RESUMO
The ability of vitrification when crossing the glass transition temperature (Tg) of confined and bulk water is crucial for myriad phenomena in diverse fields, ranging from the cryopreservation of organs and food to the development of cryoenzymatic reactions, frost damage to buildings, and atmospheric water. However, determining water's Tg remains a major challenge. Here, we elucidate the glass transition of water by analyzing the calorimetric behavior of nano-confined water across various pore topologies (diameters: 0.3 to 2.5 nm). Our approach involves subjecting confined water to annealing protocols to identify the temperature and time evolution of nonequilibrium glass kinetics. Furthermore, we complement this calorimetric approach with the dynamics of confined water, as seen by broadband dielectric spectroscopy and linear calorimetric measurements, including the fast scanning technique. This study demonstrated that confined water undergoes a glass transition in the temperature range of 170 to 200 K, depending on the confinement size and the interaction with the confinement walls. Moreover, we also show that the thermal event observed at ~136 K must be interpreted as an annealing prepeak, also referred to as the "shadow glass transition." Calorimetric measurements also allow the detection of a specific heat step above 200 K, which is insensitive to annealing and, thereby, interpreted as a true thermodynamic transition. Finally, by connecting our results to bulk water behavior, we offer a comprehensive understanding of confined water vitrification with potential implications for numerous applications.
RESUMO
For the last two decades, research has addressed whether the glass transition temperature and the molecular motions on the surface of organic films are significantly different from those inside the bulk glasses. It is reported that the surface of the photochromic diarylethene film prepared by vacuum deposition has fluidity and the vacuum deposition of small amount of rubrene molecules induces surface tension fluctuations, generating dents due to the Marangoni flow in nanoscale. The depth of the dents increases in proportion to these radii for the colorless diarylethene film with a bulk glass transition temperature (Tg) close to room temperature. On the other hand, in the colored diarylethene obtained by UV irradiation to the colorless film, the depth becomes constant at a certain level. The Tg distribution in the depth direction is clarified based on an analysis of the dent depth. By approximating the obtained Tg depth distribution with an exponential function, the outermost surface Tg is about 100 K lower than the bulk Tg in the case of photoisomerized diarylethene.
RESUMO
Volatile solid additives have emerged as a promising strategy for enhancing film morphology and promoting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, a series of novel polycyclic aromatic additives with analogous chemical structures, including fluorene (FL), dibenzothiophene (DBT), and dibenzofuran (DBF) derived from crude oils, are presented and incorporated into OSCs. All these additives exhibit strong interactions with the electron-deficient terminal groups of L8-BO within the bulk-heterojunction OSCs. Moreover, they demonstrate significant sublimation during thermal annealing, leading to increase free volumes for the rearrangement and recrystallization of L8-BO. This phenomenon leads to an improved film morphology and an elevated glass-transition temperature of the photoactive layers. Consequently, the PCE of the PM6:L8-BO blend has been boosted from 16.60% to 18.60% with 40 wt% DBF additives, with a champion PCE of 19.11% achieved for ternary PM6:L8-BO:BTP-eC9 OSCs. Furthermore, the prolonged shelf and thermal stability have been observed in OSCs with these additives. This study emphasizes the synergic effect of volatile solid additives on the performance and thermal stability of OSCs, highlighting their potential for advancing the field of photovoltaics.
RESUMO
Polyurethanes are commodity materials used for multiple applications. In recent years, a new category of polyurethane material has emerged, characterized by the lack of polymer molar mass dispersity, control of the monomer arrangement in the chain, and even full stereocontrol. Various multistep synthesis strategies have been developed to fabricate sequence-defined polyurethanes. However, synthesizing stereocontrolled polyurethanes with a controlled sequence is still a challenge. Polyurethanes with structural precision, as represented by biopolymers, i. e. proteins or nucleic acids, have opened new application directions for these groups of materials. It has been shown that polyurethanes can be used as biomimetics, information carriers, molecular tags, and materials with strictly controlled properties. Precise synthesis of macromolecules allows us to fine-tune the properties of polymers to specific needs. Therefore, it is essential to collect information on the sequence-structure relationship of polymers. In our work, we present synthetic pathways to make sequence and stereo-defined oligourethanes. We demonstrate that structural details, i. e., the monomer sequences and position of the stereocenter, have a tremendous effect on the thermal properties of model oligourethanes. We show that the introduction of chirality by constitutional isomerization can be used to program the thermal characteristics of polymers, which are key features for material applications.
RESUMO
Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.
Assuntos
Estabilidade de Medicamentos , Excipientes , Liofilização , Polímeros , Povidona , Temperatura de Transição , Trealose , Liofilização/métodos , Povidona/química , Trealose/química , Excipientes/química , Polímeros/química , Sacarose/química , Açúcares/química , Ligação de Hidrogênio , Armazenamento de Medicamentos , Química Farmacêutica/métodos , Varredura Diferencial de Calorimetria , Umidade , Pirrolidinas/química , Compostos de Vinila/químicaRESUMO
Vitrimers, possessing associative covalent adaptable networks, are cross-linked polymers exhibiting malleable (glass-like) feature and recyclable and reprocessable (thermoplastics-like) properties. The dynamic behaviors of vitrimer are dependent on both chain/molecular mobility (glass transition temperature, Tg) and dynamic bond-exchanging reaction rate (topology freezing transition temperature, Tv). This work aims on probing the effect of high Tg on the stress relaxation and physical recyclability of vitrimers, employing a polyimide cross-linked with dynamic ester bonds (Tg: 310 °C) as the example. Due to its high Tg and chain rigidity, the cross-linked polyimide does not exhibit a high extent of stress relaxation behavior at 320 °C (10 °C above its Tg), even though the temperature is much higher than the hypothetical Tv. While raising the processing temperature to 345 °C, the cross-linked polyimide exhibits a stress relaxation time of about 3300 s and physical malleability. Nevertheless, side reactions may occur in the recycling and reprocessing process under the harsh condition (high temperature and high pressure) to alter the thermal properties of the recycled sample. The diffusion control plays a critical role on the topography transition of a vitrimer having a high Tg. The Tg ceiling is noticeable for developments of vitrimers.
Assuntos
Ésteres , Temperatura de Transição , Ésteres/química , Vidro/química , Polímeros/química , Estrutura Molecular , Reagentes de Ligações Cruzadas/química , Temperatura , Imidas/químicaRESUMO
Machine learning can be used to predict the properties of polymers and explore vast chemical spaces. However, the limited number of available experimental datasets hinders the enhancement of the predictive performance of a model. This study proposes a machine learning approach that leverages transfer learning and ensemble modeling to efficiently predict the glass transition temperature (Tg) of fluorinated polymers and guide the design of high Tg copolymers. Initially, the quantum machine 9 (QM9) dataset is employed for model pretraining, thus providing robust molecular representations for the subsequent fine-tuning of a specialized copolymer dataset. Ensemble modeling is used to further enhance prediction robustness and reliability, effectively addressing the problems owing to the limited and unevenly distributed nature of the copolymer dataset. Finally, a fine-tuned ensemble model is used to navigate a vast chemical space comprising 61 monomers and identify promising candidates for high Tg fluorinated polymers. The model predicts 247 entries capable of achieving a Tg over 390 K, of which 14 are experimentally validated. This study demonstrates the potential of machine learning in material design and discovery, highlighting the effectiveness of transfer learning and ensemble modeling strategies for overcoming the challenges posed by small datasets in complex copolymer systems.
Assuntos
Aprendizado de Máquina , Polímeros , Temperatura de Transição , Polímeros/química , Halogenação , Vidro/químicaRESUMO
Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: ⢠Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress ⢠Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only ⢠Activation energy revealed chemically limited reactions ruled the activity loss in storage.
Assuntos
Liofilização , Liofilização/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Secagem por Atomização , Viabilidade Microbiana , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/fisiologia , Lactobacillales/metabolismo , Lactobacillales/fisiologia , DessecaçãoRESUMO
The performance and phase-separated microstructures of epoxy asphalt binders greatly depend on the concentration of epoxy resin or bitumen. In this paper, the effect of the epoxy resin (ER) concentration (10-90%) on the viscosity, thermo-mechanical properties, and phase-separated morphology of warm-mix epoxy asphalt binders (WEABs) was investigated using the Brookfield rotational viscometer, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and laser scanning confocal microscopy (LSCM). Due to the high reactivity of epoxy resin, the viscosity of WEABs increases with time. Furthermore, the initial viscosity of WEABs decreases with the ER concentration. Depending on the ER concentration, the viscosity-time behavior of WEABs is divided into three stages: slow (10-40%), fast (50-80%), and extremely slow (90%). In the slow stage, the viscosity slightly increases with the ER concentration, while the fast stage shows an opposite trend. DSC and DMA results reveal that WEABs with 10-80% ER exhibit two glass transition temperatures (Tgs) for cured epoxy resin and bitumen. Moreover, the Tgs of epoxy resin and bitumen increase with the ER concentration. However, WEAB with 90 % ER has only one Tg. LSCM observation shows that phase separation occurs in all WEABs. For WEABs containing 10-40% ER, spherical epoxy particles act as the discontinuous phase and disperse in the continuous bitumen phase. However, in WEABs with 50-90% ER, phase inversion takes place. Contrarily, bitumen particles disperse in the continuous epoxy phase. The damping properties of WEABs with the continuous epoxy phases increase with the ER concentration, while the crosslinking density shows an opposite trend. The occurrence of phase inversion results in a sharp increase in the tensile strength of WEABs. For WEABs with the continuous epoxy phases, the elongation at break increases with the ER concentration. The toughness first increases and then decreases with the ER concentration. A maximum toughness value shows at 70% ER.
RESUMO
AIM AND OBJECTIVES: To characterize and analyze the structural presentation of a new denture base copolymer with a spiro-acetal cross-linker at 10 and 20 wt.% concentrations by nuclear magnetic resonance (NMR) and field emission scanning electron microscopy-energy-dispersive X-ray (FESEM-EDX) spectroscopies. Also, to evaluate the glass transition temperature (TG) of the new copolymer. MATERIALS AND METHODS: The investigational groups G10 and G20 were heat-cured with the new spiro-acetal cross-linker at the above-mentioned concentrations, respectively. The control group G0 was heat-cured without the new cross-linker. Nuclear magnetic resonance and EDX spectroscopies determined the copolymerization along with elemental composition. The surface characteristics were discerned by FESEM. Differential scanning calorimetry was employed to evaluate the TG of the resultant copolymer. Appropriate statistical operations were performed to compare the mean TG of the groups. RESULTS: The new copolymer's structure with the spiro-acetal cross-linker was configured with protons, carbons, aluminum, zirconium, yttrium, and silicon atoms. The TG of the resultant copolymer was high when compared with the G0. The 20 wt.% spiro-acetal cross-linker in the copolymer exhibited the highest TG. CONCLUSION: The spiro-acetal cross-linking comonomer incorporated in the heat-cure denture polymer produced a new denture base copolymer with elevated TG. The resultant configuration of the new copolymer was characterized, structurally presented, and confirmed. CLINICAL SIGNIFICANCE: The new copolymer might exhibit augmented strength due to the copolymerized spiro-acetal cross-linker. Moreover, the smooth and regular surface of the copolymer would have minimum or negligible microbial adhesion due to the hydrophobicity of the spiro-acetal comonomer incorporated in the denture base composition. How to cite this article: Ravivarman C, Ajay R, Saatwika L, et al. Structure, Surface Topography, and Glass Transition Temperature of Dental Poly (Methyl Methacrylate) Resin Conjugated with 3,9-bisethenyl-2,4,8,10-tetraoxaspiro [5,5] Undecane as Cross-linker: An In Vitro Research. J Contemp Dent Pract 2024;25(5):486-493.
Assuntos
Polimetil Metacrilato , Propriedades de Superfície , Temperatura de Transição , Polimetil Metacrilato/química , Teste de Materiais , Vidro/química , Bases de Dentadura , Técnicas In Vitro , Varredura Diferencial de Calorimetria , Reagentes de Ligações Cruzadas/química , Microscopia Eletrônica de Varredura , Materiais Dentários/química , Espectroscopia de Ressonância Magnética , Compostos de Espiro/químicaRESUMO
Amorphous solid dispersions (ASDs) are commonly used to increase the dissolution rate of poorly soluble active pharmaceutical ingredients (APIs). Unfortunately, most ASDs are thermodynamically unstable and, even though kinetically stabilized, will thus eventually crystallize. The crystallization kinetics is determined by the thermodynamic driving force and by molecular mobility, which in turn depend on the drug load, temperature, and relative humidity (RH) at which the ASDs are stored. This work focuses on viscosity as an indicator for the molecular mobility in ASDs. The viscosity and shear moduli of ASDs consisting of the polymer poly(vinylpyrrolidone-co-vinyl acetate) or hydroxypropyl methylcellulose acetate succinate and the API nifedipine or celecoxib were studied using an oscillatory rheometer. The effects of temperature, drug load, and RH on the viscosity were investigated. With the knowledge of how much water is absorbed by the polymer or ASD and thereby also the knowledge of the glass-transition temperature of the wet polymer or ASD, the viscosity of dry and wet ASDs was predicted to be in very good agreement with experimental data just based on the viscosity of neat polymers and the glass-transition temperatures of wet ASDs.
Assuntos
Polímeros , Estabilidade de Medicamentos , Solubilidade , Temperatura de Transição , Cristalização , Polímeros/químicaRESUMO
Co-amorphous systems are amorphous formulations stabilized by the miscible dispersion of small molecules. This study aimed to design a stable co-amorphous system for the co-delivery of two drugs to the lungs as an inhaled formulation. Theophylline (THE) and levofloxacin (LEV) were used as model drugs for treating lung infection with inflammation. Leucine (LEU) or tryptophan (TRP) was employed as the third component to improve the inhalation properties. The co-amorphous system containing THE and LEV in an equal molar ratio was successfully prepared via spray drying where reduction of the particle size and change to the spherical morphology were observed. The addition of LEU or TRP at a one-tenth molar ratio to THE-LEV did not affect the formation of the co-amorphous system, but only TRP acted as an antiplasticizer. The Fourier transform infrared spectroscopy spectra revealed intermolecular interactions between THE and LEV in the co-amorphous system that were retained after the addition of LEU or TRP. The co-amorphous THE-LEV system exhibited better in vitro aerodynamic performance than a physical mixture of these compounds and permitted the simultaneous delivery of both drugs in various stages. The co-amorphous THE-LEV system crystallized at 40 °C, and this crystallization was not prevented by LEU. However, THE-LEV-TRP maintained its amorphous state for 1 month. Thus, TRP can act as a third component to improve the physical stability of the co-amorphous THE-LEV system, while maintaining the enhanced aerodynamic properties.
Assuntos
Aminoácidos , Teofilina , Aminoácidos/química , Levofloxacino , Administração por Inalação , Leucina/química , Preparações Farmacêuticas , Estabilidade de Medicamentos , Solubilidade , Varredura Diferencial de CalorimetriaRESUMO
Herein, novel photoresponsive spiropyran (SP)-based P(DEGMA-co-SpMA) copolymers with variable percentages of SP fractions are synthesized. The SP group present in these polymers exhibited the abilities of reversible photoisomerism. Their photoresponsive, structural, and thermal properties have been investigated and compared using various characterization techniques. These light-responsive copolymers are found to exhibit photoswitchable glass transition temperature (Tg ), high thermal stability (Td > 250°C), instant photochromism as well as fluorescence upon exposure to UV light. It is demonstrated that the Tg of these synthesized polymers increased when irradiated with UV light (λ = 365 nm), as a consequence of the photoisomerization of incorporated SP groups into their merocyanine form. This increase in Tg is attributed to an increase in polarity and a decrease in the overall entropy of the polymeric system when it switches from the ring-closed SP form (less-ordered state) to the ring-opened merocyanine form (more-ordered state). Therefore, such polymers with a unique feature of phototunable glass transition temperatures provide the possibility to be integrated into functional materials for various photoresponsive applications.
RESUMO
Radical polymerization of a tailored diphenylsilane-bridged bi-functional monomer consisting of methacrylate and vinyl ether moieties is conducted in diluted monomer concentration, in which both two moieties are consumed at almost the same rate despite their huge difference in monomer reactivity ratio. The vinyl ether content in the backbone is quantified as 45% by 1 H NMR after removal of the silane bridge. Since vinyl ether alone cannot be polymerized in such radical polymerization, it should be incorporated in an alternating fashion with methacrylate into the copolymer main chain. The cleavage of silane bridge also yields a series of polyol materials composed of ethylene glycol monovinyl ether (EGVE) and hydroxyethyl methacrylate (HEMA), and the EGVE content in the backbone can be regulated from 45% to 18% by increasing the bi-functional monomer concentration. Interestingly, although containing more than 50% HEMA units, the alternating copolymer exhibits new properties totally different from poly(HEMA), but more similar to poly(EGVE), e.g., good water solubility and a markedly low glass transition temperature (Tg ) of -31 °C, which is attributed to the major HEMA-EGVE repeating unit that replaced HEMA-HEMA consecutive segments so that the properties of poly(HEMA) such as 95 °C Tg are completely altered.
Assuntos
Metacrilatos , Silanos , Metacrilatos/química , Poli-Hidroxietil Metacrilato/químicaRESUMO
Calorimetric measurements of the glass transition temperatures (Tg) of hydrous carbonate melts are reported on a near-eutectic composition of 55 mol% K2CO3 - 45 mol% MgCO3 with up to 42 mol% bulk H2O dissolved in the carbonate melt. Hydrous melts were quenched from 750°C to transparent and crystal-free glasses and were subsequently analysed for water content before and after measuring Tg by high-sensitivity differential scanning calorimetry. The glass transition and limited fictive temperatures as a function of the water content were determined at 10 K/min cooling/heating rates resulting in Tg ranging from 245°C at nominally anhydrous conditions to 83°C in the presence of 42 mol% H2O in the glass. Through a generalized Gordon-Taylor analysis, the factors k (7.27), k0 (3.2) and the interaction parameter Ax (0.49) were derived. The limited fictive temperature of a hypothetically, zero water containing 55 mol% K2CO3 - 45 mol% MgCO3 glass is 232 ± 5°C (505 K). The high value of the interaction parameter A indicates strong specific molecular interactions between water and the carbonates in the glassy state and a large decrease in the excess enthalpy of mixing during the conversion of the glassy into the liquid state at the glass transition. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.
RESUMO
We report the first calorimetric observations of glass transition temperatures and crystallization rates of anhydrous, amorphous calcium-magnesium carbonate using fast scanning differential scanning calorimetry. Hydrous amorphous Ca0.95Mg0.05CO3 · 0.5H2O (ACMC) solid was precipitated from a MgCl2-NaHCO3 buffered solution, separated from the supernatant, and freeze-dried. An aliquot of the freeze-dried samples was additionally dried at 250°C for up to 6 h in a furnace and in a high-purity N2 atmosphere to produce anhydrous ACMC. The glass transition temperature of the anhydrous Ca0.95Mg0.05CO3 was determined by applying different heating rates (1000-6000 K s-1) and correcting for thermal lag to be 376°C and the relaxational heat capacity was determined to be Cp = 0.16 J/(g K). Additionally, the heating rate dependence of the temperature that is associated with the corrected crystallization peaks is used to determine the activation energy of crystallization to be 275 kJ mol-1. A high-resolution transmission electron microscopy study on the hydrous and anhydrous samples provided further constraints on their compositional and structural states. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.
RESUMO
Ligilactobacillus salivarius is a lactic acid bacterium exhibiting several health benefits. However, it is sensitive to freeze-drying and storage in the dried state, thus limiting its commercial exploitation. Our objective was to identify markers of cell resistance by applying multiscale characterization to L. salivarius CECT5713 cell populations exhibiting different resistance to freeze-dried storage. Cells were produced under two different sets of production conditions differing in the culture parameters (temperature, neutralizing solution, and harvesting time) and the protective formulation composition. The culturability, membrane integrity, and cell biochemical composition assessed by Fourier transform infrared (FTIR) micro-spectroscopy were evaluated after freezing, freeze-drying, and subsequent storage at 37 °C. Membrane properties (fatty acid composition, membrane fluidity, and phospholipid organization), as well as matrix physical properties (glass transition temperature and water activity), were determined. The most resistant cells to freeze-dried storage exhibited the highest cyclic fatty acid content and the most rigid membrane. Freeze-drying and storage induced damage to membrane integrity, proteins, nucleic acids, and constituents of the peptidoglycan cell wall. From the FTIR spectra analysis, we propose the minimization of the variations of the 1058 and 1714 cm-1 vibration bands (that arise mainly from symmetric C-O-C stretching and CO stretching, respectively) induced by the freeze-drying process as a marker of storage stability. We confirmed that a matrix with a glass transition temperature at least 50 °C higher than the storage temperature is crucial for L. salivarius CECT5713 storage stability. In addition, this work explored promising FTIR methods for a better understanding of the protection mechanisms involved.
Assuntos
Criopreservação , Ácidos Graxos , Congelamento , Criopreservação/métodos , Liofilização/métodos , TemperaturaRESUMO
The present paper deals with the determination of thermodynamic quantities of thermoplastic polymers by using an optical fiber interrogator. Typically, laboratory methods such as differential scanning calorimetry (DSC) or thermomechanical analysis (TMA) are a reliable state-of-the-art option for thermal polymer analysis. The related laboratory commodities for such methods are of high cost and are impractical for field applications. In this work, an edge-filter-based optical fiber interrogator, which was originally developed to detect the reflection spectrum of fiber Bragg grating sensors, is utilized for the detection of the boundary reflection intensities of the cleaved end of a standard telecommunication optical fiber (SMF28e). By means of the Fresnel equations, the temperature-dependent refractive index of thermoplastic polymer materials is measured. Demonstrated with the amorphous thermoplastic polymers polyetherimide (PEI) and polyethersulfone (PES), an alternative to DSC and TMA is presented as the glass transition temperatures and coefficients of thermal expansion are derived. A DSC alternative in the semi-crystalline polymer analysis with the absence of a crystal structure is shown as the melting temperature and cooling-rate-dependent crystallization temperatures of polyether ether ketone (PEEK) are detected. The proposed method shows that thermal thermoplastic analysis can be performed with a flexible, low-cost and multipurpose device.
RESUMO
The effect of doping the bisphenol A diglycidyl ether (DGEBA)/m-xylylenediamine (mXDA) system with gold nanoparticles (AuNP) has been studied with differential scanning calorimetry (DSC), thermogravimetric analysis, dynamic mechanical analysis (DMA), and dielectric analysis (DEA). The evolved heat (ΔHt), the glass transition temperature (Tg), and the associated activation energies of this relaxation process have been determined. Below a certain concentration of AuNPs (=8.5%, in mg AuNP/g epoxy matrix), Tg decreases linearly with the concentration of AuNPs, but above it, Tg is not affected. The degree of conversion α of this epoxy system was analyzed by the semiempirical Kamal's model, evidencing that diffusion correction is required at high values of α. Activation energy values suggest that AuNPs can cause some impediments at the beginning of the crosslinking process (n-order mechanism). The slight difference between the initial decomposition temperature, as well as the temperature for which the degradation rate is at a maximum, for both systems can be accepted to be within experimental error. Mechanical properties (tension, compression, and bending tests) are not affected by the presence of AuNPs. Dielectric measurements show the existence of a second Tg at high temperatures, which was analyzed using the Tsagarapoulos and Eisenberg model of the mobility restrictions of network chains bound to the filler.
Assuntos
Ouro , Nanopartículas Metálicas , Resinas Epóxi/química , Temperatura , Temperatura de TransiçãoRESUMO
A group of di(arylcarbazole)-substituted oxetanes has been prepared in Suzuki reactions by using the key starting material 3,3-di[3-iodocarbazol-9-yl]methyloxetane and various boronic acids (fluorophenylboronic acid, phenylboronic acid or naphthalene-1-boronic acid). Full characterization of their structure has been presented. The low molar mass compounds represent materials having high thermal stability with 5% mass loss thermal degradation temperatures in the range of 371-391 °C. Glass transition temperatures of the materials are also very high and range from 107 °C to 142 °C, which is a big advantage for formation of stable amorphous layers for optoelectronic devices, i.e., organic light emitting diodes. Hole transporting properties of the prepared materials were confirmed in formed organic light emitting diodes with tris(quinolin-8-olato)aluminium (Alq3) as a green emitter, which also served as an electron transporting layer. In the device's materials, 3,3-di[3-phenylcarbazol-9-yl]methyloxetane (5) and 3,3-di[3-(1-naphthyl)carbazol-9-yl]methyloxetane (6) demonstrated superior hole transporting properties than that of material 3,3-di[3-(4-flourophenyl)carbazol-9-yl]methyloxetane (4) based device. When material 5 was used in the device structure, the OLED demonstrated rather low turn-on voltage of 3.7 V, luminous efficiency of 4.2 cd/A, power efficiency of 2.6 lm/W and maximal brightness exceeding 11670 cd/m2. HTL of 6 based device also showed exclusive OLED characteristics. The device was characterized by turn-on voltage of 3.4 V, maximum brightness of 13193 cd/m2, luminous efficiency of 3.8 cd/A and power efficiency of 2.6 lm/W. An additional hole injecting-transporting layer (HI-TL) of PEDOT considerably improved functions of the device with HTL of compound 4. The modified OLED with a layer of the derivative 4 demonstrated exclusive characteristics with turn-on voltage of 3.9 V, high luminous efficiency of 4.7 cd/A, power efficiency of 2.6 lm/W and maximal brightness exceeding 21,000 cd/m2. These observations confirmed that the prepared materials have a big potential in the field of optoelectronics.