Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(11): 2611-2631.e8, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758338

RESUMO

Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.


Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão Sináptica
2.
Annu Rev Neurosci ; 43: 337-353, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32101483

RESUMO

Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.


Assuntos
Encéfalo/fisiologia , Células Enteroendócrinas/fisiologia , Sinapses/fisiologia , Nervo Vago/fisiologia , Animais , Humanos , Neurônios/fisiologia , Transdução de Sinais/fisiologia
3.
J Neurosci ; 44(39)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39168654

RESUMO

Growth-associated protein of 43 kDa (GAP43) is a key cytoskeleton-associated component of the presynaptic terminal that facilitates neuroplasticity. Downregulation of GAP43 expression has been associated to various psychiatric conditions in humans and evokes hippocampus-dependent memory impairments in mice. Despite the extensive studies conducted on hippocampal GAP43 in past decades, however, very little is known about its roles in modulating the excitatory versus inhibitory balance in other brain regions. We recently generated conditional knock-out mice in which the Gap43 gene was selectively inactivated in either telencephalic glutamatergic neurons (Gap43fl/fl ;Nex1Cre mice, hereafter Glu-GAP43-/- mice) or forebrain GABAergic neurons (Gap43fl/fl ;Dlx5/6Cre mice, hereafter GABA-GAP43-/- mice). Here, we show that Glu-GAP43-/- but not GABA-GAP43-/- mice of either sex show a striking hyperactive phenotype when exposed to a novel environment. This behavioral alteration of Glu-GAP43-/- mice was linked to a selective activation of dorsal-striatum neurons, as well as to an enhanced corticostriatal glutamatergic transmission and an abrogation of corticostriatal endocannabinoid-mediated long-term depression. In line with these observations, GAP43 was abundantly expressed in corticostriatal glutamatergic terminals of wild-type mice. The novelty-induced hyperactive phenotype of Glu-GAP43-/- mice was abrogated by chemogenetically inhibiting corticostriatal afferences with a Gi-coupled "designer receptor exclusively activated by designer drugs" (DREADDs), thus further supporting that novelty-induced activity is controlled by GAP43 at corticostriatal excitatory projections. Taken together, these findings show an unprecedented regulatory role of GAP43 in the corticostriatal circuitry and provide a new mouse model with a delimited neuronal-circuit alteration for studying novelty-induced hyperactivity, a phenotypic shortfall that occurs in diverse psychiatric diseases.


Assuntos
Corpo Estriado , Proteína GAP-43 , Camundongos Knockout , Animais , Camundongos , Masculino , Corpo Estriado/metabolismo , Feminino , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Hipercinese/metabolismo , Hipercinese/genética , Terminações Pré-Sinápticas/metabolismo , Comportamento Exploratório/fisiologia , Camundongos Endogâmicos C57BL , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia
4.
Mol Cell Neurosci ; 125: 103856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105372

RESUMO

In the central nervous system, glutamatergic synapses play a central role in the regulation of excitatory neuronal transmission. With the membrane-associated guanylate kinase (MAGUK) family of proteins as their structuring scaffold, glutamatergic receptors serve as the powerhouse of glutamatergic synapses. Glutamatergic receptors can be categorized as metabotropic and ionotropic receptors. The latter are then categorized into N-methyl-d-aspartate, kainate receptors, and α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid receptors (AMPARs). Over the past two decades, genetic tagging technology and super-resolution microscopy have been of the utmost importance to unravel how the different receptors are organized at glutamatergic synapses. At the plasma membrane, receptors are highly mobile but show reduced mobility when at synaptic sites. This partial immobilization of receptors at synaptic sites is attributed to the stabilization/anchoring of receptors with the postsynaptic MAGUK proteins and auxiliary proteins, and presynaptic proteins. These partial immobilizations and localization of glutamatergic receptors within the synaptic sites are fundamental for proper basal transmission and synaptic plasticity. Perturbations of the stabilization of glutamatergic receptors are often associated with cognitive deficits. In this review, we describe the proposed mechanisms for synaptic localization and stabilization of AMPARs, the major players of fast excitatory transmission in the central nervous system.


Assuntos
Receptores de AMPA , Sinapses , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Plasticidade Neuronal/fisiologia , Guanilato Quinases/metabolismo
5.
J Integr Neurosci ; 23(1): 6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38287855

RESUMO

BACKGROUND: Metformin has been shown to have potent analgesic effects; however, the underlying mechanism of synaptic plasticity mediating analgesia remained ambiguous. METHODS: In this study, animal behavioral tests, whole-cell patch­clamp recording, immunofluorescence staining, and network pharmacology techniques were applied to elucidate the mechanisms and potential targets of metformin-induced analgesia. RESULTS: Single or consecutive injections of metformin significantly inhibited spinal nerve ligation (SNL)-induced neuropathic pain, and formalin-induced acute inflammatory pain. Network pharmacology analysis of metformin action targets in pain database-related targets revealed 25 targets, including five hub targets (nitric oxide synthase 1 (NOS1), NOS2, NOS3, epidermal growth factor receptor (EGFR), and plasminogen (PLG)). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that metformin-induced analgesia was markedly correlated with calcium signaling and synaptic transmission. Intrathecal injection of metformin significantly reversed nerve injury-induced c-Fos (neural activity biomarker) mRNA and protein expression in neuropathic rats by regulating NOS2 expression. In addition, whole-cell recordings of isolated spinal neurons demonstrated that metformin dose-dependently inhibited the enhanced frequency and amplitude of miniature excitatory synaptic currents (mEPSCs) but did not affect those of miniature inhibitory synaptic currents (mIPSCs) in neuropathic pain. CONCLUSIONS: This study further demonstrated that metformin might inhibit spinal glutamatergic transmission and abnormal nociceptive circuit transduction by monitoring synaptic transmission in pain. Results of this work provide an in-depth understanding of metformin analgesia via synaptic plasticity.


Assuntos
Neuralgia , Transmissão Sináptica , Ratos , Animais , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nervos Espinhais/metabolismo , Neurônios/metabolismo
6.
J Neurochem ; 164(2): 143-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222452

RESUMO

Glutamate NMDA receptors (NMDARs) in the nucleus accumbens (NAc) are critically involved in drug dependence and reward. α2δ-1 is a newly discovered NMDAR-interacting protein that promotes synaptic trafficking of NMDARs independently of its conventional role as a calcium channel subunit. However, it remains unclear how repeated opioid exposure affects synaptic NMDAR activity and α2δ-1-NMDAR interaction in the NAc. In this study, whole-cell patch-clamp recordings showed that repeated treatment with morphine in mice markedly increased the NMDAR-mediated frequency of miniature excitatory postsynaptic currents (mEPSCs) and amplitude of puff NMDAR currents in medium spiny neurons in the NAc core region. Morphine treatment significantly increased the physical interaction of α2δ-1 with GluN1 and their synaptic trafficking in the NAc. In Cacna2d1 knockout mice, repeated treatment with morphine failed to increase the frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Furthermore, inhibition of α2δ-1 with gabapentin or disruption of the α2δ-1-NMDAR interaction with the α2δ-1 C terminus-interfering peptide blocked the morphine-elevated frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Correspondingly, systemically administered gabapentin, Cacna2d1 ablation, or microinjection of the α2δ-1 C terminus-interfering peptide into the NAc core attenuated morphine-induced conditioned place preference and locomotor sensitization. Our study reveals that repeated opioid exposure strengthens presynaptic and postsynaptic NMDAR activity in the NAc via α2δ-1. The α2δ-1-bound NMDARs in the NAc have a key function in the rewarding effect of opioids and could be targeted for treating opioid use disorder and addiction.


Assuntos
Analgésicos Opioides , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Analgésicos Opioides/farmacologia , Núcleo Accumbens , Gabapentina/farmacologia , Morfina/farmacologia
7.
Int J Neuropsychopharmacol ; 26(7): 483-495, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37279653

RESUMO

BACKGROUND: BTRX-246040, a nociceptin/orphanin FQ peptide receptor antagonist, is being developed for the treatment of depressive patients. However, the underlying mechanism of this potential antidepressant is still largely unclear. Here, we studied the antidepressant-related actions of BTRX-246040 in the ventrolateral periaqueductal gray (vlPAG). METHODS: The tail suspension test, forced swim test, female urine sniffing test, sucrose preference test, and learned helplessness (LH) combined with pharmacological approaches were employed to examine the antidepressant-like effects and drug effects on LH-induced depressive-like behavior in C57BL/6J mice. Electrophysiological recordings in vlPAG neurons were used to study synaptic activity. RESULTS: Intraperitoneal administration of BTRX-246040 produced antidepressant-like behavioral effects in a dose-dependent manner. Systemic BTRX-246040 (10 mg/kg) resulted in an increased frequency and amplitude of miniature excitatory postsynaptic currents (EPSCs) in the vlPAG. Moreover, slice perfusion of BTRX-246040 directly elevated the frequency and amplitude of miniature EPSCs and enhanced the evoked EPSCs in the vlPAG, which were blocked by pretreatment with the nociceptin/orphanin FQ peptide receptor agonist Ro 64-6198. In addition, intra-vlPAG application of BTRX-246040 produced antidepressant-like behavioral effects in a dose-dependent manner. Moreover, intra-vlPAG pretreatment with 6-cyano-7-nitroquinoxaline-2,3-dione reversed both systemic and local BTRX-246040-mediated antidepressant-like behavioral effects. Furthermore, both systemic and local BTRX-246040 decreased the LH phenotype and reduced LH-induced depressive-like behavior. CONCLUSIONS: The results suggested that BTRX-246040 may act through the vlPAG to exert antidepressant-relevant actions. The present study provides new insight into a vlPAG-dependent mechanism underlying the antidepressant-like actions of BTRX-246040.


Assuntos
Neurônios , Substância Cinzenta Periaquedutal , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Receptores de Peptídeos
8.
Biochemistry (Mosc) ; 88(5): 565-589, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331704

RESUMO

The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.


Assuntos
Glucocorticoides , Hipocampo , Humanos , Animais , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Fatores de Crescimento Neural/metabolismo , Emoções , Plasticidade Neuronal , Mamíferos/metabolismo
9.
Korean J Physiol Pharmacol ; 27(1): 39-48, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575932

RESUMO

Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Store-operated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 µg. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.

10.
J Neurosci ; 41(20): 4367-4377, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33827934

RESUMO

Early-life inflammatory stress increases seizure susceptibility later in life. However, possible sex- and age-specific differences and the associated mechanisms are largely unknown. C57BL/6 mice were bred in house, and female and male pups were injected with lipopolysaccharide (LPS; 100 µg/kg, i.p.) or vehicle control (saline solution) at postnatal day 14 (P14). Seizure threshold was assessed in response to pentylenetetrazol (1% solution, i.v.) in adolescence (∼P40) and adulthood (∼P60). We found that adult, but not adolescent, mice treated with LPS displayed ∼34% lower seizure threshold compared with controls. Females and males showed similar increased seizure susceptibility, suggesting that altered brain excitability was age dependent, but not sex dependent. Whole-cell recordings revealed no differences in excitatory synaptic activity onto CA1 pyramidal neurons from control or neonatally inflamed adolescent mice of either sex. However, adult mice of both sexes previously exposed to LPS displayed spontaneous EPSC frequency approximately twice that of controls, but amplitude was unchanged. Although these changes were not associated with alterations in dendritic spines or in the NMDA/AMPA receptor ratio, they were linked to an increased glutamate release probability from Schaffer collateral, but not temporoammonic pathway. This glutamate increase was associated with reduced activity of presynaptic GABAB receptors and was independent of the endocannabinoid-mediated suppression of excitation. Our new findings demonstrate that early-life inflammation leads to long-term increased hippocampal excitability in adult female and male mice associated with changes in glutamatergic synaptic transmission. These alterations may contribute to enhanced vulnerability of the brain to subsequent pathologic challenges such as epileptic seizures.SIGNIFICANCE STATEMENT Adult physiology has been shown to be affected by early-life inflammation. Our data reveal that early-life inflammation increases excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons in an age-dependent manner through disrupted presynaptic GABAB receptor activity on Schaffer collaterals. This hyperexcitability was seen only in adult, and not in adolescent, animals of either sex. The data suggest a maturation process, independent of sex, in the priming action of early-life inflammation and highlight the importance of studying mature brains to reveal cellular changes associated with early-life interventions.


Assuntos
Inflamação/fisiopatologia , Células Piramidais/fisiologia , Convulsões/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Convulsivantes/toxicidade , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente
11.
Glia ; 70(1): 173-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661306

RESUMO

Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1-/- mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses.


Assuntos
Microglia , Neurônios , Animais , Encéfalo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo , Camundongos , Compostos Orgânicos/farmacologia , Sinapses/fisiologia
12.
J Neuroinflammation ; 19(1): 308, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539796

RESUMO

BACKGROUND: Alcohol use disorders result from repeated binge and chronic alcohol consumption followed by negative effects, such as anxiety, upon cessation. This process is associated with the activation of NLRP3 inflammasome-mediated responses. However, whether and how inhibition of the NLRP3 inflammasome alters alcohol intake and anxiety behavior remains unclear. METHODS: A combination of drinking-in-the-dark and gavage was established in NLRP3-knockout and control mice. Behavior was assessed by open-field and elevated plus maze tests. Binge alcohol drinking was measured at 2 h and 4 h. A 2 h/4 h/24 h voluntary drinking was determined by a two-bottle choice paradigm. Western blotting and ELISA were applied to examine the levels of the NLRP3 inflammasome and- inflammatory factors, such as IL-1ß and TNF-α. Nissl staining was used to measure neuronal injury. The electrophysiological method was used to determine glutamatergic transmission in corticostriatal circuits. In vivo optogenetic LTP and LTD were applied to control the function of corticostriatal circuits on the behavior of mice. MCC950 was used to antagonize the NLRP3 inflammasome. RESULTS: The binge alcohol intake was decreased in NLRP3 KO mice compared to the control mice. During alcohol withdrawal, NLRP3 deficiency attenuated anxiety-like behavior and neuronal injury in the mPFC and striatum. Moreover, we discovered that glutamatergic transmission to striatal neurons was reduced in NLRP3 KO mice. Importantly, in vivo optogenetic induction of long-term potentiation (LTP) of corticostriatal circuits reversed the effects of NLRP3 deficiency on glutamatergic transmission and anxiety behavior. We also demonstrated that optogenetic induction of LTD decreased anxiety-like behavior and caused a reduction in glutamatergic transmission. Interestingly, NLRP3 deficiency or inhibition (MCC950 injection) attenuated the anxiety-like behavior, but it did not prevent DID + gavage paradigm-induced a persistent enhancement of drinking in a two-bottle choice at 2 and 4 days into withdrawal. CONCLUSION: Our results demonstrate that NLRP3 deficiency decreases binge alcohol intake and anxiety-like behavior through downregulation of glutamatergic transmission in corticostriatal circuits, which may provide an anti-inflammatory target for treating alcohol use disorders.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ansiedade , Consumo de Bebidas Alcoólicas , Camundongos Endogâmicos C57BL
13.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887307

RESUMO

Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling-in GAD67+/- and VGAT-/- mice-are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.


Assuntos
Sinapses , Transmissão Sináptica , Animais , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Mamíferos/metabolismo , Camundongos , Neurogênese , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/genética , Ácido gama-Aminobutírico/metabolismo
14.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430779

RESUMO

Exogenous corticosterone administration reduces GABAergic transmission and impairs its 5-HT7 receptor-dependent modulation in the rat dorsal raphe nucleus (DRN), but it is largely unknown how neuronal functions of the DRN are affected by repeated physical and psychological stress. This study compared the effects of repeated restraint stress and corticosterone injections on DRN neuronal excitability, spontaneous synaptic transmission, and its 5-HT7 receptor-dependent modulation. Male Wistar rats received corticosterone injections for 7 or 14 days or were restrained for 10 min twice daily for 3 days. Repeated restraint stress and repeated corticosterone administration evoked similar changes in performance in the forced swim test. They increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from DRN neurons. In contrast to the treatment with corticosterone, restraint stress-induced changes in sEPSC kinetics and decreased intrinsic excitability of DRN neurons did not modify inhibitory transmission. Repeated injections of the 5-HT7 receptor antagonist SB 269970 ameliorated the effects of restraint on excitability and sEPSC frequency but did not restore the altered kinetics of sEPSCs. Thus, repeated restraint stress and repeated corticosterone administration differ in consequences for the intrinsic excitability of DRN projection neurons and their excitatory and inhibitory synaptic inputs. Effects of repeated restraint stress on DRN neurons can be partially abrogated by blocking the 5-HT7 receptor.


Assuntos
Corticosterona , Núcleo Dorsal da Rafe , Ratos , Masculino , Animais , Núcleo Dorsal da Rafe/fisiologia , Corticosterona/farmacologia , Serotonina/farmacologia , Potenciais Pós-Sinápticos Inibidores , Ratos Wistar , Transmissão Sináptica , Neurônios
15.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163004

RESUMO

Decreased platelet count represents a feature of acute liver failure (ALF) pathogenesis. Platelets are the reservoir of transforming growth factor 1 (TGF-ß1), a multipotent cytokine involved in the maintenance of, i.a., central nervous system homeostasis. Here, we analyzed the effect of a decrease in TGF-ß1 active form on synaptic proteins levels, and brain electrophysiology, in mice after intraperitoneal (ip) administration of TGF-ß1 antibody (anti-TGF-ß1; 1 mg/mL). Next, we correlated it with a thrombocytopenia-induced TGF-ß1 decrease, documented in an azoxymethane-induced (AOM; 100 mM ip) model of ALF, and clarified the impact of TGF-ß1 decrease on blood-brain barrier functionality. The increase of both synaptophysin and synaptotagmin in the cytosolic fraction, and its reduction in a membrane fraction, were confirmed in the AOM mice brains. Both proteins' decrease in analyzed fractions occurred in anti-TGF-ß1 mice. In turn, an increase in postsynaptic (NR1 subunit of N-methyl-D-aspartate receptor, postsynaptic density protein 95, gephyrin) proteins in the AOM brain cortex, but a selective compensatory increase of NR1 subunit in anti-TGF-ß mice, was observed. The alterations of synaptic proteins levels were not translated on electrophysiological parameters in the anti-TGF-ß1 model. The results suggest the impairment of synaptic vesicles docking to the postsynaptic membrane in the AOM model. Nevertheless, changes in synaptic protein level in the anti-TGF-ß1 mice do not affect neurotransmission and may not contribute to neurologic deficits in AOM mice.


Assuntos
Azoximetano/efeitos adversos , Encéfalo/fisiopatologia , Encefalopatia Hepática/fisiopatologia , Falência Hepática Aguda/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Anticorpos/administração & dosagem , Anticorpos/farmacologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Fenômenos Eletrofisiológicos , Encefalopatia Hepática/induzido quimicamente , Encefalopatia Hepática/metabolismo , Injeções Intraperitoneais , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/fisiopatologia , Masculino , Camundongos , Ratos , Sinaptofisina/metabolismo , Sinaptotagminas/metabolismo
16.
J Neurosci ; 40(36): 6825-6841, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32747440

RESUMO

Neuroinflammation is involved in the pathogenesis of several neurologic disorders, including epilepsy. Both changes in the input/output functions of synaptic circuits and cell Ca2+ dysregulation participate in neuroinflammation, but their impact on neuron function in epilepsy is still poorly understood. Lipopolysaccharide (LPS), a toxic byproduct of bacterial lysis, has been extensively used to stimulate inflammatory responses both in vivo and in vitro LPS stimulates Toll-like receptor 4, an important mediator of the brain innate immune response that contributes to neuroinflammation processes. Although we report that Toll-like receptor 4 is expressed in both excitatory and inhibitory mouse hippocampal neurons (both sexes), its chronic stimulation by LPS induces a selective increase in the excitatory synaptic strength, characterized by enhanced synchronous and asynchronous glutamate release mechanisms. This effect is accompanied by a change in short-term plasticity with decreased facilitation, decreased post-tetanic potentiation, and increased depression. Quantal analysis demonstrated that the effects of LPS on excitatory transmission are attributable to an increase in the probability of release associated with an overall increased expression of L-type voltage-gated Ca2+ channels that, at presynaptic terminals, abnormally contributes to evoked glutamate release. Overall, these changes contribute to the excitatory/inhibitory imbalance that scales up neuronal network activity under inflammatory conditions. These results provide new molecular clues for treating hyperexcitability of hippocampal circuits associated with neuroinflammation in epilepsy and other neurologic disorders.SIGNIFICANCE STATEMENT Neuroinflammation is thought to have a pathogenetic role in epilepsy, a disorder characterized by an imbalance between excitation/inhibition. Fine adjustment of network excitability and regulation of synaptic strength are both implicated in the homeostatic maintenance of physiological levels of neuronal activity. Here, we focused on the effects of chronic neuroinflammation induced by lipopolysaccharides on hippocampal glutamatergic and GABAergic synaptic transmission. Our results show that, on chronic stimulation with lipopolysaccharides, glutamatergic, but not GABAergic, neurons exhibit an enhanced synaptic strength and changes in short-term plasticity because of an increased glutamate release that results from an anomalous contribution of L-type Ca2+ channels to neurotransmitter release.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Epilepsia/metabolismo , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/fisiologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Receptor 4 Toll-Like/metabolismo
17.
Neurobiol Dis ; 148: 105188, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221531

RESUMO

Epileptic seizures are automatic, excessive, and synchronized neuronal activities originating from many brain regions especially the amygdala, the allocortices and neocortices. This may reflect a shared principle for network organization and signaling in these telencephalic structures. In theory, the automaticity of epileptic discharges may stem from spontaneously active "oscillator" neurons equipped with intrinsic pacemaking conductances, or from a group of synaptically-connected collaborating "resonator" neurons. In the basolateral amygdalar (BLA) network of pyramidal-inhibitory (PN-IN) neuronal resonators, we demonstrated that rhythmogenic currents are provided by glutamatergic rather than the classic intrinsic or cellular pacemaking conductances (namely the h currents). The excitatory output of glutamatergic neurons such as PNs presumably propels a novel network-based "relay burst mode" of discharges especially in INs, which precondition PNs into a state prone to burst discharges and thus further glutamate release. Also, selective activation of unilateral PNs, but never INs, readily drives bilateral BLA networks into reverberating discharges which are fully synchronized with the behavioral manifestations of seizures (e.g. muscle contractions). Seizures originating in BLA and/or the other structures with similar PN-IN networks thus could be viewed as glutamate-triggered erroneous network oscillations that are normally responsible for information relay.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Células Piramidais/metabolismo , Convulsões/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Ondas Encefálicas/fisiologia , Excitação Neurológica , Camundongos , Convulsões/fisiopatologia , Transmissão Sináptica/fisiologia
18.
Am J Physiol Heart Circ Physiol ; 321(3): H580-H591, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34355986

RESUMO

Tumor necrosis factor-α (TNFα) in the hypothalamic paraventricular nucleus (PVN) contributes to increased sympathetic nerve activity (SNA) in cardiovascular disease models, but mechanisms are incompletely understood. As previously reported, bilateral PVN TNFα (0.6 pmol, 50 nL) induced acute ramping of splanchnic SNA (SSNA) that averaged +64 ± 7% after 60 min and +109 ± 17% after 120 min (P < 0.0001, n = 10). Given that TNFα can rapidly strengthen glutamatergic transmission, we hypothesized that progressive activation of ionotropic glutamate receptors is critically involved. When compared with that of vehicle (n = 5), prior blockade of PVN AMPA or NMDA receptors in anesthetized (urethane/α-chloralose) adult male Sprague-Dawley rats dose-dependently (ED50: 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), 2.48 nmol; D-(-)-2-amino-5-phosphonopentanoic acid (APV), 12.33 nmol), but incompletely (Emax: NBQX, 64%; APV, 41%), attenuated TNFα-induced SSNA ramping (n = 5/dose). By contrast, combined receptor blockade prevented ramping (1.3 ± 2.1%, P < 0.0001, n = 5). Whereas separate blockade of PVN AMPA or NMDA receptors (n = 5/group) had little effect on continued SSNA ramping when performed 60 min after TNFα injection, combined blockade (n = 5) or PVN inhibition with the GABA-A receptor agonist muscimol (n = 5) effectively stalled, without reversing, the SSNA ramp. Notably, PVN TNFα increased local TNFα immunofluorescence after 120, but not 60 min. Findings indicate that AMPA and NMDA receptors each contribute to SSNA ramping to PVN TNFα, and that their collective availability and ongoing activity are required to initiate and sustain the ramping response. We conclude that acute sympathetic activation by PVN TNFα involves progressive local glutamatergic excitation that recruits downstream neurons capable of maintaining heightened SSNA, but incapable of sustaining SSNA ramping.NEW & NOTEWORTHY The proinflammatory cytokine TNFα contributes to heightened SNA in cardiovascular disease models, but mechanisms remain obscure. Here, we demonstrate that TNFα injection into the hypothalamic PVN triggers SNA ramping by mechanisms dependent on local ionotropic glutamate receptor availability, but largely independent of TNFα autoinduction. Continued SNA ramping depends on ionotropic glutamate receptor and neuronal activity in PVN, indicating that strengthening and/or increased efficacy of glutamatergic transmission is necessary for acute sympathoexcitation by PVN TNFα.


Assuntos
Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Nervos Esplâncnicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Nervos Esplâncnicos/efeitos dos fármacos , Nervos Esplâncnicos/fisiologia
19.
Int J Neuropsychopharmacol ; 24(3): 221-228, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33125479

RESUMO

BACKGROUND: Basolateral amygdala (BLA) excitatory projections to medial prefrontal cortex (PFC) play a key role controlling stress behavior, pain, and fear. Indeed, stressful events block synaptic plasticity at the BLA-PFC circuit. The stress responses involve the action of corticotrophin releasing factor (CRF) through type 1 and type 2 CRF receptors (CRF1 and CRF2). Interestingly, it has been described that dopamine receptor 1 (D1R) and CRF peptide have a modulatory role of BLA-PFC transmission. However, the participation of CRF1 and CRF2 receptors in BLA-PFC synaptic transmission still is unclear. METHODS: We used in vivo microdialysis to determine dopamine and glutamate (GLU) extracellular levels in PFC after BLA stimulation. Immunofluorescence anatomical studies in rat PFC synaptosomes devoid of postsynaptic elements were performed to determine the presence of D1R and CRF2 receptors in synaptical nerve endings. RESULTS: Here, we provide direct evidence of the opposite role that CRF receptors exert over dopamine extracellular levels in the PFC. We also show that D1R colocalizes with CRF2 receptors in PFC nerve terminals. Intra-PFC infusion of antisauvagine-30, a CRF2 receptor antagonist, increased PFC GLU extracellular levels induced by BLA activation. Interestingly, the increase in GLU release observed in the presence of antisauvagine-30 was significantly reduced by incubation with SCH23390, a D1R antagonist. CONCLUSION: PFC CRF2 receptor unmasks D1R effect over glutamatergic transmission of the BLA-PFC circuit. Overall, CRF2 receptor emerges as a new modulator of BLA to PFC glutamatergic transmission, thus playing a potential role in emotional disorders.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley
20.
Acta Pharmacol Sin ; 42(6): 848-860, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33028984

RESUMO

Sustained elevation of corticosterone (CORT) is one of the common causes of aging and major depression disorder. However, the role of elevated CORT in late life depression (LLD) has not been elucidated. In this study, 18-month-old female rats were subjected to bilateral adrenalectomy or sham surgery. Their CORT levels in plasma were adjusted by CORT replacement and the rats were divided into high-level CORT (H-CORT), low-level CORT (L-CORT), and Sham group. We showed that L-CORT rats displayed attenuated depressive symptoms and memory defects in behavioral tests as compared with Sham or H-CORT rats. Furthermore, we showed that glutamatergic transmission was enhanced in L-CORT rats, evidenced by enhanced population spike amplitude (PSA) recorded from the dentate gyrus of hippocampus in vivo and increased glutamate release from hippocampal synaptosomes caused by high frequency stimulation or CORT exposure. Intracerebroventricular injection of an enzymatic glutamate scavenger system, glutamic-pyruvic transmine (GPT, 1 µM), significantly increased the PSA in Sham rats, suggesting that extracelluar accumulation of glutamate might be the culprit of impaired glutamatergic transmission, which was dependent on the uptake by Glt-1 in astrocytes. We revealed that hippocampal Glt-1 expression level in the L-CORT rats was much higher than in Sham and H-CORT rats. In a gradient neuron-astrocyte coculture, we found that the expression of Glt-1 was decreased with the increase of neural percentage, suggesting that impairment of Glt-1 might result from the high level of CORT contributed neural damage. In sham rats, administration of DHK that inhibited Glt-1 activity induced significant LLD symptoms, whereas administration of RIL that promoted glutamate uptake significantly attenuated LLD. All of these results suggest that glutamatergic transmission impairment is one of important pathogenesis in LLD induced by high level of CORT, which provide promising clues for the treatment of LLD.


Assuntos
Corticosterona/metabolismo , Depressão/metabolismo , Ácido Glutâmico/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Glutamina/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA