RESUMO
Germinal centers (GCs) are microanatomical sites of B cell clonal expansion and antibody affinity maturation. Therein, B cells undergo the Darwinian process of somatic diversification and affinity-driven selection of immunoglobulins that produces the high-affinity antibodies essential for effective humoral immunity. Here, we review recent developments in the field of GC biology, primarily as it pertains to GCs induced by infection or immunization. First, we summarize the phenotype and function of the different cell types that compose the GC, focusing on GC B cells. Then, we review the cellular and molecular bases of affinity-dependent selection within the GC and the export of memory and plasma cells. Finally, we present an overview of the emerging field of GC clonal dynamics, focusing on how GC and post-GC selection shapes the diversity of antibodies secreted into serum.
Assuntos
Linfócitos B , Centro Germinativo , Animais , Anticorpos , Afinidade de Anticorpos , Humanos , Imunidade HumoralRESUMO
Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.
Assuntos
Imunidade nas Mucosas , Imunoglobulina A , Animais , Humanos , Mucosa Intestinal , Nódulos Linfáticos AgregadosRESUMO
We comprehensively review memory B cells (MBCs), covering the definition of MBCs and their identities and subsets, how MBCs are generated, where they are localized, how they are maintained, and how they are reactivated. Whereas naive B cells adopt multiple fates upon stimulation, MBCs are more restricted in their responses. Evolving work reveals that the MBC compartment in mice and humans consists of distinct subpopulations with differing effector functions. We discuss the various approaches to define subsets and subset-specific roles. A major theme is the need to both deliver faster effector function upon reexposure and readapt to antigenically variant pathogens while avoiding burnout, which would be the result if all MBCs generated only terminal effector function. We discuss cell-intrinsic differences in gene expression and signaling that underlie differences in function between MBCs and naive B cells and among MBC subsets and how this leads to memory responses.
Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Memória Imunológica , Vacinas/imunologia , Animais , Humanos , Imunidade Humoral , Ativação Linfocitária , Camundongos , TranscriptomaRESUMO
Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.
Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Centro Germinativo , Imunidade Humoral , Baço , Animais , Masculino , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Gânglios Espinais/metabolismo , Centro Germinativo/imunologia , Camundongos Endogâmicos C57BL , Nociceptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais , Baço/inervação , Baço/imunologia , FemininoRESUMO
Although T cell help for B cells was described several decades ago, it was the identification of CXCR5 expression by B follicular helper T (Tfh) cells and the subsequent discovery of their dependence on BCL6 that led to the recognition of Tfh cells as an independent helper subset and accelerated the pace of discovery. More than 20 transcription factors, together with RNA-binding proteins and microRNAs, control the expression of chemotactic receptors and molecules important for the function and homeostasis of Tfh cells. Tfh cells prime B cells to initiate extrafollicular and germinal center antibody responses and are crucial for affinity maturation and maintenance of humoral memory. In addition to the roles that Tfh cells have in antimicrobial defense, in cancer, and as HIV reservoirs, regulation of these cells is critical to prevent autoimmunity. The realization that follicular T cells are heterogeneous, comprising helper and regulatory subsets, has raised questions regarding a possible division of labor in germinal center B cell selection and elimination.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Humoral , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Ativação Linfocitária , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/metabolismoRESUMO
Antibody responses are characterized by increasing affinity and diversity over time. Affinity maturation occurs in germinal centers by a mechanism that involves repeated cycles of somatic mutation and selection. How antibody responses diversify while also undergoing affinity maturation is not as well understood. Here, we examined germinal center (GC) dynamics by tracking B cell entry, division, somatic mutation, and specificity. Our experiments show that naive B cells continuously enter GCs where they compete for T cell help and undergo clonal expansion. Consistent with late entry, invaders carry fewer mutations but can contribute up to 30% or more of the cells in late-stage germinal centers. Notably, cells entering the germinal center at later stages of the reaction diversify the immune response by expressing receptors that show low affinity to the immunogen. Paradoxically, the affinity threshold for late GC entry is lowered in the presence of high-affinity antibodies.
Assuntos
Linfócitos B , Centro Germinativo , Afinidade de Anticorpos , Formação de Anticorpos , AntígenosRESUMO
Germinal centers (GCs) that form within lymphoid follicles during antibody responses are sites of massive cell death. Tingible body macrophages (TBMs) are tasked with apoptotic cell clearance to prevent secondary necrosis and autoimmune activation by intracellular self antigens. We show by multiple redundant and complementary methods that TBMs derive from a lymph node-resident, CD169-lineage, CSF1R-blockade-resistant precursor that is prepositioned in the follicle. Non-migratory TBMs use cytoplasmic processes to chase and capture migrating dead cell fragments using a "lazy" search strategy. Follicular macrophages activated by the presence of nearby apoptotic cells can mature into TBMs in the absence of GCs. Single-cell transcriptomics identified a TBM cell cluster in immunized lymph nodes which upregulated genes involved in apoptotic cell clearance. Thus, apoptotic B cells in early GCs trigger activation and maturation of follicular macrophages into classical TBMs to clear apoptotic debris and prevent antibody-mediated autoimmune diseases.
Assuntos
Centro Germinativo , Linfonodos , Macrófagos , Apoptose , Linfócitos B , Linfonodos/citologia , Macrófagos/citologia , Macrófagos/metabolismoRESUMO
Germinal centers (GCs) form in lymph nodes after immunization or infection to facilitate antibody affinity maturation and memory and plasma cell (PC) development. PC differentiation is thought to involve stringent selection for GC B cells expressing the highest-affinity antigen receptors, but how this plays out during complex polyclonal responses is unclear. We combine temporal lineage tracing with antibody characterization to gain a snapshot of PCs developing during influenza infection. GCs co-mature B cell clones with antibody affinities spanning multiple orders of magnitude; however, each generates PCs with similar efficiencies, including weak binders. Within lineages, PC selection is not restricted to variants with the highest-affinity antibodies. Differentiation is commonly associated with proliferative expansion to produce "nodes" of identical PCs. Immunization-induced GCs generate fewer PCs but still of low- and high-antibody affinities. We propose that generating low-affinity antibody PCs reflects an evolutionary compromise to facilitate diverse serum antibody responses.
Assuntos
Afinidade de Anticorpos , Linfócitos B , Centro Germinativo , Plasmócitos , Formação de Anticorpos , Linfócitos B/citologia , Linfócitos B/imunologia , Linfonodos , Linhagem Celular , Humanos , Animais , Camundongos , Cricetinae , Vírus da Influenza A/imunologia , Diferenciação CelularRESUMO
Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.
RESUMO
During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.
Assuntos
Anticorpos Antivirais , Vacina BNT162 , COVID-19 , Centro Germinativo , Antígenos Virais , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , VacinaçãoRESUMO
Regulatory T cells prevent the emergence of autoantibodies and excessive IgE, but the precise mechanisms are unclear. Here, we show that BCL6-expressing Tregs, known as follicular regulatory T (Tfr) cells, produce abundant neuritin protein that targets B cells. Mice lacking Tfr cells or neuritin in Foxp3-expressing cells accumulated early plasma cells in germinal centers (GCs) and developed autoantibodies against histones and tissue-specific self-antigens. Upon immunization, these mice also produced increased plasma IgE and IgG1. We show that neuritin is taken up by B cells, causes phosphorylation of numerous proteins, and dampens IgE class switching. Neuritin reduced differentiation of mouse and human GC B cells into plasma cells, downregulated BLIMP-1, and upregulated BCL6. Administration of neuritin to Tfr-deficient mice prevented the accumulation of early plasma cells in GCs. Production of neuritin by Tfr cells emerges as a central mechanism to suppress B cell-driven autoimmunity and IgE-mediated allergies.
Assuntos
Linfócitos B/imunologia , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Autoanticorpos/imunologia , Autoimunidade , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Ligadas por GPI/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histonas/imunologia , Switching de Imunoglobulina , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Plasmócitos/citologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismoRESUMO
Memory B cells play a fundamental role in host defenses against viruses, but to date, their role has been relatively unsettled in the context of SARS-CoV-2. We report here a longitudinal single-cell and repertoire profiling of the B cell response up to 6 months in mild and severe COVID-19 patients. Distinct SARS-CoV-2 spike-specific activated B cell clones fueled an early antibody-secreting cell burst as well as a durable synchronous germinal center response. While highly mutated memory B cells, including pre-existing cross-reactive seasonal Betacoronavirus-specific clones, were recruited early in the response, neutralizing SARS-CoV-2 RBD-specific clones accumulated with time and largely contributed to the late, remarkably stable, memory B cell pool. Highlighting germinal center maturation, these cells displayed clear accumulation of somatic mutations in their variable region genes over time. Overall, these findings demonstrate that an antigen-driven activation persisted and matured up to 6 months after SARS-CoV-2 infection and may provide long-term protection.
Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , Memória Imunológica , Adulto , COVID-19/fisiopatologia , Citometria de Fluxo , Centro Germinativo/citologia , Humanos , Ativação Linfocitária , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Análise de Célula Única , Glicoproteína da Espícula de Coronavírus/químicaRESUMO
Antibodies are key immune effectors that confer protection against pathogenic threats. The nature and longevity of the antibody response to SARS-CoV-2 infection are not well defined. We charted longitudinal antibody responses to SARS-CoV-2 in 92 subjects after symptomatic COVID-19. Antibody responses to SARS-CoV-2 are unimodally distributed over a broad range, with symptom severity correlating directly with virus-specific antibody magnitude. Seventy-six subjects followed longitudinally to â¼100 days demonstrated marked heterogeneity in antibody duration dynamics. Virus-specific IgG decayed substantially in most individuals, whereas a distinct subset had stable or increasing antibody levels in the same time frame despite similar initial antibody magnitudes. These individuals with increasing responses recovered rapidly from symptomatic COVID-19 disease, harbored increased somatic mutations in virus-specific memory B cell antibody genes, and had persistent higher frequencies of previously activated CD4+ T cells. These findings illuminate an efficient immune phenotype that connects symptom clearance speed to differential antibody durability dynamics.
Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos T CD4-Positivos/imunologia , COVID-19 , Imunoglobulina G/imunologia , Ativação Linfocitária , Mutação , COVID-19/genética , COVID-19/imunologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologiaRESUMO
Repeated exposure to pathogens or their antigens triggers anamnestic antibody responses that are higher in magnitude and affinity than the primary response. These involve reengagement of memory B cell (MBC) clones, the diversity and specificity of which determine the breadth and effectiveness of the ensuing antibody response. Using prime-boost models in mice, we find that secondary responses are characterized by a clonality bottleneck that restricts the engagement of the large diversity of MBC clones generated by priming. Rediversification of mutated MBCs is infrequent within secondary germinal centers (GCs), which instead consist predominantly of B cells without prior GC experience or detectable clonal expansion. Few MBC clones, generally derived from higher-affinity germline precursors, account for the majority of secondary antibody responses, while most primary-derived clonal diversity is not reengaged detectably by boosting. Understanding how to counter this bottleneck may improve our ability to elicit antibodies to non-immunodominant epitopes by vaccination.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Memória Imunológica/imunologia , Imunidade Adaptativa/imunologia , Animais , Formação de Anticorpos/imunologia , Formação de Anticorpos/fisiologia , Antígenos/imunologia , Linfócitos B/metabolismo , Células CHO , Linhagem Celular , Cricetulus , Feminino , Centro Germinativo/metabolismo , Humanos , Memória Imunológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos AnimaisRESUMO
The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.
Assuntos
Memória Imunológica/fisiologia , Linfoma Difuso de Grandes Células B/patologia , Proteínas Nucleares/genética , Células Precursoras de Linfócitos B/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatina/química , Cromatina/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histona Desacetilases/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Correpressor 2 de Receptor Nuclear/química , Correpressor 2 de Receptor Nuclear/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcrição GênicaRESUMO
B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.
Assuntos
Linfócitos B/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Antígenos/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Memória Imunológica , Plasmócitos/imunologia , Plasmócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas/imunologiaRESUMO
Re-exposure to an antigen generates abundant antibody responses and drives the formation of secondary germinal centers (GCs). Recall GCs in mice consist almost entirely of naïve B cells, whereas recall antibodies derive overwhelmingly from memory B cells. Here, we examine this division between cellular and serum compartments. After repeated immunization with the same antigen, tetramer analyses of recall GCs revealed a marked decrease in the ability of B cells in these structures to bind the antigen. Boosting with viral variant proteins restored antigen binding in recall GCs, as did genetic ablation of primary-derived antibody-secreting cells through conditional deletion of Prdm1, demonstrating suppression of GC recall responses by pre-existing antibodies. In hapten-carrier experiments in which B and T cell specificities were uncoupled, memory T cell help allowed B cells with undetectable antigen binding to access GCs. Thus, antibody-mediated feedback steers recall GC B cells away from previously targeted epitopes and enables specific targeting of variant epitopes, with implications for vaccination protocols.
Assuntos
Linfócitos B , Centro Germinativo , Memória Imunológica , Centro Germinativo/imunologia , Animais , Camundongos , Memória Imunológica/imunologia , Linfócitos B/imunologia , Células T de Memória/imunologia , Camundongos Endogâmicos C57BL , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Formação de Anticorpos/imunologia , Células B de Memória/imunologia , Camundongos KnockoutRESUMO
Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we showed that IL-4 cytokine signaling in GC B cells directly downregulated the transcription factor BCL6 via negative autoregulation to release cells from the GC program and to promote MBC formation. This selection event required additional survival cues and could therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupted MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.
Assuntos
Interleucina-4 , Fatores de Transcrição , Linfócitos B , Centro Germinativo , Interleucina-4/metabolismo , Células B de Memória , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Memory B cells (MBCs) formed over the individual's lifetime constitute nearly half of the circulating B cell repertoire in humans. These pre-existing MBCs dominate recall responses to their cognate antigens, but how they respond to recognition of novel antigens is not well understood. Here, we tracked the origin and followed the differentiation paths of MBCs in the early anti-spike (S) response to mRNA vaccination in SARS-CoV-2-naive individuals on single-cell and monoclonal antibody levels. Pre-existing, highly mutated MBCs showed no signs of germinal center re-entry and rapidly developed into mature antibody-secreting cells (ASCs). By contrast, and despite similar levels of S reactivity, naive B cells showed strong signs of antibody affinity maturation before differentiating into MBCs and ASCs. Thus, pre-existing human MBCs differentiate into ASCs in response to novel antigens, but the quality of the humoral and cellular anti-S response improved through the clonal selection and affinity maturation of naive precursors.
Assuntos
Anticorpos Antivirais , Células Produtoras de Anticorpos , Vacinas contra COVID-19 , COVID-19 , Células B de Memória , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , Células B de Memória/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Produtoras de Anticorpos/imunologia , Vacinas contra COVID-19/imunologia , Vacinação , Afinidade de Anticorpos/imunologia , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Memória Imunológica/imunologia , Anticorpos Monoclonais/imunologia , Adulto , FemininoRESUMO
Long-lived plasma cells (PCs) secrete antibodies that can provide sustained immunity against infection. High-affinity cells are proposed to preferentially select into this compartment, potentiating the immune response. We used single-cell RNA-seq to track the germinal center (GC) development of Ighg2A10 B cells, specific for the Plasmodium falciparum circumsporozoite protein (PfCSP). Following immunization with Plasmodium sporozoites, we identified 3 populations of cells in the GC light zone (LZ). One LZ population expressed a gene signature associated with the initiation of PC differentiation and readily formed PCs in vitro. The estimated affinity of these pre-PC B cells was indistinguishable from that of LZ cells that remained in the GC. This remained true when high- or low-avidity recombinant PfCSP proteins were used as immunogens. These findings suggest that the initiation of PC development occurs via an affinity-independent process.