Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 79(2): 518-525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38478328

RESUMO

Plant polyphenols are nutraceutical components with relevant biological effects on human health. They act against development of several diseases including cancer. In this study, the methanolic extracts of four date palm Phoenix dactylifera leaves (Deglet Noor (DN), Barhee (B), Khalas (KS) and Khunezi (KZ)) collected from south Tunisia were preliminary analyzed for their effects against U87 (human glioblastoma) and MDA-MB-231 (human breast cancer) cell line development. Results showed that Barhee extract (30 µg/mL) was the most efficient to reduce the growth of both tumor cells to about 40% (p < 0.05) without inducing cytotoxicity. Significantly, KS, KZ, DN and B extracts (30 µg/mL) decreased MDA-MB-231 and U87 cell adhesion towards fibrinogen and fibronectin. Using integrin blocking antibodies, leaf extracts competitively decreased human glioblastoma cell attachment to immobilized antibodies by interfering to αvß3 and α5ß1 integrin receptors. At the same concentration, extracts decreased MDA-MB-23 and U87 cell migration performed with wound healing assay. Particularly, Barhee and Deglet Noor leaf extracts (30 µg/mL) significantly reduced U87 cell invasion by 52.92% (p < 0.01) and 74.56% (p < 0.01), respectively. Collegially, our findings revealed beneficial proprieties of four varieties of date palm leaf especially those displayed by DN and B extracts that may serve as active candidates against human glioblastoma and breast cancer progression.


Assuntos
Antineoplásicos Fitogênicos , Adesão Celular , Movimento Celular , Glioblastoma , Phoeniceae , Extratos Vegetais , Folhas de Planta , Humanos , Phoeniceae/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Tunísia , Polifenóis/farmacologia , Polifenóis/análise
2.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886952

RESUMO

Glioblastoma multiforme (GBM) cancer stem cells (GSCs) are one of the strongest contributing factors to treatment resistance in GBM. Identification of biomarkers capable of directly affecting these cells within the bulk tumor is a major challenge associated with the development of new targeting strategies. In this study, we focus on understanding the potential of the multifunctional extraordinaire survivin as a biomarker for GSCs. We analyzed the expression profiles of this gene using various publicly available datasets to understand its importance in stemness and other cancer processes. The findings from these studies were further validated using human GSCs isolated from a GBM cell line. In these GSCs, survivin was inhibited using the dietary phytochemical piperine (PIP) and the subsequent effects on stemness, cancer processes and Temozolomide were investigated. In silico analysis identified survivin to be one of the most significant differentially regulated gene in GSCs, in comparison to common stemness markers. Further validation studies on the isolated GSCs showed the importance of survivin in stemness, cancer progression and therapy resistance. Taken together, our study identifies survivin as a more consistent GSC marker and also suggests the possibility of using survivin inhibitors along with standard of care drugs for better therapeutic outcomes.


Assuntos
Neoplasias Encefálicas , Inibidores das Enzimas do Citocromo P-450 , Glioblastoma , Células-Tronco Neoplásicas , Piperidinas , Survivina , Alcaloides/farmacologia , Benzodioxóis/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Inibidores das Enzimas do Citocromo P-450/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Survivina/genética , Survivina/metabolismo
3.
Cell Biochem Biophys ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048853

RESUMO

Electromagnetic fields create potential negative implications on biological systems, including modifications to DNA structure, nuclear condensation, cellular ion transport, and intracellular Ca2+ accumulation. To explore these effects on cancer cells, we exposed prostate, glioblastoma and cervix cancer cell lines to electromagnetic fields of wireless and assessed its anti-proliferative effects. PC3, A172, and HeLa cancer cells were cultured and exposed to electromagnetic fields for 24, 48, and 72 h. We used the MTT assay to detect cell viability and proliferation, Annexin V staining to determine apoptotic cells, and confocal microscopy to measure apoptosis-mediated intracellular calcium signals. Additionally, we performed profiling for apoptosis-related miRNAs. The results indicated that the electromagnetic field triggers apoptosis in the glioblastoma cell line A172 by increasing level of miR-129-5p, a known tumor suppressor. In contrast, the cervix cancer cell line and the prostate cancer cell line remained largely unaffected. In summary, our investigation underscores that electromagnetic fields at a 2.4 GHz frequency may adversely affect certain cancer cell lines, notably triggering apoptosis in the glioblastoma cancer cell line.

4.
Curr Cancer Drug Targets ; 24(12): 1262-1274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357955

RESUMO

BACKGROUND: Due to the existence of tumor stem cells with tumorigenicity properties and resistance patterns, treatment of glioblastoma is not easy. Hypoxia is a major concern in glioblastoma therapy. Telomerase activity and telomere length alterations have been known to play a critical role in glioblastoma progression and invasion. OBJECTIVE: This study aimed to investigate the effects of HSV-G47Δ oncolytic virus on telomerase and telomere length alterations in U251GBMCSCs (U251-Glioblastoma cancer stem cells) under hypoxia and normoxia conditions. METHODS: U251-CSCs were exposed to the HSV-G47Δ virus in optimized MOI (Multiplicity of infection= 1/14 hours). An absolute telomere length and gene expression of telomerase subunits were determined using an absolute human telomere length quantification PCR assay. Furthermore, a bioinformatics pathway analysis was carried out to evaluate physical and genetic interactions between dysregulated genes with other potential genes and pathways. RESULTS: Data revealed that U251CSCs had longer telomeres when exposed to HSV-G47Δ in normoxic conditions but had significantly shorter telomeres in hypoxic conditions. Furthermore, hTERC, DKC1, and TEP1 genes were significantly dysregulated in hypoxic and normoxic microenvironments. The analysis revealed that the expression of TERF2 was significantly reduced in both microenvironments, and two critical genes from the MRN complex, MER11 and RAD50, were significantly upregulated in normoxic conditions. RAD50 showed a significant downregulation pattern in the hypoxic niche. Our results suggested that repair complex in the telomeric structure could be targeted by HSV-G47Δ in both microenvironments. CONCLUSION: In the glioblastoma treatment strategy, telomerase and telomere complex could be potential targets for HSV-G47Δ in both microenvironments.


Assuntos
Glioblastoma , Células-Tronco Neoplásicas , Vírus Oncolíticos , Telomerase , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/virologia , Humanos , Telomerase/genética , Telomerase/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/virologia , Células-Tronco Neoplásicas/metabolismo , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Terapia Viral Oncolítica/métodos , Telômero/metabolismo , Telômero/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homeostase do Telômero , Hipóxia Celular , Linhagem Celular Tumoral , Microambiente Tumoral , Células Tumorais Cultivadas
5.
J Cell Mol Med ; 17(10): 1218-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23998913

RESUMO

Despite intense efforts to identify cancer-initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer-initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called 'leukaemia of the brain', given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer-initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Neoplasias Hematológicas/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Humanos , Transdução de Sinais , Microambiente Tumoral
6.
Front Chem ; 11: 1287599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116103

RESUMO

Background: Bacterial metabolites play a crucial role in human health and have proven effective in treating various diseases. In this study, the 16S rRNA method and streaking were employed to isolate and molecularly identify a bacterial strain, with the goal of characterizing bioactive volatile metabolites extracted using nonpolar and polar solvents. Methods: Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to identify 29 compounds in the bacterial metabolites, including key compounds associated with Bacillus spp. The main compounds identified included 2-propanone, 4,4-ethylenedioxy-1-pentylamine, 1,2-benzenedicarboxylic acid, 1,1-butoxy-1-isobutoxy-butane, and 3,3-ethoxycarbonyl-5-hydroxytetrahydropyran-2-one. Results: The literature indicates the diverse biological and pharmacological applications of these compounds. Different concentrations of the metabolites from Bacillus species were tested for biological activities, revealing significant inhibitory effects on anti-diabetic activity (84.66%), anti-inflammatory activity (99%), antioxidant activity (99.8%), and anti-hemolytic activity (90%). Disc diffusion method testing also demonstrated a noteworthy inhibitory effect against tested strains. Conclusion: In silico screening revealed that 1,2-benzenedicarboxylic acid exhibited anticancer activity and promising drug-designing properties against epithelial glioblastoma cancer genes. The study highlights the potential of Bacillus spp. as a valuable target for drug research, emphasizing the significance of bacterial metabolites in the production of biological antibacterial agents.

7.
ACS Nano ; 17(13): 12052-12071, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366177

RESUMO

Extracellular vesicles (EVs) are continually released from cancer cells into biofluids, carrying actionable molecular fingerprints of the underlying disease with considerable diagnostic and therapeutic potential. The scarcity, heterogeneity and intrinsic complexity of tumor EVs present a major technological challenge in real-time monitoring of complex cancers such as glioblastoma (GBM). Surface-enhanced Raman spectroscopy (SERS) outputs a label-free spectroscopic fingerprint for EV molecular profiling. However, it has not been exploited to detect known biomarkers at the single EV level. We developed a multiplex fluidic device with embedded arrayed nanocavity microchips (MoSERS microchip) that achieves 97% confinement of single EVs in a minute amount of fluid (<10 µL) and enables molecular profiling of single EVs with SERS. The nanocavity arrays combine two featuring characteristics: (1) An embedded MoS2 monolayer that enables label-free isolation and nanoconfinement of single EVs due to physical interaction (Coulomb and van der Waals) between the MoS2 edge sites and the lipid bilayer; and (2) A layered plasmonic cavity that enables sufficient electromagnetic field enhancement inside the cavities to obtain a single EV level signal resolution for stratifying the molecular alterations. We used the GBM paradigm to demonstrate the diagnostic potential of the SERS single EV molecular profiling approach. The MoSERS multiplexing fluidic achieves parallel signal acquisition of glioma molecular variants (EGFRvIII oncogenic mutation and MGMT expression) in GBM cells. The detection limit of 1.23% was found for stratifying these key molecular variants in the wild-type population. When interfaced with a convolutional neural network (CNN), MoSERS improved diagnostic accuracy (87%) with which GBM mutations were detected in 12 patient blood samples, on par with clinical pathology tests. Thus, MoSERS demonstrates the potential for molecular stratification of cancer patients using circulating EVs.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Molibdênio/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/patologia , Vesículas Extracelulares/química , Análise Espectral Raman
8.
Ann Agric Environ Med ; 30(4): 763-772, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38153083

RESUMO

INTRODUCTION AND OBJECTIVE: Mobile phones and Wi-Fi are the most commonly used forms of telecommunications. Initiated with the first generation, the mobile telephony is currently in its fifth generation without being screened extensively for any biological effects that it may have on humans or on animals. Some studies indicate that high frequency electromagnetic radiation emitted by mobile phone and Wi-Fi connection can have a negative effect upon human health, and can cause cancer, including brain tumour. OBJECTIVE: The aim of the study was to investigate the influence of 2.4 GHz radiofrequency electromagnetic field (RF-EMF) on the proliferation and morphology of normal (human embryonic kidney cell line Hek-293) and cancer cells (glioblastoma cell line U-118 MG). MATERIAL AND METHODS: The cell cultures were incubated in RF-EMF at the frequency of 2.4 GHz, with or without dielectric screen, for 24, 48 and 72h. In order to analyse the influence of the electromagnetic field on cell lines, Cytotoxicity test Cell Counting Kit-8 was performed. To protect cells against emission of the electromagnetic field, a dielectric screen was used. RESULTS: It was found that 2.4 GHz RF electromagnetic field exposure caused a significant decrease in viability of U-118 MG and Hek-293 cells. The impact of the electromagnetic field was strongest in the case of cancer cells, and the decrease in their survival was much greater compared to the healthy (normal) cells of the Hek-293 line. CONCLUSIONS: Results of the study indicate that using a radio frequency electromagnetic field (2.4 GHz) has a clearly negative effect on the metabolic activity of glioblastoma cells. RF-EMF has much less impact on reducing the viability of normal cells (Hek -293) than cancer cells.


Assuntos
Campos Eletromagnéticos , Glioblastoma , Animais , Humanos , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/análise , Células HEK293 , Ondas de Rádio/efeitos adversos
9.
Turk J Chem ; 46(4): 1089-1096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37538768

RESUMO

Caffeic acid (CA), ferulic acid (FA) and caffeic acid phenethyl ester (CAPE) have a broad anticancer effect on various cell lines. In this study, nine ferulic and caffeic acid-based 1,2,4 and 1,3,4 oxadiazole molecular hybrids were synthesized and their cytotoxic activity was evaluated mainly against Glioblastoma (GBM) cell lines. Compounds 1 and 5 exhibited the highest inhibitory activity against three different GBM cell lines (LN229, T98G, and U87), without toxicity to healthy human mesenchymal stem cells (hMSC). In addition, their cytotoxicity was also evaluated against three additional cancer cell lines and more inhibitory results were found than GBM cell lines. The IC50 values of compound 5 in U87, T98G, LN229, SKOV3, MCF7, and A549 cells were determined as 35.1, 34.4, 37.9, 14.2, 30.9, and 18.3 µM. In the light of biological activity studies, the developed compounds have a high potential to lead studies for the development of new drug candidates for the treatment of cancer.

10.
Life Sci ; 284: 119652, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051217

RESUMO

AIMS: Gold nanoparticles (AuNPs) have been attracted interests in the various areas of clinical therapeutics. In this study, we investigated the anticancer and antiviral potential activity of AuNPs against influenza A virus and human glioblastoma (GMB) U-87 and U-251 cell lines. MAIN METHODS: Gold nanoparticles (AuNPs) were synthesized by citrate reduction method. Then, ultraviolet-visible spectrophotometry (UV-vis spectra) and electron microscopy analysis confirmed the type, size (mean diameter of 17 nm) and distribution of the particles. The AuNPs in vitro antiviral and anticancer effects was evaluated by hemagglutination inhibition (HAI), tissue culture infectious dose 50 (TCID50), real-time PCR, MTT, flow cytometry, and scratch assays. KEY FINDINGS: The AuNPs were synthesized in spherical with a mean diameter of 17 ± 2 nm and an absorbance peak at 520 nm. The AuNPs were well tolerable by MDCK cells at concentrations up to 0.5µg/ml and they significantly inhibited the hemagglutination and virus infectivity, particularly when added pre- or during virus infection. Furthermore, anticancer results indicated that AuNPs treatment caused the marked induction of apoptosis and reduced growth and migration capability of U-87 and U-251 cell lines in a time-dependent manner. SIGNIFICANCE: The present results suggest that AuNPs provide promising antiviral and anticancer approaches. Further research is needed to fully elucidate the mode of antiviral and anticancer action of AuNPs against influenza virus infection and human glioblastoma cell lines.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Ensaios de Migração Celular , Cães , Glioblastoma/patologia , Ouro/toxicidade , Humanos , Células Madin Darby de Rim Canino , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura
11.
Micromachines (Basel) ; 12(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202262

RESUMO

Mathematical modeling has significant potential for understanding of biological models of cancer and to accelerate the progress in cross-disciplinary approaches of cancer treatment. In mathematical biology, solid tumor spheroids are often studied as preliminary in vitro models of avascular tumors. The size of spheroids and their cell number are easy to track, making them a simple in vitro model to investigate tumor behavior, quantitatively. The growth of solid tumors is comprised of three main stages: transient formation, monotonic growth and a plateau phase. The last two stages are extensively studied. However, the initial transient formation phase is typically missing from the literature. This stage is important in the early dynamics of growth, formation of clonal sub-populations, etc. In the current work, this transient formation is modeled by a reaction-diffusion partial differential equation (PDE) for cell concentration, coupled with an ordinary differential equation (ODE) for the spheroid radius. Analytical and numerical solutions of the coupled equations were obtained for the change in the radius of tumor spheroids over time. Human glioblastoma (hGB) cancer cells (U251 and U87) were spheroid cultured to validate the model prediction. Results of this study provide insight into the mechanism of development of solid tumors at their early stage of formation.

12.
Adv Pharm Bull ; 11(2): 361-370, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33880359

RESUMO

Purpose: Reovirus type 3 Dearing (ReoT3D), a wild type oncolytic virus (OV) from the Reoviridae family, kills KRAS mutant cancer cells. However, the use of OVs has faced with some limitations such as immune responses, and delivery of OVs to the tumor sites in systemic therapy. To solve this, and also to increase the anti-cancer effects of these OVs, mesenchymal stem cells (MSCs) might be used as an effective vehicle for OVs delivery. In this study, we examined the anti-cancer effects of human adipose derived-MSCs (AD-MSCs) as a vehicle of ReoT3D against human glioblastoma cells. Methods: Here, AD-MSCs were characterized and toxicity of ReoT3D on them was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Then, capability of AD-MSCs for virus production was assessed by real-time polymerase chain reaction (PCR), and different in vitro anti-cancer experiments were applied for our anti-cancer purposes. Results: Our results from toxicity assay revealed that the isolated and provoked AD-MSCs were resistant to nontoxic concentration multiplicity of infection (MOI) >1 pfu/cells of ReoT3D. In addition, the results indicated that AD-MSCs were susceptible for virus life cycle complementation and were capable for production of virus progenies. Furthermore, our results showed that AD-MSCs had oncolysis effects and increased the anti-cancer effects of ReoT3D. Conclusion: AD-MSCs as a susceptible host for oncolytic reovirus could increase the anti-cancer activity of this OV against glioblastoma multiforme (GBM) cell line.

13.
ACS Appl Mater Interfaces ; 13(28): 32845-32855, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235925

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive glioma. The treatment response is always low, and the condition is typically rapidly fatal. The undifferentiated and self-renewal characteristics of cancer stem cells (CSCs) have been reported, and their potential contribution may cause tumor initiation, recurrence, metastasis, and therapeutic resistance. In particular, glioblastoma stem-like cells exhibit highly invasive properties and drug resistance, serving as a model for the development of novel therapeutic strategies. Induction therapy provides an alternative therapeutic strategy to eliminate the stem cell properties of CSCs and enhance therapeutic sensitivity. The differentiated cells may lose their self-renewal ability, downregulate stem cell-related genes and drug resistance genes, and enhance anticancer drug sensitivity. Therefore, the purpose of this study is to establish a niche for glioblastoma stem-like cell selection as a platform and facilitate the assessment of differentiation therapy on GBM cancer stem-like colonies by retinoic acid (RA) with temozolomide (TMZ)-loaded gold nanoparticles (GNPs) associated with low-intensity ultrasound (LIUS). Herein, a hyaluronic acid-based material system was used to isolate GBM cancer stem-like colonies. Colony formation, size determination, stem cell-related marker expression, and GBM cancer stem-like cell marker expression with the culture period were identified. The effect of TMZ on GBM stem-like colonies on HA-based material systems was also determined, and the results revealed that drug resistance was highly enhanced in GBM colonies compared with that in the control cell population. In addition, GBM colonies also exhibited a significant increase in breast cancer resistance protein expression, which is consistent with the drug resistance effect. Furthermore, several factors, including LIUS, RA, and GNPs, were used to determine the possibility of induction therapy. RA with TMZ-loaded GNP-associated LIUS stimulation exhibited a significant and synergistic effect on the differentiation effect and drug sensitivity enhancement. The GBM cancer stem-like colony system presents an opportunity for the development of new therapeutic strategies, and this study provides an alternative differentiation therapy for malignant tumors.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Nanopartículas Metálicas/química , Temozolomida/farmacologia , Tretinoína/farmacologia , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Ouro/química , Humanos , Ácido Hialurônico/química , Quimioterapia de Indução , Células-Tronco Neoplásicas/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Temozolomida/química , Tretinoína/química , Ondas Ultrassônicas
14.
Appl Biochem Biotechnol ; 187(4): 1539-1550, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30276529

RESUMO

Snake venoms are a natural biological source that has potential therapeutic value with various protein compounds. Disintegrins originally were discovered as a family of proteins from snake venoms composed of cysteine rich low molecular weight polypeptides. Disintegrins exhibit specific binding and higher affinity toward integrin with potential inhibition of function. Trans-membrane receptors of the integrin family may involve in many pathological conditions such as inflammation and tumor progression with important processes related to invasion and migration. Since disintegrins have the ability to bind to integrins, they could be used for cancer detection and treatment, and in monitoring of therapy in select cancer types. The main purpose of the study is to investigate disintegrin containing Vipera anatolica (VAT) crude venom potential for radiolabeling and intracellular uptake as well as electrochemical biosensing assay against U87MG human brain glioblastoma cells. For this purpose, VAT crude venom containing U87MG cell-specific disintegrin was investigated in terms of radiolabeling and intracellular uptake as well as electrochemical biosensing assay in comparison with echistatin (ECT) disintegrin in cells. The interaction between VAT crude venom and ECT with HEK293 human non-tumorigenic embryonic kidney cells and glioblastoma U87MG cells was electrochemically investigated using pencil graphite electrodes (PGEs). The interaction of the VAT crude venom and ECT with HEK293 and U87MG cells was detected according to the changes in oxidation signals. Then, VAT crude venom and echistatin were labeled with 131I via iodogen method. Intracellular uptakes of radiolabeled molecules were investigated in U87MG cell line. 131I-VAT can be an agent for imaging of glioblastoma cancer. Further work will focus on the production of large quantities of pure VAT disintegrin with a biotechnological approach to improving imaging agent.


Assuntos
Técnicas Biossensoriais , Desintegrinas/metabolismo , Espaço Intracelular/metabolismo , Venenos de Serpentes/metabolismo , Viperidae , Animais , Linhagem Celular Tumoral , Eletroquímica , Humanos , Marcação por Isótopo , Transporte Proteico
15.
Oncotarget ; 9(43): 27197-27219, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29930759

RESUMO

Glioblastoma is a highly heterogeneous brain tumor. The presence of cancer cells with stem-like and tumor initiation/propagation properties contributes to poor prognosis. Glioblastoma cancer stem-like cells (GSC) reside in hypoxic and acidic niches favoring cell quiescence and drug resistance. A high throughput screening recently identified the laxative Bisacodyl as a cytotoxic compound targeting quiescent GSC placed in acidic microenvironments. Bisacodyl activity requires its hydrolysis into DDPM, its pharmacologically active derivative. Bisacodyl was further shown to induce tumor shrinking and increase survival in in vivo glioblastoma models. Here we explored the cellular mechanism underlying Bisacodyl cytotoxic effects using quiescent GSC in an acidic microenvironment and GSC-derived 3D macro-spheres. These spheres mimic many aspects of glioblastoma tumors in vivo, including hypoxic/acidic areas containing quiescent cells. Phosphokinase protein arrays combined with pharmacological and genetic modulation of signaling pathways point to the WNK1 serine/threonine protein kinase as a mediator of Bisacodyl cytotoxic effect in both cell models. WNK1 partners including the Akt and SGK1 protein kinases and NBC-family Na+/HCO3- cotransporters were shown to participate in the compound's effect on GSC. Overall, our findings uncover novel potential therapeutic targets for combatting glioblastoma which is presently an incurable disease.

16.
Oncotarget ; 9(46): 28116-28130, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29963265

RESUMO

In glioblastoma multiforme (GBM), cancer stem cells (CSCs) are thought to be responsible for gliomagenesis, resistance to treatment and recurrence. Unfortunately, the prognosis for GBM remains poor and recurrence frequently occurs in the peritumoral tissue within 2 cm from the tumor edge. In this area, a population of CSCs has been demonstrated which may recapitulate the tumor after surgical resection. In the present study, we aimed to characterize CSCs derived from both peritumoral tissue (PCSCs) and GBM (GCSCs) in order to deepen their significance in GBM development and progression. The stemness of PCSC/GCSC pairs obtained from four human GBM surgical specimens was investigated by comparing the expression of specific stem cell markers such as Nestin, Musashi-1 and SOX2. In addition, the growth rate, the ultrastructural features and the expression of other molecules such as c-Met, pMet and MAP kinases, involved in cell migration/invasion, maintenance of tumor stemness and/or resistance to treatments were evaluated. Since it has been recently demonstrated the involvement of the long non-coding RNAs (lncRNAs) in the progression of gliomas, the expression of H19 lncRNA, as well as of one of its two mature products miR-675-5p was evaluated in neurospheres. Our results show significant differences between GCSCs and PCSCs in terms of proliferation, ultrastructural peculiarities and, at a lower extent, stemness profile. These differences might be important in view of their potential role as a therapeutic target.

17.
Oncotarget ; 8(68): 112662-112674, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348854

RESUMO

Glioblastoma remains the most common, malignant primary cancer of the central nervous system with a low life expectancy and an overall survival of less than 1.5 years. The treatment options are limited and there is no cure. Moreover, almost all patients develop recurrent tumors, which typically are more aggressive. Therapeutically resistant glioblastoma or glioblastoma stem-like cells (GSCs) are hypothesized to cause this inevitable recurrence. Identifying prognostic biomarkers of glioblastoma will potentially advance knowledge about glioblastoma tumorigenesis and enable discovery of more effective therapies. Proteomic analysis of more than 600 glioblastoma-specific proteins revealed, for the first time, that expression of acid ceramidase (ASAH1) is associated with poor glioblastoma survival. CD133+ GSCs express significantly higher ASAH1 compared to CD133- GSCs and serum-cultured glioblastoma cell lines, such as U87MG. These findings implicate ASAH1 as a plausible independent prognostic marker, providing a target for a therapy tailored toward GSCs. We further demonstrate that ASAH1 inhibition increases cellular ceramide level and induces apoptosis. Strikingly, U87MG cells, and three different patient-derived glioblastoma stem-like cancer cell lines were efficiently killed, through apoptosis, by three different known ASAH1 inhibitors with IC50's ranging from 11-104 µM. In comparison, the standard glioblastoma chemotherapy agent, temozolomide, had minimal GSC-targeted effects at comparable or even higher concentrations (IC50 > 750 µM against GSCs). ASAH1 is identified as a de novo glioblastoma drug target, and ASAH1 inhibitors, such as carmofur, are shown to be highly effective and to specifically target glioblastoma GSCs. Carmofur is an ASAH1 inhibitor that crosses the blood-brain barrier, a major bottleneck in glioblastoma treatment. It has been approved in Japan since 1981 for colorectal cancer therapy. Therefore, it is poised for repurposing and translation to glioblastoma clinical trials.

18.
Colloids Surf B Biointerfaces ; 159: 366-374, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810193

RESUMO

Nowadays, nanomaterials with remarkable antibacterial activity and low cytotoxicity attract much interest in research. By considering the antibacterial activity of Ag and graphene oxide (GO), the Ag-RGO nanocomposite was prepared by a one-pot and facile technique and it was used to evaluate its antibacterial activity and cytotoxicity against Escherichia coli and glioblastoma cancer cells (U87MG), respectively. The antibacterial activity was studied by micro-dilution and colony counting methods to investigate cell viability. The viability of glioblastoma cells was determined using MTT assay. Since MIC and MBC values of the nanocomposite are 20 and 40µg/mL, respectively, it acts as a bactericidal agent. The antibacterial properties of nanocomposite are time and concentration dependent. The kinetics and mechanism of the antibacterial activity of the nanocomposite were investigated. The antibacterial activity for Ag-RGO nanocomposite is induced by capturing-killing process. From the results, we concluded that Ag-RGO nanocomposite can simultaneously induce apoptosis. Our results bring up a new plan for the use of silver nanoparticles in the form of nanocomposite with reduced graphene oxide in antibacterial applications. Also, Ag-RGO nanocomposite can reduce the viability of U87MG in a dose dependent manner which may show its anticancer potential.


Assuntos
Antibacterianos/farmacologia , Grafite/química , Nanopartículas Metálicas/química , Nanocompostos/química , Prata/química , Antibacterianos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Cinética
19.
Biomed Pharmacother ; 90: 713-723, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28419967

RESUMO

Patients with glioblastoma multiforme (GBM) that are cancer stem-cell-positive (GSC [+]) essentially cannot benefit from anti-angiogenic or anti-invasive therapy. In the present study, the potential anti-angiogenic and anti-invasive effects of Olea europaea (olive) leaf extract (OLE) were tested using GSC (+) tumours. OLE (2mg/mL) caused a significant reduction in tumour weight, vascularisation, invasiveness and migration (p=0.0001, p<0.001, p=0.004; respectively) that was associated with reducing the expression of VEGFA, MMP-2 and MMP-9. This effect was synergistically increased in combination with bevacizumab. Therefore, our current findings may contribute to research on drugs that inhibit the invasiveness of GBM.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Olea/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica/patologia , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA