. From these, a total of 114 SSR primers were synthesized, of which 24 SSR markers displayed polymorphism (polymorphic information content (PIC) > 0.25). Subsequently, these polymorphic markers were used for the genetic diversity analysis of 106 D. odorifera individuals from 11 natural populations. According to the genetic diversity analysis of D. odorifera natural populations, the average observed heterozygosity (Ho) was 0.500, the average expected heterozygosity (He) was 0.524, and the average Shannon's information index (I) was 0.946. These indicated that the natural populations had moderate genetic diversity. AMOVA analysis showed that 5% of the total variation was within the individuals of a population, whereas 95% of the variation was among the individuals of the populations, indicating a high degree of genetic variation between populations. On the basis of their genetic structures, these populations could be divided into four groups. CONCLUSIONS: Our study provides important experimental resources for genetic studies and assists in the program of molecular breeding of D. odorifera wood formation.


Assuntos
Dalbergia , Repetições de Microssatélites , Repetições de Microssatélites/genética , Dalbergia/genética , Polimorfismo Genético , Marcadores Genéticos , Variação Genética , Filogenia
16.
BMC Plant Biol ; 24(1): 843, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244564

RESUMO

Zanthoxylum is a versatile economic tree species utilized for its spice, seasoning, oil, medicinal, and industrial raw material applications, and it has a lengthy history of cultivation and domestication in China. This has led to the development of numerous cultivars. However, the phenomenon of mixed cultivars and confusing names has significantly obstructed the effective utilization of Zanthoxylum resources and industrial development. Consequently, conducting genetic diversity studies and cultivar identification on Zanthoxylum are crucial. This research analyzed the genetic traits of 80 Zanthoxylum cultivars using simple sequence repeat (SSR) and inter-Primer Binding Site (iPBS) molecular markers, leading to the creation of a DNA fingerprint. This study identified 206 and 127 alleles with 32 SSR markers and 10 iPBS markers, respectively, yielding an average of 6.4 and 12.7 alleles (Na) per marker. The average polymorphism information content (PIC) for the SSR and iPBS markers was 0.710 and 0.281, respectively. The genetic similarity coefficients for the 80 Zanthoxylum accessions ranged from 0.0947 to 0.9868 and from 0.2206 to 1.0000, with mean values of 0.3864 and 0.5215, respectively, indicating substantial genetic diversity. Cluster analysis, corroborated by principal coordinate analysis (PCoA), categorized these accessions into three primary groups. Analysis of the genetic differentiation among the three Zanthoxylum (Z. bungeanum, Z. armatum, and Z. piperitum) populations using SSR markers revealed a mean genetic differentiation coefficient (Fst) of 0.335 and a gene flow (Nm) of 0.629, suggesting significant genetic divergence among the populations. Molecular variance analysis (AMOVA) indicated that 65% of the genetic variation occurred within individuals, while 35% occurred among populations. Bayesian model-based analysis of population genetic structure divided all materials into two groups. The combined PI and PIsibs value of the 32 SSR markers were 4.265 × 10- 27 and 1.282 × 10- 11, respectively, showing strong fingerprinting power. DNA fingerprints of the 80 cultivars were established using eight pairs of SSR primers, each assigned a unique numerical code. In summary, while both markers were effective at assessing the genetic diversity and relationships of Zanthoxylum species, SSR markers demonstrated superior polymorphism and cultivar discrimination compared to iPBS markers. These findings offer a scientific foundation for the conservation and sustainable use of Zanthoxylum species.


Assuntos
Impressões Digitais de DNA , Variação Genética , Repetições de Microssatélites , Zanthoxylum , Zanthoxylum/genética , Repetições de Microssatélites/genética , Marcadores Genéticos , Filogenia , DNA de Plantas/genética , Polimorfismo Genético , Alelos , Sítios de Ligação
17.
BMC Plant Biol ; 24(1): 516, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851686

RESUMO

BACKGROUND: The influence of native secondary succession associated with anthropogenic disturbance on the biodiversity of the forests in subtropical China remains uncertain. In particular, the evolutionary response of small understory shrubs, particularly pioneer species inhabiting continuously disturbed habitats, to topographic heterogeneity and climate change is poorly understood. This study aimed to address this knowledge gap by focusing on the Gaultheria crenulata group, a clade of small pioneer shrubs in subtropical China. RESULTS: We examined the genetic structure and demographic history of all five species of the G. crenulata group with two maternally inherited chloroplast DNA (cpDNA) fragments and two biparentally inherited low-copy nuclear genes (LCG) over 89 natural populations. We found that the genetic differentiation of this group was influenced by the geomorphological boundary between different regions of China in association with Quaternary climatic events. Despite low overall genetic diversity, we observed an isolation-by-distance (IBD) pattern at a regional scale, rather than isolation-by-environment (IBE), which was attributed to ongoing human disturbance in the region. CONCLUSION: Our findings suggest that the genetic structure of the G. crenulata group reflects the interplay of geological topography, historical climates, and anthropogenic disturbance during the Pliocene-Pleistocene-Holocene periods in subtropical China. The observed IBD pattern, particularly prominent in western China, highlights the role of limited dispersal and gene flow, possibly influenced by physical barriers or decreased connectivity over geographic distance. Furthermore, the east-to-west trend of gene flow, potentially facilitated by the East Asian monsoon system, underscores the complex interplay of biotic and abiotic factors shaping the genetic dynamics of pioneer species in subtropical China's secondary forests. These findings can be used to assess the impact of environmental changes on the adaptation and persistence of biodiversity in subtropical forest ecosystems.


Assuntos
Florestas , Variação Genética , China , DNA de Cloroplastos/genética , Dinâmica Populacional , Biodiversidade , Fluxo Gênico
18.
Mol Genet Genomics ; 299(1): 22, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430317

RESUMO

Drought stress poses a severe threat to global wheat production, necessitating an in-depth exploration of the genetic basis for drought tolerance associated traits. This study employed a 90 K SNP array to conduct a genome-wide association analysis, unravelling genetic determinants of key traits related to drought tolerance in wheat, namely plant height, root length, and root and shoot dry weight. Using the mixed linear model (MLM) method on 125 wheat accessions subjected to both well-watered and drought stress treatments, we identified 53 SNPs significantly associated with stress susceptibility (SSI) and tolerance indices (STI) for the targeted traits. Notably, chromosomes 2A and 3B stood out with ten and nine associated markers, respectively. Across 17 chromosomes, 44 unique candidate genes were pinpointed, predominantly located on the distal ends of 1A, 1B, 1D, 2A, 3A, 3B, 4A, 6A, 6B, 7A, 7B, and 7D chromosomes. These genes, implicated in diverse functions related to plant growth, development, and stress responses, offer a rich resource for future investigation. A clustering pattern emerged, notably with seven genes associated with SSI for plant height and four genes linked to both STI of plant height and shoot dry weight, converging on specific regions of chromosome arms of 2AS and 3BL. Additionally, shared genes encoding polygalacturonase, auxilin-related protein 1, peptide deformylase, and receptor-like kinase underscored the interconnectedness between plant height and shoot dry weight. In conclusion, our findings provide insights into the molecular mechanisms governing wheat drought tolerance, identifying promising genomic loci for further exploration and crop improvement strategies.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Mapeamento Cromossômico , Triticum/genética , Locos de Características Quantitativas/genética , Resistência à Seca , Polimorfismo de Nucleotídeo Único/genética
19.
Mol Ecol ; 33(16): e17469, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016177

RESUMO

Functional connectivity, the extent to which a landscape facilitates or impedes the dispersal of individuals across the landscape, is a key factor for the survival of species. Anthropogenic activities, such as urbanization, agriculture and roads, negatively impact functional connectivity of most species, particularly low-vagility species like lizards. Here, we examine how a landscape modified by anthropogenic activities affects the functional connectivity, at both broad and fine scales, of a widely distributed generalist lizard Sceloporus grammicus in the eastern Trans-Mexican Volcanic Belt, Mexico. We estimated for the first time the species' genetic structure, gene flow and functional connectivity in agricultural and forest zones using genomic data, a comprehensive landscape characterization and novel methods including gravity models. Our results showed not only marked genetic differentiation across the study region but also that functional connectivity is maintained for tens of kilometres despite S. grammicus low vagility. Specifically, we found that substrate and air temperature facilitated connectivity over broad and fine scales, respectively, while agricultural cover, relative humidity and slope were important for connectivity and gene flow. Contrastingly, forest cover and roads favoured (broad-scale) and limited (fine-scale) connectivity, likely associated with movement facilitated by small forest patches and with thermoregulation. Altogether, these results support that S. grammicus alternates its thermoregulatory behaviour depending on the distance travelled and the habitat environmental conditions, and that it can disperse through relatively modified landscapes, mainly using agricultural zones. The information obtained is crucial to understanding the response of lizards to current anthropogenic pressures and their potential to adapt.


Assuntos
Efeitos Antropogênicos , Fluxo Gênico , Lagartos , México , Animais , Fenômenos Geológicos , Lagartos/genética , Lagartos/fisiologia , Migração Animal , Agricultura , Genética Populacional
20.
Mol Ecol ; 33(2): e17206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997532

RESUMO

In the face of habitat loss, preserving functional connectivity is essential to maintain genetic diversity and the demographic dynamics required for the viability of biotic communities. This requires knowledge of the dispersal behaviour of target species, which can be modelled as kernels, or probability density functions of dispersal distances at increasing geographic distances. We present an integrative approach to investigate the relationships between genetic connectivity and demographic parameters in organisms with low vagility focusing on five syntopic pond-breeding amphibians. We genotyped 1056 individuals of two anuran and three urodele species (1732-3913 SNPs per species) from populations located in a landscape comprising 64 ponds to characterize fine-scale genetic structure in a comparative framework, and combined these genetic data with information obtained in a previous 2-year capture-mark-recapture (CMR) study. Specifically, we contrasted graphs reconstructed from genomic data with connectivity graphs based on dispersal kernels and demographic information obtained from CMR data from previous studies, and assessed the effects of population size, population density, geographical distances, inverse movement probabilities and the presence of habitat patches potentially functioning as stepping stones on genetic differentiation. Our results show a significant effect of local population sizes on patterns of genetic differentiation at small spatial scales. In addition, movement records and cluster-derived kernels provide robust inferences on most likely dispersal paths that are consistent with genomic inferences on genetic connectivity. The integration of genetic and CMR data holds great potential for understanding genetic connectivity at spatial scales relevant to individual organisms, with applications for the implementation of management actions at the landscape level.


Assuntos
Anuros , Ecossistema , Humanos , Animais , Densidade Demográfica , Genótipo , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA