Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(11): 9165-9180, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998752

RESUMO

A lack of complex and hybrid types of N-glycans in mice is embryonically lethal due to neural tube maldevelopment. N-acetylglucosaminyltransferase-I (GnT-I; Mgat1) catalyzes a required step for converting oligomannose N-glycans into hybrid and complex N-glycans. Unlike mice, zebrafish have two Mgat1a/b genes. Herein, CRISPR/Cas9 technology was used to knockdown GnT-Ib activity in zebrafish, referred to as Mgat1b-/-, to examine the impact of a decrease in complex types of N-glycans on survival and development, and sensory and motor functions. Genotyping verified the occurrence of edited Mgat1b, and LC-ESI-MS and lectin blotting identified higher levels of oligomannose and lower levels of complex N-glycans in Mgat1b-/- relative to Wt AB. The microscopic visualization of developmental stages and locomotor studies using an automated tracking unit and manual touch assays revealed reduced survivability, and delayed motor and sensory functions in Mgat1b-/-. Moreover, embryonic staging linked reduced survivability of Mgat1b-/- to disruption in brain anlagen formation. Birefringence measurements supported delayed skeletal muscle development, which corresponded with motor and sensory function impediments in Mgat1b-/-. Furthermore, GnT-Ib knockdown hindered cardiac activity onset. Collectively, Mgat1b-/- displayed incomplete penetrance and variable expressivity, such that some died in early embryonic development, while others survived to adulthood, albeit, with developmental delays. Thus, the results reveal that reducing the amount of complex-type N-glycans is unfavorable for zebrafish survival and development. Moreover, our results support a better understanding of human congenital disorders of glycosylation.

2.
J Virol ; 96(6): e0214121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044216

RESUMO

Due to the high mutation rate of influenza virus and the rapid increase of drug resistance, it is imperative to discover host-targeting antiviral agents with broad-spectrum antiviral activity. Considering the discrepancy between the urgent demand of antiviral drugs during an influenza pandemic and the long-term process of drug discovery and development, it is feasible to explore host-based antiviral agents and strategies from antiviral drugs on the market. In the current study, the antiviral mechanism of arbidol (ARB), a broad-spectrum antiviral drug with potent activity at early stages of viral replication, was investigated from the aspect of hemagglutinin (HA) receptors of host cells. N-glycans that act as the potential binding receptors of HA on 16-human bronchial epithelial (16-HBE) cells were comprehensively profiled for the first time by using an in-depth glycomic approach based on TiO2-PGC chip-Q-TOF MS. Their relative levels upon the treatment of ARB and virus were carefully examined by employing an ultra-high sensitive qualitative method based on Chip LC-QQQ MS, showing that ARB treatment led to significant and extensive decrease of sialic acid (SA)-linked N-glycans (SA receptors), and thereby impaired the virus utilization on SA receptors for rolling and entry. The SA-decreasing effect of ARB was demonstrated to result from its inhibitory effect on sialyltransferases (ST), ST3GAL4 and ST6GAL1 of 16-HBE cells. Silence of STs, natural ST inhibitors, as well as sialidase treatment of 16-HBE cells, resulted in similar potent antiviral activity, whereas ST-inducing agent led to the diminished antiviral effect of ARB. These observations collectively suggesting the involvement of ST inhibition in the antiviral effect of ARB. IMPORTANCE This study revealed, for the first time, that ST inhibition and the resulted destruction of SA receptors of host cells may be an underlying mechanism for the antiviral activity of ARB. ST inhibition has been proposed as a novel host-targeting antiviral approach recently and several compounds are currently under exploration. ARB is the first antiviral drug on the market that was found to possess ST inhibiting function. This will provide crucial evidence for the clinical usages of ARB, such as in combination with neuraminidase (NA) inhibitors to exert optimized antiviral effect, etc. More importantly, as an agent that can inhibit the expression of STs, ARB can serve as a novel lead compound for the discovery and development of host-targeting antiviral drugs.


Assuntos
Indóis , Sialiltransferases , Sulfetos , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Células Epiteliais , Glicômica , Hemaglutininas , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neuraminidase/farmacologia , Polissacarídeos/metabolismo , Sialiltransferases/antagonistas & inibidores , Sulfetos/farmacologia , Sulfetos/uso terapêutico
3.
Glycoconj J ; 40(5): 523-540, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37462780

RESUMO

In recent years, several rational designed therapies have been developed for treatment of mucopolysaccharidoses (MPS), a group of inherited metabolic disorders in which glycosaminoglycans (GAGs) are accumulated in various tissues and organs. Thus, improved disease-specific biomarkers for diagnosis and monitoring treatment efficacy are of paramount importance. Specific non-reducing end GAG structures (GAG-NREs) have become promising biomarkers for MPS, as the compositions of the GAG-NREs depend on the nature of the lysosomal enzyme deficiency, thereby creating a specific pattern for each subgroup. However, there is yet no straightforward clinical laboratory platform which can assay all MPS-related GAG-NREs in one single analysis. Here, we developed and applied a GAG domain mapping approach for analyses of urine samples of ten MPS patients with various MPS diagnoses and corresponding aged-matched controls. We describe a nano-LC-MS/MS method of GAG-NRE profiling, utilizing 2-aminobenzamide reductive amination labeling to improve the sensitivity and the chromatographic resolution. Diagnostic urinary GAG-NREs were identified for MPS types IH/IS, II, IIIc, IVa and VI, corroborating GAG-NRE as biomarkers for these known enzyme deficiencies. Furthermore, a significant reduction of diagnostic urinary GAG-NREs in MPS IH (n = 2) and MPS VI (n = 1) patients under treatment was demonstrated. We argue that this straightforward glycomic workflow, designed for the clinical analysis of MPS-related GAG-NREs in one single analysis, will be of value for expanding the use of GAG-NREs as biomarkers for MPS diagnosis and treatment monitoring.


Assuntos
Glicosaminoglicanos , Mucopolissacaridoses , Humanos , Idoso , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Glicômica , Fluxo de Trabalho , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/urina , Biomarcadores
4.
Glycobiology ; 32(4): 289-303, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972858

RESUMO

The glycosylation profile of biotherapeutic glycoproteins is a critical quality attribute that is routinely monitored to ensure desired product quality, safety and efficacy. Additionally, as one of the most prominent and complex post-translational modifications, glycosylation plays a key role in disease manifestation. Changes in glycosylation may serve as a specific and sensitive biomarker for disease diagnostics and prognostics. However, the conventional 2-aminobenzamide-based N-glycosylation analysis procedure is time-consuming and insensitive with poor reproducibility. We have evaluated an innovative streamlined 96-well-plate-based platform utilizing InstantPC label for high-throughput, high-sensitivity glycan profiling, which is user-friendly, robust and ready for automation. However, the limited availability of InstantPC-labeled glycan standards has significantly hampered the applicability and transferability of this platform for expedited glycan structural profiling. To address this challenge, we have constructed a detailed InstantPC-labeled glycan glucose unit (GU) database through analysis of human serum and a variety of other glycoproteins from various sources. Following preliminary hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection separation and analysis, glycoproteins with complex glycan profiles were subjected to further fractionation by weak anion exchange HILIC and exoglycosidase sequential digestion for cross-validation of the glycan assignment. Hydrophilic interaction ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry was subsequently utilized for glycan fragmentation and accurate glycan mass confirmation. The constructed InstantPC glycan GU database is accurate and robust. It is believed that this database will enhance the application of the developed platform for high-throughput, high-sensitivity glycan profiling and that it will eventually advance glycan-based biopharmaceutical production and disease biomarker discovery.


Assuntos
Glucose , Glicômica , Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão , Humanos , Polissacarídeos/química , Reprodutibilidade dos Testes
5.
Biotechnol Appl Biochem ; 69(1): 209-220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33438294

RESUMO

The elucidation of glycans biological function is essential to understand their role in biological processes, both normal and pathological. Immobilized glycoenzymes are excellent tools for this purpose as they can selectively release glycans from glycoproteins without altering their backbone. They can be easily removed from the reaction mixture avoiding their interference in subsequent experiments. Here, we describe the immobilization of peptide-N-glycosidase F (PNGase F) onto silica magnetic nanoparticles with immobilization yields of 86% and activity yields of 12%. Immobilized PNGase F showed higher thermal stability than its soluble counterpart, and could be reused for at least seven deglycosylation cycles. It was efficient in the deglycosylation of several glycoproteins (ribonuclease B, bovine fetuin, and ovalbumin) and a protein lysate from the parasite Fasciola hepatica under native conditions, with similar performance to that of the soluble enzyme. Successful deglycosylation was evidenced by a decrease in specific lectin recognition of the glycoproteins (40%-80%). Moreover, deglycosylated F. hepatica lysate allowed us to confirm the role of parasite N-glycans in the inhibition of the lipopolysaccharide-induced maturation of dendritic cells. Immobilized PNGase F probed to be a robust biotechnological tool for deglycosylation of glycoproteins and complex biological samples under native conditions.


Assuntos
Nanopartículas de Magnetita , Animais , Bovinos , Glicoproteínas , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Peptídeos , Polissacarídeos
6.
Gastroenterology ; 158(1): 95-110, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626754

RESUMO

Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.


Assuntos
Gastroenteropatias/diagnóstico , Hepatopatias/diagnóstico , Biomarcadores/metabolismo , Gastroenteropatias/mortalidade , Gastroenteropatias/terapia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Glicômica , Glicosilação/efeitos dos fármacos , Humanos , Fígado/imunologia , Fígado/metabolismo , Hepatopatias/mortalidade , Hepatopatias/terapia , Polissacarídeos/metabolismo , Prognóstico , Proteômica , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo
7.
Electrophoresis ; 42(11): 1187-1195, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33570803

RESUMO

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two main types of primary liver cancer, and reliable discrimination is important for optimal treatment. Aberrant glycosylation was detected in HCC and ICC. Both cross-sectional and follow-up studies were performed to establish a differential diagnosis model using N-glycans. A total of 420 participants were enrolled, with 310 patients in training cohort and 110 patients in validation cohort. The follow-up cohort was used to assess the prognosis of ICC. As the results, the diagnostic efficacy of the model was superior to alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) when identifying ICC from HCC (AUC of the nomogram: 0.845, 95%CI: 0.788-0.902; AFP: 0.793, 95%CI: 0.732-0.854; CEA: 0.592, 95%CI: 0.496-0.687; CA 19-9: 0.674, 95%CI: 0.582-0.767) in training cohort. In validation cohort, this model (AUC: 0.810, 95% CI: 0.728-0.891) also demonstrated high efficacy in distinguishing ICC from HCC. Furthermore, the nomogram helps to stratify ICC into two subgroups with high or low risk of survival and recurrence. Therefore, a nomogram integrating six N-glycans [NGA2FB(Peak2), NG1A2F (Peak3), NA2 (Peak5), NA2F (Peak6), NA3 (Peak8) and NA4 (Peak11)] was established for ICC and HCC differentiation, and for prognosis assessment in ICC patients.


Assuntos
Neoplasias dos Ductos Biliares , Ductos Biliares Intra-Hepáticos , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Polissacarídeos , Neoplasias dos Ductos Biliares/diagnóstico , Ductos Biliares Intra-Hepáticos/patologia , Carcinoma Hepatocelular/diagnóstico , Colangiocarcinoma/diagnóstico , Estudos Transversais , Diagnóstico Diferencial , Humanos , Neoplasias Hepáticas/diagnóstico , Polissacarídeos/sangue
8.
J Proteome Res ; 19(4): 1470-1480, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32129075

RESUMO

Due to its relatively small size, homology to humans, and susceptibility to human viruses, the tree shrew becomes an ideal alternative animal model for the study of human viral infectious diseases. However, there is still no report for the comprehensive glycan profile of the respiratory tract tissues in tree shrews. In this study, we characterized the structural diversity of N-glycans in the respiratory tract of tree shrews using our well-established TiO2-PGC chip-Q-TOF-MS method. As a result, a total of 219 N-glycans were identified. Moreover, each identified N-glycan was quantitated by a high sensitivity and accurate MRM method, in which 13C-labeled internal standards were used to correct the inherent run-to-run variation in MS detection. Our results showed that the N-glycan composition in the turbinate and lung was significantly different from the soft palate, trachea, and bronchus. Meanwhile, 28 high-level N-glycans in turbinate were speculated to be correlated with the infection of H1N1 virus A/California/04/2009. This study is the first to reveal the comprehensive glycomic profile of the respiratory tract of tree shrews. Our results also help to better understand the role of glycan receptors in human influenza infection and pathogenesis.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Tupaiidae , Animais , Glicômica , Humanos , Espectrometria de Massas , Polissacarídeos , Titânio
9.
Clin Proteomics ; 17: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32968368

RESUMO

BACKGROUND: Peritoneal metastasis (PM) in gastric cancer (GC) remains an untreatable disease, and is difficult to diagnose preoperatively. Here, we aim to establish a novel prediction model. METHODS: The clinicopathologic characteristics of a cohort that included 86 non-metastatic GC patients and 43 PMGC patients from Zhongshan Hospital were retrospectively analysed to identify PM associated variables. Additionally, mass spectrometry and glycomic analysis were applied in the same cohort to find glycomic biomarkers in serum for the diagnosis of PM. A nomogram was established based on the associations between potential risk variables and PM. RESULTS: Overexpression of 4 N-glycans (H6N5L1E1: m/z 2620.93; H5N5F1E2: m/z 2650.98; H6N5E2, m/z 2666.96; H6N5L1E2, m/z 2940.08); weight loss ≥ 5 kg; tumour size ≥ 3 cm; signet ring cell or mucinous adenocarcinoma histology type; poor differentiation; diffuse or mixed Lauren classification; increased CA19-9, CA125, and CA724 levels; decreased lymphocyte count, haemoglobin, albumin, and pre-albumin levels were identified to be associated with PM. A nomogram that integrated with five independent risk factors (weight loss ≥ 5 kg, CA19-9 ≥ 37 U/mL, CA125 ≥ 35 U/mL, lymphocyte count < 2.0 * 10 ~ 9/L, and H5N5F1E2 expression ≥ 0.0017) achieved a good performance for diagnosis (AUC: 0.892, 95% CI 0.829-0.954). When 160 was set as the cut-off threshold value, the proposed nomogram represented a perfectly discriminating power for both sensitivity (0.97) and specificity (0.88). CONCLUSIONS: The nomogram achieved an individualized assessment of the risk of PM in GC patients; thus, the nomogram could be used to assist clinical decision-making before surgery.

10.
Int J Mol Sci ; 20(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736315

RESUMO

Lectin microarray (LMA) is a highly sensitive technology used to obtain the global glycomic profiles of endogenous glycoproteins in biological samples including formalin-fixed paraffin-embedded tissue sections. Here, we describe an effective method for cell type-selective glycomic profiling of tissue fragments collected by laser microdissection (LMD) under fluorescent histochemical visualization. We optimized each step of histochemical staining and confirmed the reliability and validity of glycomic profiling. Using the optimized procedure, glycomic profiles were obtained with 0.5 mm² of stained thymic sections (5-µm-thick) from 8-week-old C57BL/6J male mice. The glycomic profiles of Ulex europaeus agglutinin-I (UEA-I)-stained medullary regions showed higher UEA-I signals than those of the morphologically determined medulla regions, indicating the utility of this method for UEA-I(+) cell-selective analysis. To further evaluate this method, tissue fragments was serially collected from stained and unstained areas of medullary epithelial cell probes (UEA-I and anti-cytokeratin 5 antibody) and a cortex-staining probe (peanut agglutinin). The medullary regions assigned by the three probes showed significantly different glycomic profiles, highlighting the difference in subpopulation recognition among the three probes, which was consistent with previous reports. In conclusion, our fluorescence LMD-LMA method enabled cell type-selective tissue glycomic analysis of pathological specimens and animal models, especially for glyco-biomarker discovery.


Assuntos
Glicômica , Glicoproteínas/metabolismo , Proteoma , Proteômica , Animais , Imunofluorescência , Glicômica/métodos , Imuno-Histoquímica , Microdissecção e Captura a Laser , Masculino , Camundongos , Especificidade de Órgãos , Proteômica/métodos , Análise Serial de Tecidos
11.
Clin Proteomics ; 13: 32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833472

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecological malignancy due to its frequent recurrence and drug resistance even after successful initial treatment. Accumulating scientific evidence indicates that subpopulations of cancer cells with stem cell-like properties, such as so-called side population (SP) cells, are primarily responsible for these recurrences. A better understanding of SP cells may provide new clues for detecting and targeting these cancer-initiating cells and ultimately help to eradicate cancer. Changes in glycosylation patterns are remarkable features of SP cells. Here, we isolated SP cells from ovarian cancer cell lines and analyzed their glycosylation patterns using multiple glycomic strategies. METHODS: Six high-grade serous ovarian cancer cell lines were used for SP cell isolation. Among them, HO8910 pm, which contained the highest proportion of SP cells, was used for glycomic analysis of SP cells. Cell lysate of SP cells and main population cells was applied to lectin microarray and mass spectrometry for glycan profiling. Differently expressed glycan structures were further verified by lectin blot, flow cytometry, and real-time PCR analysis of their relevant enzymes. RESULTS: Expression of core fucosylated N-glycan and tumor-associated Tn, T and sT antigens were increased in SP cells. By contrast, SP cells exhibited decreased hybrid glycan, α2,3-linked sialic glycan and multivalent sialyl-glycan. CONCLUSIONS: Glycan structures, such as Tn, T, sT antigens, and core fucosylation may serve as biomarkers of ovarian cancer stem cells.

12.
Glycobiology ; 25(11): 1163-71, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26261090

RESUMO

Mycobacterium tuberculosis lipoarabinomannan (LAM) and biosynthetically related lipoglycans and glycans play an important role in host-pathogen interactions. Therefore, the elucidation of the complete biosynthetic pathways of these important molecules is expected to afford novel therapeutic targets. The characterization of biosynthetic enzymes and transporters involved in the formation and localization of these complex macromolecules in the bacterial cell envelope largely relies on genetic manipulation of mycobacteria and subsequent analyses of lipoglycan structural alterations. However, lipoglycans are present in relatively low amounts. Their purification to homogeneity remains tedious and time-consuming. To overcome these issues and to reduce the biomass and time required for lipoglycan purification, we report here the development of a methodology to efficiently purify lipoglycans by sodium deoxycholate-polyacrylamide gel electrophoresis. This faster purification method can be applied on a small amount of mycobacterial cells biomass (10-50 mg), resulting in tens of micrograms of purified lipoglycans. This amount of purified products was found to be sufficient to undertake structural analyses of lipoglycans and glycans carbohydrate domains by a combination of highly sensitive analytical procedures, involving cryoprobe NMR analysis of intact macromolecules and chemical degradations monitored by gas chromatography and capillary electrophoresis. This glycomic approach was successfully applied to the purification and structural characterization of a newly identified polysaccharide, structurally related to LAM, in the model fast-growing species Mycobacterium smegmatis.


Assuntos
Lipopolissacarídeos/química , Mycobacterium tuberculosis/química , Polissacarídeos Bacterianos/química , Glicômica/métodos , Lipopolissacarídeos/metabolismo , Mycobacterium tuberculosis/metabolismo , Polissacarídeos Bacterianos/metabolismo
13.
Heliyon ; 10(7): e29443, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38633623

RESUMO

Stenosis severity may escalate over the course of coronary artery disease (CAD), increasing the risk of death for the patient. Conventionally, the assessment of stenosis degree relies on invasive coronary angiography (ICA), an invasive examination unsuitable for patients in poor physical condition or those with contrast allergies and one that imposes a psychological burden on patients. Although abnormal serum N-glycan profiles have exhibited robust associations with various cardiovascular diseases, including CAD, their potential in diagnosing CAD stenosis remains to be determined. In this study, we performed a comprehensive analysis of serum N-glycome from 132 patients who underwent ICA and 27 healthy controls using MALDI-TOF-mass spectrometry. The patients who underwent ICA examination were categorized into four groups based on stenosis severity: no/mild/moderate/severe stenosis. Twenty-seven N-glycans were directly quantified, and 47 derived glycan traits were obtained. Notably, among these 74 glycan features, 18 exhibited variations across the study groups. Using a combination of least absolute shrinkage and selection operator and logistic regression analyses, we developed five diagnostic models for recognizing stenosis degree. Our results suggested that alterations in serum N-glycosylation modifications might be valuable for identifying stenosis degree and monitoring disease progression in individuals with CAD. It is expected to offer a noninvasive alternative for those who could not undergo ICA because of various reasons. However, the diagnostic potential of serum N-glycan panels as biomarkers requires multicenter, large cohort validation in the future.

14.
Carbohydr Res ; 545: 109278, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39312872

RESUMO

Biological glycans mediate several physiological processes, thus altered glycosylation patterns can lead to different diseases such as autoimmune, infectious, chronic anti-inflammatory diseases, or even cancer. In fact, alterations in fucosylation in either N- or O-glycans are among the most frequent changes in glycosylation patterns associated with cancer. Therefore, elucidation of the role of glycoconjugate glycans is essential for understanding the development of pathologies where they are involved. In this sense glycosidases are excellent tools, since they catalyse the selective removal of sugar residues, allowing the evaluation of changes in their biological role due to glycan removal. This work describes the purification and characterization of a α-fucosidase from the fungus Dichostereum sordulentum 1488. It is a homodimer with a molecular weight of 214 kDa and optimum pH and temperature of 4.0 and 70 °C respectively. It has a KM of 0.27 mM and VMax of 3.3 µmoles PNP/min per mg for the substrate p-nitrophenyl-α-l-fucopyranoside, showing a substrate inhibition profile. It showed high specificity for the hydrolysis of fucose linked by α-(1,2) bonds. The identification, purification, and characterization of this new α-fucosidase is highly relevant for enlarging the availability of glycosidases for use as tools for glycan elucidation.

15.
Cesk Slov Oftalmol ; 80(2): 76-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38413227

RESUMO

OBJECTIVE: This study aims to address the issues surrounding the diagnosis of ocular rosacea and to evaluate the development of the patients' condition after treatment, as well as to distinguish between healthy and diseased patients using a glycomic analysis of tears. METHODOLOGY: A prospective study was conducted to assess a total of 68 eyes in 34 patients over a six-week period. These patients were diagnosed with ocular rosacea based on subjective symptoms and clinical examination. The study monitored the development of objective and subjective values. The difference between patients with the pathology and healthy controls was established by means of analysis of glycans in tears. RESULTS: Skin lesions were diagnosed in 94% of patients with ocular rosacea, with the most commonly observed phenotype being erythematotelangiectatic (68.8%). The mean duration of symptoms was 29.3 months (range 0.5­126 months) with a median of 12 months. Throughout the study, an improvement in all monitored parameters was observed, including Meibomian gland dysfunction, bulbar conjunctival hyperemia, telangiectasia of the eyelid margin, anterior blepharitis, uneven and reddened eyelid margins, and corneal neovascularization. The study also observed improvements in subjective manifestations of the disease, such as foreign body sensation, burning, dryness, lachrymation, itching eyes, photophobia, and morning discomfort. The analysis of glycans in tears partially separated tear samples based on their origin, which allowed for the differentiation of patients with rosacea from healthy controls. In the first sample, the pathology was determined in a total of 63 eyes (98.4%) of 32 patients, with further samples showing a change in the glycomic profile of patients' tears during treatment. CONCLUSION: The study demonstrated objective and subjective improvements in all the patients. Tear sampling and analysis could provide a means of timely diagnosis of ocular rosacea.


Assuntos
Oftalmopatias , Rosácea , Humanos , Estudos Prospectivos , Oftalmopatias/diagnóstico , Lágrimas , Rosácea/diagnóstico , Rosácea/tratamento farmacológico , Polissacarídeos/uso terapêutico
16.
Biology (Basel) ; 12(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627037

RESUMO

Our search of existing cancer databases aimed to assess the current landscape and identify key needs. We analyzed 71 databases, focusing on genomics, proteomics, lipidomics, and glycomics. We found a lack of cancer-related lipidomic and glycomic databases, indicating a need for further development in these areas. Proteomic databases dedicated to cancer research were also limited. To assess overall progress, we included human non-cancer databases in proteomics, lipidomics, and glycomics for comparison. This provided insights into advancements in these fields over the past eight years. We also analyzed other types of cancer databases, such as clinical trial databases and web servers. Evaluating user-friendliness, we used the FAIRness principle to assess findability, accessibility, interoperability, and reusability. This ensured databases were easily accessible and usable. Our search summary highlights significant growth in cancer databases while identifying gaps and needs. These insights are valuable for researchers, clinicians, and database developers, guiding efforts to enhance accessibility, integration, and usability. Addressing these needs will support advancements in cancer research and benefit the wider cancer community.

17.
Front Med (Lausanne) ; 10: 1221553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288301

RESUMO

Pseudoinvasion (PI) is a benign lesion in which cancer is mimicked in the colon by misplacement of dysplastic glands in the submucosa. Although there are morphological clues, the discrimination of PI from true invasion can be a challenge during pathological evaluation of colon adenomas. Both overdiagnosis and underdiagnosis can result in inadequate clinical decisions. This calls for novel tools to aid in cases where conventional methods do not suffice. We performed mass spectrometry imaging (MSI)-based spatial glycomics analysis on a cohort of formalin-fixed paraffin-embedded tissue (FFPE) material from 16 patients who underwent polypectomy. We used this spatial glycomic data to reconstruct the molecular histology of the tissue section using spatial segmentation based on uniform manifold approximation and projection for dimension reduction (UMAP). We first showed that the spatial glycomic phenotypes of the different morphological entities separated as distinct clusters in colon tissues, we separated true invasion from the other morphological entities. Then, we found that the glycomic phenotype in areas with suspected PI in the submucosa was strongly correlating with the corresponding glycomic phenotype of the adenomatous colon epithelium from the same tissue section (Pearson correlation distance average = 0.18). These findings suggest that using spatial glycomics, we can distinguish PI as having a molecular phenotype similar to the corresponding surface epithelium and true invasion as having a different phenotype even when compared to high-grade dysplasia. Therefore, when a novel molecular phenotype is found in the deepest submucosal region, this may be used as an argument in favor of true invasion.

18.
Assay Drug Dev Technol ; 21(6): 235-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37669031

RESUMO

Psoriasis is a chronic disease that is caused by multiple factors and is identified by itchiness, unpleasant, red, or white scaly patches on the skin, particularly on regularly chafed body regions such as the lateral areas of the limbs. Reports suggest that globally around 2%-3% of the population suffers from psoriasis. In this review, we have discussed the clinical classification of psoriasis and also the ideal characteristics of the biomarkers. An overview regarding the discovery of the biomarker and method for validating the study has been discussed. A growing body of research suggests a link to certain other systemic symptoms such as cardiovascular disorder, metabolic syndrome, and few other comorbidities such as hypertension and nonalcoholic fatty liver disease. Natural killer (NK) cells are lymphocyte cells that concentrate on the destruction of virally infected and malignant cells; these tend to produce a wide range of inflammatory cytokines, some of which are associated with the etiology of psoriasis. Detailed information on the molecular pathogenesis of psoriasis in which interleukin (IL)-17, IL-23, tumor necrosis factor-α (TNF-α), and CCL20 play a very significant role in the development of psoriasis. In this review, we have discussed an overview of the recent state of the biomarkers available for the diagnosis and treatment of psoriasis by emphasizing on the available biomarkers such as epigenomic, transcriptomic, glycomic, and metabolomic. The most recent advancements in molecular-targeted therapy utilizing biologics and oral systemic therapy (methotrexate, apremilast) enable to adequately treat the most serious psoriatic symptoms and also the studies have validated the efficacy of biologic therapy such as TNF-α antagonist (infliximab, adalimumab), IL-23 antagonist (guselkumab, risankizumab), and IL-17 antagonist (secukinumab, ixekizumab). Finally, an overview about the technological opportunities as well as various challenges has been discussed.


Assuntos
Psoríase , Fator de Necrose Tumoral alfa , Humanos , Psoríase/diagnóstico , Psoríase/tratamento farmacológico , Psoríase/patologia , Pele , Biomarcadores , Interleucina-23/uso terapêutico
19.
Foods ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959004

RESUMO

Sweet corn is frequently consumed in the US and contains carbohydrates as major macronutrients. This study examined the effects of blanching, freezing, and canning on carbohydrates in sweet corn. Fresh bi-color sweet corn was picked in the field and processed immediately into frozen and canned samples. Simple sugars, starch, and dietary fiber (DF) (including total DF (TDF), insoluble DF (IDF) and two fractions of soluble DF (SDF)) were measured according to the AOAC methods. Additional glycomic analysis including oligosaccharides, monosaccharide composition of total polysaccharides (MCTP) and glycosidic linkage of total polysaccharides (GLTP) were analyzed using UHPLC-MS. Sucrose is the major simple sugar, and IDF is the main contributor to TDF. Sucrose and total simple sugar concentrations were not altered after blanching or freezing but were significantly reduced in canned samples. Kestose was the only oligosaccharide identified in sweet corn and decreased in all heat-treated or frozen samples. Starch content decreased in frozen samples but increased in canned samples. While two SDF fractions did not differ across all samples, blanching, freezing and canning resulted in increases in TDF and IDF. Six monosaccharides were identified as major building blocks of the total polysaccharides from MCTP analysis. Glucose and total monosaccharide concentrations increased in two canned samples. GLTP was also profoundly altered by different food processing methods. This study provided insights into the changes in the content and quality of carbohydrates in sweet corn after food processing. The data are important for accurate assessment of the carbohydrate intake from different sweet corn products.

20.
Foods ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35804766

RESUMO

It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA