Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Brain ; 145(6): 2064-2076, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35377407

RESUMO

There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein (GFAP) and neurofilament light have been widely explored in characterizing acute traumatic brain injury (TBI), their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following TBI. Two-hundred and three patients were recruited in two separate cohorts; 6 months post-injury (n = 165); and >5 years post-injury (n = 38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n = 199) and MRI (n = 172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualized Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at 6 months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualized brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. GFAP and neurofilament light levels can remain elevated months to years after TBI, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow-up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify TBI survivors who are at high risk of progressive neurological damage.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Substância Branca , Biomarcadores , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Progressão da Doença , Proteína Glial Fibrilar Ácida/metabolismo , Humanos
2.
Biomolecules ; 12(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35204724

RESUMO

Background: Astrocytes and microglia play an important role in the inflammatory process of multiple sclerosis (MS). We investigated the associations between the cerebrospinal fluid (CSF) levels of glial fibrillary acid protein (GFAP) and soluble triggering receptors expressed on myeloid cells-2 (sTREM-2), inflammatory molecules, and clinical characteristics in a group of patients with relapsing-remitting MS (RRMS). Methods: Fifty-one RRMS patients participated in the study. Clinical evaluation and CSF collection were performed at the time of diagnosis. The CSF levels of GFAP, sTREM-2, and of a large set of inflammatory and anti-inflammatory molecules were determined. MRI structural measures (cortical thickness, T2 lesion load, cerebellar volume) were examined. Results: The CSF levels of GFAP and sTREM-2 showed significant correlations with inflammatory cytokines IL-8, G-CSF, and IL-5. Both GFAP and sTREM-2 CSF levels positively correlated with age at diagnosis. GFAP was also higher in male MS patients, and was associated with an increased risk of MS progression, as evidenced by higher BREMS at the onset. Finally, a negative association was found between GFAP CSF levels and cerebellar volume in RRMS at diagnosis. Conclusions: GFAP and sTREM-2 represent suitable biomarkers of central inflammation in MS. Our results suggest that enhanced CSF expression of GFAP may characterize patients with a higher risk of progression.


Assuntos
Proteína Glial Fibrilar Ácida , Glicoproteínas de Membrana , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Receptores Imunológicos , Biomarcadores/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Humanos , Masculino , Glicoproteínas de Membrana/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Doenças Neuroinflamatórias/líquido cefalorraquidiano
3.
Brain Dev ; 40(7): 587-591, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29573842

RESUMO

Alexander disease (AxD) is a progressive neurodegenerative disease caused by a mutation in the glial fibrillary acid protein (GFAP) gene. A 4-year-old boy presented several times with hemiclonic seizures with eye deviation for a few minutes at 28 days after birth. Electroencephalogram showed independent sharp waves in the right and left temporal area. Magnetic resonance imaging showed high intensity T1-weighted images in the white matter of the frontal lobe and basal ganglia. He showed no head control at 4 years of age, and his weight gain was insufficient. He did not show macrocephaly. At 4 years of age, he died of bacterial pneumonia and septic shock. He was diagnosed with AxD, and direct sequencing revealed a de novo known mutation, c. 239 T > C, p.(F80S), in GFAP. Hela and U2-OS cells transfected with GFAP cDNA with c. 239 T > C showed dot-like cytoplasmic aggregation, similar to R239C, a common mutation found in severe infantile AxD. Aggregation in the cytoplasm caused by a GFAP mutation is a hallmark of AxD. Although there is only one previous report of a patient with an F80S mutation, our data support that F80S can cause the severe, infantile form of AxD.


Assuntos
Doença de Alexander/genética , Proteína Glial Fibrilar Ácida/genética , Mutação , Doença de Alexander/diagnóstico por imagem , Doença de Alexander/patologia , Doença de Alexander/fisiopatologia , Encéfalo/diagnóstico por imagem , Linhagem Celular Tumoral , Pré-Escolar , Citoplasma/metabolismo , Citoplasma/patologia , Evolução Fatal , Células HeLa , Humanos , Masculino , Transfecção
4.
J Microsc Ultrastruct ; 3(1): 8-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-30023176

RESUMO

Manganese (Mn) is an essential metal commonly found in the environment and is used for industrial purposes. Exposure to excessively high Mn levels may induce neurotoxicity referred to as manganism. This work was conducted to study the effect of manganese on the olfactory bulb of adult male albino rat and the possible protective role of meloxicam. Forty adult male albino rats were equally divided into four groups: control group, meloxicam-treated group (5 mg/kg/day orally for 4 weeks), MnCl2-treated group (10 mg/kg/day orally for 4 weeks), and the fourth group received both meloxicam and MnCl2 at the same doses and duration. Specimens of the olfactory bulbs were prepared for light and electron microscopy. An immunohistochemical study with a quantitative morphometry was performed using antibodies against glial fibrillary acidic protein (GFAP). The control group and meloxicam-treated group showed the same normal structure. MnCl2-treated group showed shrinkage of mitral nerve cells with dark peripheral nuclei as well as disorganization of mitral and granule nerve cells. The surrounding neuropil showed vacuolar spaces. Ultrastructurally, the mitral cells showed accumulation of lysosomes, swelling of mitochondria and irregularity of the nuclei. The nerve fibers contained swollen mitochondria with splitting and irregularity of the surrounding myelin sheaths. GFAP immunoreaction showed a highly significant increase compared to control group. On the other hand, the group that received both meloxicam and MnCl2 showed less marked histological changes. It was concluded that manganese induced structural changes in the olfactory bulb of albino rat that were ameliorated by concomitant use of meloxicam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA