RESUMO
CD4-mimetics (CD4mcs) are small molecule compounds that mimic the interaction of the CD4 receptor with HIV-1 envelope glycoproteins (Env). Env from primary viruses normally samples a "closed" conformation that occludes epitopes recognized by CD4-induced (CD4i) non-neutralizing antibodies (nnAbs). CD4mcs induce conformational changes on Env resulting in the exposure of these otherwise inaccessible epitopes. Here, we evaluated the capacity of plasma from a cohort of 50 people living with HIV to recognize HIV-1-infected cells and eliminate them by antibody-dependent cellular cytotoxicity (ADCC) in the presence of a potent indoline CD4mc. We observed a marked heterogeneity among plasma samples. By measuring the levels of different families of CD4i Abs, we found that the levels of anti-cluster A, anti-coreceptor binding site, and anti-gp41 cluster I antibodies are responsible for plasma-mediated ADCC in the presence of CD4mc. IMPORTANCE: There are several reasons that make it difficult to target the HIV reservoir. One of them is the capacity of infected cells to prevent the recognition of HIV-1 envelope glycoproteins (Env) by commonly elicited antibodies in people living with HIV. Small CD4-mimetic compounds expose otherwise occluded Env epitopes, thus enabling their recognition by non-neutralizing antibodies (nnAbs). A better understanding of the contribution of these antibodies to eliminate infected cells in the presence of CD4mc could lead to the development of therapeutic cure strategies.
Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD4 , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/sangue , Antígenos CD4/imunologia , Epitopos/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Linfócitos T CD4-Positivos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Masculino , Adulto , Proteína gp41 do Envelope de HIV/imunologia , Feminino , Pessoa de Meia-IdadeRESUMO
The hydrophobic pocket found in the N-heptad repeat (NHR) region of HIV-1 gp41 is a highly conserved epitope that is the target of various HIV-1-neutralizing monoclonal antibodies. Although the high conservation of the pocket makes it an attractive vaccine candidate, it has been challenging to elicit potent anti-NHR antibodies via immunization. Here, we solved a high-resolution structure of the NHR mimetic IQN17, and, consistent with previous ligand-bound gp41 pocket structures, we observed remarkable conformational plasticity of the pocket. The high malleability of this pocket led us to test whether we could improve the immunogenicity of the gp41 pocket by stabilizing its conformation. We show that the addition of five amino acids at the C terminus of IQN17, to generate IQN22, introduces a stabilizing salt bridge at the base of the peptide that rigidifies the pocket. Mice immunized with IQN22 elicited higher avidity antibodies against the gp41 pocket and a more potent, albeit still weak, neutralizing response against HIV-1 compared with IQN17. Stabilized epitope-focused immunogens could serve as the basis for future HIV-1 fusion-inhibiting vaccines.
Assuntos
Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , HIV-1 , Animais , Camundongos , Epitopos/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/metabolismoRESUMO
Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex. Taken together, our results suggest that lipid-binding activity and FcγRI-mediated potentiation function in concert to improve the potency of MPER-directed bNAbs by increasing their local concentration near the site of viral fusion. Therefore, lipid binding may not be a strict requirement for potent neutralization by MPER-targeting bNAbs, as alternative methods can achieve similar increases in local concentrations while avoiding potential liabilities associated with immunologic host tolerance. IMPORTANCE The trimeric glycoprotein Env, the only viral protein expressed on the surface of HIV-1, is the target of broadly neutralizing antibodies and the focus of most vaccine development efforts. Broadly neutralizing antibodies targeting the membrane proximal external region (MPER) of Env show lipid-binding characteristics, and modulating this interaction affects neutralization. In this study, we tested the neutralization potencies of variants of the MPER-targeting antibody 10E8 with different viral-membrane-binding and host FcγRI-binding capabilities. Our results suggest that binding to both lipid and FcγRI improves the neutralization potency of MPER-directed antibodies by concentrating the antibodies at sites of viral fusion. As such, lipid binding may not be uniquely required for MPER-targeting broadly neutralizing antibodies, as alternative methods to increase local concentration can achieve similar improvements in potency.
Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Lipídeos de Membrana , Receptores de IgG/metabolismoRESUMO
IMPORTANCE: HIV infection can be effectively treated to prevent the development of AIDS, but it cannot be cured. We have attached poisons to anti-HIV antibodies to kill the infected cells that persist even after years of effective antiviral therapy. Here we show that the killing of infected cells can be markedly enhanced by the addition of soluble forms of the HIV receptor CD4 or by mimics of CD4.
Assuntos
Antígenos CD4 , Citotoxinas , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Imunoconjugados , Humanos , Antígenos CD4/química , Antígenos CD4/imunologia , Antígenos CD4/uso terapêutico , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Peso Molecular , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/uso terapêutico , Citotoxinas/química , Citotoxinas/uso terapêuticoRESUMO
Inteins are proteins involved in the protein splicing mechanism, an autoprocessing event, where sequences (exteins) separated by inteins become ligated each other after recombination. Two kinds of inteins have been described, contiguous inteins and split inteins. The former ones are transcribed and translated as a single peptide along with their exteins, while the latter are fragmented between two different genes and are transcribed and translated separately. The aim of this study is to establish a method to obtain a fluorescent eukaryotic protein to analyze its cellular localization, using the natural split gp41-1 inteins. We chose natural split inteins due to their distribution in all three domains of life. Two constructs were prepared, one containing the N-terminal split intein along with the N-moiety of the Red Fluorescent Protein (RFP) and a second construct containing the C-terminal of split intein, the C-moiety of RFP and the gene coding for Maspin, a tumor suppressor protein. The trans-splicing was verified by transfecting both N-terminal and C-terminal constructs into mammalian cells. The success of the recombination event was highlighted through the fluorescence produced by reconstituted RFP after recombination, along with the overlap of the red fluorescence produced by recombined RFP and the green fluorescence produced by the hybridization of the recombinant Maspin with a specific antibody. In conclusion, we opted to use this mechanism of recombination to obtain a fluorescent Maspin instead to express a large fusion protein, considering that it could interfere with Maspin's structure and function.
Assuntos
Osteossarcoma , Serpinas , Animais , Humanos , Inteínas/genética , Processamento de Proteína , Serpinas/genética , Osteossarcoma/genética , MamíferosRESUMO
The HIV-1 gp41 N-heptad repeat (NHR) region of the prehairpin intermediate, which is transiently exposed during HIV-1 viral membrane fusion, is a validated clinical target in humans and is inhibited by the Food and Drug Administration (FDA)-approved drug enfuvirtide. However, vaccine candidates targeting the NHR have yielded only modest neutralization activities in animals; this inhibition has been largely restricted to tier-1 viruses, which are most sensitive to neutralization by sera from HIV-1-infected individuals. Here, we show that the neutralization activity of the well-characterized NHR-targeting antibody D5 is potentiated >5,000-fold in TZM-bl cells expressing FcγRI compared with those without, resulting in neutralization of many tier-2 viruses (which are less susceptible to neutralization by sera from HIV-1-infected individuals and are the target of current antibody-based vaccine efforts). Further, antisera from guinea pigs immunized with the NHR-based vaccine candidate (ccIZN36)3 neutralized tier-2 viruses from multiple clades in an FcγRI-dependent manner. As FcγRI is expressed on macrophages and dendritic cells, which are present at mucosal surfaces and are implicated in the early establishment of HIV-1 infection following sexual transmission, these results may be important in the development of a prophylactic HIV-1 vaccine.
Assuntos
Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Receptores de IgG/imunologia , Sequências Repetitivas de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Afinidade de Anticorpos , Cobaias , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/farmacologia , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , Soropositividade para HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Soros Imunes/imunologia , Soros Imunes/farmacologia , Imunização , Imunoglobulina G/imunologia , Sequências Repetitivas de Aminoácidos/imunologia , Internalização do Vírus/efeitos dos fármacosRESUMO
BG505 SOSIP.664 (hereafter referred to as SOSIP), a stabilized trimeric mimic of the HIV-1 envelope spike resembling the native viral spike, is a useful tool for isolating anti-HIV-1 neutralizing antibodies. We screened long-term SHIV-AD8 infected rhesus monkeys for potency and breadth of serum neutralizing activity against autologous and heterologous viruses: SHIV-AD8, HIV-1 YU2, HIV-1 JR-CSF, and HIV-1 NL4-3. Monkey rh2436 neutralized all viruses tested and showed strong reactivity to the SOSIP trimer, suggesting this was a promising candidate for attempts at monoclonal antibody (MAb) isolation. MAbs were isolated by performing single B-cell sorts from peripheral blood mononuclear cells (PBMC) by FACS using the SOSIP trimer as a probe. An initial round of sorted cells revealed the majority of isolated MAbs were directed to the gp41 external domain portion of the SOSIP trimer and were mostly non-neutralizing against tested isolates. A second sort was performed, introducing a gp41 blocking step prior to PBMC staining and FACS sorting. These isolated MAbs bound SOSIP trimer but were no longer directed to the gp41 external domain portion. A significantly higher proportion of MAbs with neutralizing activity were obtained with this strategy. Our data show this pre-blocking step with gp41 greatly increases the yield of non-gp41-reactive, SOSIP-specific MAbs and increases the likelihood of isolating MAbs with neutralizing activity. IMPORTANCE Recent advancements in the field have focused on the isolation and use of broadly neutralizing antibodies for both prophylaxis and therapy. Finding a useful probe to isolate broad potent neutralizing antibodies while avoiding non-neutralizing antibodies is important. The SOSIP trimer has been shown to be a great tool for this purpose because it binds known broadly neutralizing antibodies. However, the SOSIP trimer can isolate non-neutralizing antibodies as well, including gp41-specific MAbs. Introducing a pre-blocking step with gp41 recombinant protein decreased the percent of gp41-specific antibodies isolated with SOSIP probe, as well as increased the number of neutralizing antibodies isolated. This method can be used as a tool to increase the chances of isolating neutralizing antibodies.
Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Vírus da Imunodeficiência Símia/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/isolamento & purificação , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/isolamento & purificação , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Região Variável de Imunoglobulina/genética , Macaca mulatta , Proteínas Recombinantes/imunologiaRESUMO
The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Linfócitos T CD4-Positivos , HIV-1 , Proteínas de Membrana , Replicação Viral , Humanos , Linfócitos T CD4-Positivos/virologia , Células HeLa , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Montagem de Vírus , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismoRESUMO
A fundamental idea for targeting glioblastoma cells is to exploit the neurotropic properties of Zika virus (ZIKV) through its two outer envelope proteins, prM and E. This study aimed to develop envelope glycoproteins for pseudotyping retroviral vectors that can be used for efficient tumor cell infection. Firstly, the retroviral vector pNLlucAM was packaged using wild-type ZIKV E to generate an E-HIVluc pseudotype. E-HIVluc infection rates for tumor cells were higher than those of normal prME pseudotyped particles and the traditionally used vesicular stomatitis virus G (VSV-G) pseudotypes, indicating that protein E alone was sufficient for the formation of infectious pseudotyped particles. Secondly, two envelope chimeras, E41.1 and E41.2, with the E wild-type transmembrane domain replaced by the gp41 transmembrane and cytoplasmic domains, were constructed; pNLlucAM or pNLgfpAM packaged with E41.1 or E41.2 constructs showed infectivity for tumor cells, with the highest rates observed for E41.2. This envelope construct can be used not only as a tool to further develop oncolytic pseudotyped viruses for therapy, but also as a new research tool to study changes in tumor cells after the transfer of genes that might have therapeutic potential.
Assuntos
Glioblastoma , HIV-1 , Infecção por Zika virus , Zika virus , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Zika virus/genética , Zika virus/metabolismo , Glicoproteínas de Membrana/genética , HIV-1/metabolismo , Glioblastoma/genética , Vetores Genéticos/genéticaRESUMO
During the late phase of HIV-1 infection, viral Gag polyproteins are targeted to the plasma membrane (PM) for assembly. Gag localization at the PM is a prerequisite for the incorporation of the envelope protein (Env) into budding particles. Gag assembly and Env incorporation are mediated by the N-terminal myristoylated matrix (MA) domain of Gag. Nonconservative mutations in the trimer interface of MA (A45E, T70R, and L75G) were found to impair Env incorporation and infectivity, leading to the hypothesis that MA trimerization is an obligatory step for Env incorporation. Conversely, Env incorporation can be rescued by a compensatory mutation in the MA trimer interface (Q63R). The impact of these MA mutations on the structure and trimerization properties of MA is not known. In this study, we employed NMR spectroscopy, X-ray crystallography, and sedimentation techniques to characterize the structure and trimerization properties of HIV-1 MA A45E, Q63R, T70R, and L75G mutant proteins. NMR data revealed that these point mutations did not alter the overall structure and folding of MA but caused minor structural perturbations in the trimer interface. Analytical ultracentrifugation data indicated that mutations had a minimal effect on the MA monomer-trimer equilibrium. The high-resolution X-ray structure of the unmyristoylated MA Q63R protein revealed hydrogen bonding between the side chains of adjacent Arg-63 and Ser-67 on neighboring MA molecules, providing the first structural evidence for an additional intermolecular interaction in the trimer interface. These findings advance our knowledge of the interplay of MA trimerization and Env incorporation into HIV-1 particles.
Assuntos
Produtos do Gene gag/genética , Infecções por HIV/genética , HIV-1/genética , Proteínas da Matriz Viral/genética , Membrana Celular/genética , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Produtos do Gene gag/ultraestrutura , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Mutação/genética , Ligação Proteica/genética , Multimerização Proteica/genética , Proteínas da Matriz Viral/ultraestrutura , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genética , Replicação Viral/genéticaRESUMO
A major goal of HIV vaccine design is to elicit broadly neutralizing antibodies (bNAbs). Such bNAbs target HIV's trimeric, membrane-embedded envelope glycoprotein spikes (mEnv). Soluble Env (sEnv) trimers have been used as vaccines, but engineering sEnvs for stability, multivalency, and desired antigenicity is problematic and deletes key neutralizing epitopes on glycoprotein 41 (gp41) while creating neoepitopes that elicit unwanted antibodies. Meanwhile, multivalent mEnv vaccines are challenging to develop due to trimer instability and low mEnv copy number amid other extraneous proteins on virus-like particles. Here, we describe a multivalent mEnv vaccine platform that does not require protein engineering or extraneous proteins. mEnv trimers were fixed, purified, and combined with naked liposomes in mild detergent. On removal of detergent, mEnv spikes were observed embedded in liposome particles (mean diameter, 133 nm) in correct orientation. These particles were recognized by HIV bNAbs and not non-NAbs and are designated mEnv liposomes (MELs). Following a sequential immunization scheme in rabbits, MELs elicited antibodies that neutralized tier 2 HIV isolates. Analysis of serum antibody specificities, including those to epitopes involving a missing conserved N-glycosylation site at position 197 near the CD4 binding site on two of the immunogens, provides clues on how NAb responses can be improved with modified immunogens. In sum, MELs are a biochemically defined platform that enables rational immunization strategies to elicit HIV bNAbs using multimerized mEnv. IMPORTANCE A vaccine that induced broadly neutralizing antibodies against HIV would likely end the AIDS pandemic. Such antibodies target membrane-embedded envelope glycoprotein spikes (mEnv) that HIV uses to enter cells. Due to HIV Env's low expression and instability, soluble stabilized Env trimers have been used as vaccine candidates, but these have an altered base that disrupts targets of HIV broadly neutralizing antibodies that bind near the membrane and are not available for all HIV isolates. Here, we describe membrane Env liposomes (MELs) that display a multivalent array of stable mEnvs on liposome particles. MELs showed the expected antibody recognition properties, including targeting parts of mEnv missing on soluble Envs. Immunization with MELs elicited antibodies that neutralized diverse HIV isolates. The MEL platform facilitates vaccine development with potentially any HIV Env at high valency, and a similar approach may be useful for eliciting antibodies to membrane-embedded targets of therapeutic interest.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Células HeLa , Humanos , Lipossomos/imunologia , Engenharia de Proteínas/métodos , VacinaçãoRESUMO
Hybrid molecules containing small CD4 mimics and gp41-C-terminal heptad repeat (CHR)-related peptides have been developed. A YIR-821 derivative was adopted as a CD4 mimic, which inhibits the interaction of gp120 with CD4. SC-peptides, SC34 and SC22EK, were also used as CHR-related peptides, which inhibit the interaction between the N-terminal heptad repeat (NHR) and CHR and thereby membrane fusion. Therefore, these hybrid molecules have dual-targets of gp120 and gp41. In the synthesis of the hybrid molecules of CD4 mimic-SC-peptides with different lengths of linkers, two conjugating methods, Cu-catalyzed azide-alkyne cycloaddition and direct cysteine alkylation, were performed. The latter reaction caused simpler operation procedures and higher synthetic yields than the former. The synthesized hybrid molecules of CD4 mimic-SC22EK have significantly higher anti-HIV activity than each sole agent. The present data should be useful in the future design of anti-HIV agents as dual-target entry inhibitors.
Assuntos
Inibidores da Fusão de HIV , Inibidores da Fusão de HIV/farmacologia , Peptídeos/farmacologiaRESUMO
In our previous work, we replaced the TRM (tryptophan-rich motif) of T20 (Enfuvirtide) with fatty acid (C16) to obtain the novel lipopeptide LP-40, and LP-40 displayed enhanced antiviral activity. In this study, we investigated whether the C16 modification could enhance the high-resistance barrier of the inhibitor LP-40. To address this question, we performed an in vitro simultaneous screening of HIV-1NL4-3 resistance to T20 and LP-40. The mechanism of drug resistance for HIV-1 Env was further studied using the expression and processing of the Env glycoprotein, the effect of the Env mutation on the entry and fusion ability of the virus, and an analysis of changes to the gp41 core structure. The results indicate that the LP-40 activity is enhanced and that it has a high resistance barrier. In a detailed analysis of the resistance sites, we found that mutations in L33S conferred a stronger resistance, except for the well-recognized mutations in amino acids 36-45 of gp41 NHR, which reduced the inhibitory activity of the CHR-derived peptides. The compensatory mutation of eight amino acids in the CHR region (NDQEEDYN) plays an important role in drug resistance. LP-40 and T20 have similar resistance mutation sites, and we speculate that the same resistance profile may arise if LP-40 is used in a clinical setting.
Assuntos
Inibidores da Fusão de HIV , HIV-1 , Aminoácidos/metabolismo , Farmacorresistência Viral/genética , Enfuvirtida/química , Enfuvirtida/farmacologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , Lipopeptídeos/química , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Internalização do VírusRESUMO
Inhibition of the HIV-1 fusion process constitutes a promising strategy to neutralize the virus at an early stage before it enters the cell. In this process, the envelope glycoprotein (Env) plays a central role by promoting membrane fusion. We previously identified a vulnerability at the flexible C-terminal end of the gp41 C-terminal heptad repeat (CHR) region to inhibition by a single-chain miniprotein (named covNHR-N) that mimics the first half of the gp41 N-terminal heptad repeat (NHR). The miniprotein exhibited low stability, moderate binding to its complementary CHR region, both as an isolated peptide and in native trimeric Envs, and low inhibitory activity against a panel of pseudoviruses. The addition of a disulfide bond stabilizing the miniprotein increased its inhibitory activity, without altering the binding affinity. Here, to further study the effect of conformational stability on binding and inhibitory potency, we additionally stabilized these miniproteins by engineering a second disulfide bond stapling their N-terminal end, The new disulfide-bond strongly stabilizes the protein, increases binding affinity for the CHR target and strongly improves inhibitory activity against several HIV-1 strains. Moreover, high inhibitory activity could be achieved without targeting the preserved hydrophobic pocket motif of gp41. These results may have implications in the discovery of new strategies to inhibit HIV targeting the gp41 CHR region.
Assuntos
Inibidores da Fusão de HIV , HIV-1 , Sequência de Aminoácidos , Dissulfetos/metabolismo , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/farmacologia , Conformação ProteicaRESUMO
Despite the enormous efforts made to develop other fusion inhibitors for HIV, the enfuvirtide (known as T20) peptide is the only approved HIV-1 inhibitory drug so far. Investigating the role of potential residues of the T20 peptide's conformational dynamics could help us to understand the role of potential residues of the T20 peptide. We investigated T20 peptide conformation and binding interactions with the HIV-1 receptor (i.e., gp41) using MD simulations and docking techniques, respectively. Although the mutation of E143 into alanine decreased the flexibility of the E143A mutant, the conformational compactness of the mutant was increased. This suggests a potential role of E143 in the T20 peptide's conformation. Interestingly, the free energy landscape showed a significant change in the wild-type T20 minimum, as the E143A mutant produced two observed minima. Finally, the docking results of T20 to the gp41 receptor showed a different binding interaction in comparison to the E143A mutant. This suggests that E143 residue can influence the binding interaction with the gp41 receptor. Overall, the E143 residue showed a significant role in conformation and binding to the HIV-1 receptor. These findings can be helpful in optimizing and developing HIV-1 inhibitor peptides.
Assuntos
Inibidores da Fusão de HIV , HIV-1 , Enfuvirtida/química , Enfuvirtida/farmacologia , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , HIV-1/genética , HIV-1/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologiaRESUMO
With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogues. We characterized the influence of the fluorinated analogues on the biophysical properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.
Assuntos
Fármacos Anti-HIV/farmacologia , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/química , Infecções por HIV/metabolismo , HIV-1/metabolismo , Halogenação , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/químicaRESUMO
HIV-1 encodes an envelope glycoprotein (Env) that contains a long cytoplasmic tail (CT) harboring trafficking motifs implicated in Env incorporation into virus particles and viral transmission. In most physiologically relevant cell types, the gp41 CT is required for HIV-1 replication, but in the MT-4 T-cell line the gp41 CT is not required for a spreading infection. To help elucidate the role of the gp41 CT in HIV-1 transmission, in this study, we investigated the viral and cellular factors that contribute to the permissivity of MT-4 cells to gp41 CT truncation. We found that the kinetics of HIV-1 production and virus release are faster in MT-4 than in the other T-cell lines tested, but MT-4 cells express equivalent amounts of HIV-1 proteins on a per-cell basis relative to cells not permissive to CT truncation. MT-4 cells express higher levels of plasma-membrane-associated Env than nonpermissive cells, and Env internalization from the plasma membrane is less efficient than that from another T-cell line, SupT1. Paradoxically, despite the high levels of Env on the surface of MT-4 cells, 2-fold less Env is incorporated into virus particles produced from MT-4 than SupT1 cells. Contact-dependent transmission between cocultured 293T and MT-4 cells is higher than in cocultures of 293T with most other T-cell lines tested, indicating that MT-4 cells are highly susceptible to cell-to-cell infection. These data help to clarify the long-standing question of how MT-4 cells overcome the requirement for the HIV-1 gp41 CT and support a role for gp41 CT-dependent trafficking in Env incorporation and cell-to-cell transmission in physiologically relevant cell lines.IMPORTANCE The HIV-1 Env cytoplasmic tail (CT) is required for efficient Env incorporation into nascent particles and viral transmission in primary CD4+ T cells. The MT-4 T-cell line has been reported to support multiple rounds of infection of HIV-1 encoding a gp41 CT truncation. Uncovering the underlying mechanism of MT-4 T-cell line permissivity to gp41 CT truncation would provide key insights into the role of the gp41 CT in HIV-1 transmission. This study reveals that multiple factors contribute to the unique ability of a gp41 CT truncation mutant to spread in cultures of MT-4 cells. The lack of a requirement for the gp41 CT in MT-4 cells is associated with the combined effects of rapid HIV-1 protein production, high levels of cell-surface Env expression, and increased susceptibility to cell-to-cell transmission compared to nonpermissive cells.
Assuntos
Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Masculino , Transporte Proteico , Linfócitos T/virologia , Vírion/metabolismo , Replicação ViralRESUMO
Acquired immune deficiency syndrome (AIDS) has prevailed over the last 30 years. Although highly active antiretroviral therapy (HAART) has decreased mortality and efficiently controlled the progression of disease, no vaccine or curative drugs have been approved until now. A viral inactivator is expected to inactivate cell-free virions in the absence of target cells. Previously, we identified a gp120-binding protein, mD1.22, which can inactivate laboratory-adapted HIV-1. In this study, we have found that the gp41 N-terminal heptad repeat (NHR)-binding antibody D5 single-chain variable fragment (scFv) alone cannot inactivate HIV-1 at the high concentration tested. However, D5 scFv in the combination could enhance inactivation activity of mD1.22 against divergent HIV-1 strains, including HIV-1 laboratory-adapted strains, primary HIV-1 isolates, T20- and AZT-resistant strains, and LRA-reactivated virions. Combining mD1.22 and D5 scFv exhibited synergistic effect on inhibition of infection by divergent HIV-1 strains. These results suggest good potential to develop the strategy of combining a gp120-binding protein and a gp41-binding antibody for the treatment of HIV-1 infection.
Assuntos
Síndrome da Imunodeficiência Adquirida/virologia , Proteínas de Transporte/farmacologia , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/farmacologia , Proteínas Recombinantes/farmacologia , Vírion/efeitos dos fármacos , Anticorpos Antivirais/imunologia , Sítios de Ligação , Linhagem Celular , HIV-1/imunologia , Humanos , Anticorpos de Cadeia Única/imunologiaRESUMO
Mother-to-child transmission of human immunodeficiency virus (HIV) occurs in the setting of maternal and passively acquired antibodies, providing a unique window into immune correlates of HIV risk. We compared plasma antibody binding to HIV antigens between 51 nontransmitting mother-infant pairs and 21 transmitting mother-infant pairs. Plasma antibody binding to a variety of gp41 ectodomain-containing antigens was associated with increased odds of transmission. Understanding the reasons why gp41 ectodomain-targeting antibodies are associated with transmission risk will be important in determining whether they can directly enhance infection or whether their presence reflects a redirecting of the humoral response away from targeting more protective epitopes.
Assuntos
Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Transmissão Vertical de Doenças Infecciosas , Aleitamento Materno/efeitos adversos , Estudos de Casos e Controles , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , Humanos , Lactente , Gravidez , Complicações Infecciosas na Gravidez/imunologiaRESUMO
The membrane proximal external region (MPER) of HIV-1 gp41 contains epitopes for at least four broadly neutralizing antibodies. Depending on solution conditions and construct design, different structures have been reported for this segment. We show that in aqueous solution the MPER fragment (gp160660-674 ) exists in a monomer-trimer equilibrium with an association constant in the micromolar range. Thermodynamic analysis reveals that the association is exothermic, more favorable in D2 O than H2 O, and increases with ionic strength, indicating hydrophobically driven intermolecular interactions. Circular dichroism, 13 Cα chemical shifts, NOE, and hydrogen exchange rates reveal that MPER undergoes a structural transition from predominately unfolded monomer at low concentrations to an α-helical trimer at high concentrations. This result has implications for antibody recognition of MPER prior to and during the process where gp41 switches from a pre-hairpin intermediate to its post-fusion 6-helical bundle state.