RESUMO
Halide perovskites emerged as a revolutionary family of high-quality semiconductors for solar energy harvesting and energy-efficient lighting. There is mounting evidence that the exceptional optoelectronic properties of these materials could stem from unconventional electron-phonon couplings, and it has been suggested that the formation of polarons and self-trapped excitons could be key to understanding such properties. By performing first-principles simulations across the length scales, here we show that halide perovskites harbor a uniquely rich variety of polaronic species, including small polarons, large polarons, and charge density waves, and we explain a variety of experimental observations. We find that these emergent quasiparticles support topologically nontrivial phonon fields with quantized topological charge, making them nonmagnetic analog of the helical Bloch points found in magnetic skyrmion lattices.
RESUMO
SignificanceSurface engineering of halide perovskites (HaPs), semiconductors with amazing optoelectronic properties, is critical to improve the performance and ambient stability of HaP-based solar cells and light emitting diodes (LEDs). Ultrathin layers of two-dimensional (2D) analogs of the three-dimensional (3D) HaPs are particularly attractive for this because of their chemical similarities but higher ambient stability. But do such 2D/3D interfaces actually last, given that ions in HaPs move readily-i.e., what happens at those interfaces on the atomic scale? A special electron microscopy, which as a bonus also reveals the true conditions for nondestructive analysis, shows that the large ions that are a necessary part of the 2D films can move into the 3D HaP, a fascinating illustration of panta rei in HaPs.
RESUMO
As emerging gain materials, lead halide perovskites have drawn considerable attention in coherent light sources. With the development of patterning and integration techniques, a perovskite laser array has been realized by distributing perovskite microcrystals periodically. Nevertheless, the packing density is limited by the crystal size and the channel gap distance. More importantly, the lasing performance for individual laser units is quite random due to variation of size and crystal quality. Herein an ultracompact perovskite nanoemitter array with uniform emission has been demonstrated. Individual emitters are formed via scattering evanescent components from a shared Fabry-Perot laser, ensuring uniform lasing emission in a unit cell with a side length of 160 nm and lattice constant of 400 nm. And the periodic silicon scatterers do not deteriorate the lasing threshold dramatically. In addition, the surface emitting efficiency increased significantly. The direct integration of a densely packed nanoemitter array with a silicon platform promises high-throughput sensing and high-capacity optical interconnects.
RESUMO
Ferroelectricity has recently been demonstrated in germanium-based halide perovskites. We use first-principles-based simulations to study 4-18 nm CsGeBr3 films and develop a theory for ferroelectric ultrathin films. The theory introduces (i) a local order parameter, which identifies phase transitions into both monodomain and polydomain phases, and (ii) a dipole pattern classifier, which allows efficient and reliable identification of dipole patterns. Application of the theory to both halides CsGeBr3 and CsGeI3 and oxide BiFeO3 ultrathin ferroelectrics reveals two distinct scenarios. First, the films transition into a monodomain phase below the critical value of the residual depolarizing field. Above this critical value, the second scenario occurs, and the film undergoes a transition into a nanodomain phase. The two scenarios exhibit opposite responses of Curie temperature to thickness reduction. Application of a dipole pattern classifier reveals rich nanodomain phases in halide films: nanostripes, labyrinths, zig-zags, pillars, and lego domains.
RESUMO
The development of large-scale, high-quality ferroelectric semiconductor nanowire arrays with interesting light-emitting properties can address limitations in traditional wide-bandgap ferroelectrics, thus serving as building blocks for innovative device architectures and next-generation high-density optoelectronics. Here, we investigate the optical properties of ferroelectric CsGeX3 (X = Br, I) halide perovskite nanowires that are epitaxially grown on muscovite mica substrates by vapor phase deposition. Detailed structural characterizations reveal an incommensurate heteroepitaxial relationship with the mica substrate. Furthermore, photoluminescence that can be tuned from yellow-green to red emissions by varying the halide composition demonstrates that these nanowire networks can serve as platforms for future optoelectronic applications. In addition, the room-temperature ferroelectricity and ferroelectric domain structures of these nanowires are characterized using second harmonic generation (SHG) polarimetry. The combination of room-temperature ferroelectricity with photoluminescence in these nanowire arrays unlocks new avenues for the design of novel multifunctional materials.
RESUMO
Meta-atoms are the building blocks of metamaterials, which are employed to control both generation and propagation of light as well as provide novel functionalities of localization and directivity of electromagnetic radiation. In many cases, simple dielectric or metallic resonators are employed as meta-atoms to create different types of electromagnetic metamaterials. Here, we fabricate and study supercrystal meta-atoms composed of coupled perovskite quantum dots. We reveal that these multiscale structures exhibit specific emission properties, such as spectrum splitting and polaritonic effects. We believe that such multiscale supercrystal meta-atoms will provide novel functionalities in the design of many novel types of active metamaterials and metasurfaces.
RESUMO
Mixed halide perovskites exhibit promising optoelectronic properties for next-generation light-emitting diodes due to their tunable emission wavelength that covers the entire visible light spectrum. However, these materials suffer from severe phase segregation under continuous illumination, making long-term stability for pure red emission a significant challenge. In this study, we present a comprehensive analysis of the role of halide oxidation in unbalanced ion migration (I/Br) within CsPbI2Br nanocrystals and thin films. We also introduce a new approach using cyclic olefin copolymer (COC) to encapsulate CsPbI2Br perovskite nanocrystals (PNCs), effectively suppressing ion migration by increasing the corresponding activation energy. Compared with that of unencapsulated samples, we observe a substantial reduction in phase separation under intense illumination in PNCs with a COC coating. Our findings show that COC enhances phase stability by passivating uncoordinated surface defects (Pb2+ and I-), increasing the formation energy of halide vacancies, improving the charge carrier lifetime, and reducing the nonradiative recombination density.
RESUMO
Bismuth halide perovskites are widely regarded as nontoxic alternatives to lead halide perovskites for optoelectronics and solar energy harvesting applications. With a tailorable composition and intriguing optical properties, bismuth halide perovskites are also promising candidates for tunable photonic devices. However, robust control of the anion composition in bismuth halide perovskites remains elusive. Here, we established chemical vapor deposition and anion exchange protocols to synthesize bismuth halide perovskite nanoflakes with controlled dimensions and variable compositions. In particular, we demonstrated the gradient bromide distribution by controlling the anion exchange and diffusion processes, which is spatially resolved by time-of-flight secondary ion mass spectrometry. Moreover, the optical waveguiding properties of bismuth halide perovskites can be modulated by flake thicknesses and anion compositions. With a unique gradient anion distribution and controllable optical properties, bismuth halide perovskites provide new possibilities for applications in optoelectronic devices and integrated photonics.
RESUMO
Layered two-dimensional halide perovskites (2DHPs) exhibit exciting non-equilibrium properties that allow the manipulation of energy levels through coherent light-matter interactions. Under the Floquet picture, novel quantum states manifest through the optical Stark effect (OSE) following intense subresonant photoexcitation. Nevertheless, a detailed understanding of the influence of strong many-body interactions between excitons on the OSE in 2DHPs remains unclear. Herein, we uncover the crucial role of biexcitons in photon-dressed states and demonstrate precise optical control of the excitonic states via the biexcitonic OSE in 2DHPs. With fine step tuning of the driven energy, we fully parametrize the evolution of exciton resonance modulation. The biexcitonic OSE enables Floquet engineering of the exciton resonance with either a blue-shift or a red-shift of the energy levels. Our findings shed new light on the intricate nature of coherent light-matter interactions in 2DHPs and extend the degree of freedom for ultrafast coherent optical control over excitonic states.
RESUMO
Solution-processable electrodes are promising for next-generation electronics due to their simplicity, cost-effectiveness, and potential for large-area fabrication. However, current solution-processable electrodes based on conductive polymers, carbon-based compounds, and metal nanowires face challenges related to stability, patterning, and production scalability. Here we introduce a novel approach using 3D tin halide perovskites (THPs) combined with a photolithography-free solution patterning technique to fabricate solution-processed electrodes. We demonstrate the preparation of highly conductive CsSnI3 films (234.9 S cm-1) and the fabrication of patterned 35 × 35 perovskite electrode arrays on a 4-in. silicon wafer. These electrodes, used as source/drain electrodes in organic transistors, resulted in devices showing high uniformity and stability. This electrode fabrication strategy is also applicable to other 3D THPs like FASnI3 and MASnI3, showcasing versatility for diverse applications. The results highlight the feasibility and advantages of using 3D THPs as solution-processable electrodes, providing a new material system for the advancement of solution-processed electronics.
RESUMO
Metal halide perovskites (MHP) are highly promising semiconductors. In this study, we focus on FAPbBr3 nanocrystals, which are of great interest for green light-emitting diodes. Structural parameters significantly impact the properties of MHPs and are linked to phase instability, which hampers long-term applications. Clearly, there is a need for local and precise characterization techniques at the atomic scale, such as transmission electron microscopy. Because of the high electron beam sensitivity of MHPs, these investigations are extremely challenging. Here, we applied a low-dose method based on four-dimensional scanning transmission electron microscopy. We quantified the observed elongation of the projections of the Br atomic columns, suggesting an alternation in the position of the Br atoms perpendicular to the Pb-Br-Pb bonds. Together with molecular dynamics simulations, these results remarkably reveal local distortions in an on-average cubic structure. Additionally, this study provides an approach to prospectively investigating the fundamental degradation mechanisms of MHPs.
RESUMO
To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.
Assuntos
Compostos Inorgânicos , Nanopartículas , Óxidos , Titânio , Humanos , Feminino , Animais , Caenorhabditis elegans , Peixe-Zebra , Compostos de Cálcio/toxicidade , Nanopartículas/toxicidadeRESUMO
Halide perovskites are materials for diverse optoelectronic applications owing to a combination of factors, including their compositional flexibility. A major source of this diversity of compositions comes from the use of mixed organic cations in the A-site of such compounds to form solid solutions. Many organic cations are possible for this purpose. Although significant progress is made over years of intensive research, the determination of systematic relationships between the compositions and properties of halide perovskites is not exploited accordingly. Using the MAPbI3 prototype, a wide range of compositions substituted by formamidinium (FA+ ) and guanidinium (GA+ ) cations are studied. From a detailed collection of experimental data and results reported in the literature, heat maps correlating the composition of GAx FAy MA1- x - y PbI3 solid solutions with phase transition temperatures, dielectric permittivity, and activation energies are constructed. Considering the characteristics of organic cations, namely their sizes, dipole moments, and the number of NâH bonds, it is possible to interpret the heat maps as consequences of these characteristics. This work brings a systematization of how obtaining specific properties of halide perovskites might be possible by customizing the characteristics of the A-site organic cations.
RESUMO
Metal halide perovskites are multifunctional semiconductors with tunable structures and properties. They are highly dynamic crystals with complex octahedral tilting patterns and strongly anharmonic atomic behavior. In the higher temperature, higher symmetry phases of these materials, several complex structural features are observed. The local structure can differ greatly from the average structure and there is evidence that dynamic 2D structures of correlated octahedral motion form. An understanding of the underlying complex atomistic dynamics is, however, still lacking. In this work, the local structure of the inorganic perovskite CsPbI3 is investigated using a new machine learning force field based on the atomic cluster expansion framework. Through analysis of the temporal and spatial correlation observed during large-scale simulations, it is revealed that the low frequency motion of octahedral tilts implies a double-well effective potential landscape, even well into the cubic phase. Moreover, dynamic local regions of lower symmetry are present within both higher symmetry phases. These regions are planar and the length and timescales of the motion are reported. Finally, the spatial arrangement of these features and their interactions are investigated and visualized, providing a comprehensive picture of local structure in the higher symmetry phases.
RESUMO
Halide perovskites (HPs) have gained significant interest in the scientific and technological sectors due to their unique optical, catalytic, and electrical characteristics. However, the HPs are prone to decomposition when exposed to air, oxygen, or heat. The instability of HP materials limits their commercialization, prompting significant efforts to address and overcome these limitations. Transition metal dichalcogenides, such as MoS2, are chemically stable and are suitable for electronic, optical, and catalytic applications. Moreover, it can be used as a protective media or shell for other nanoparticles. In this study, a novel CsPbBr3@MoS2 core-shell nanostructure (CS-NS) is successfully synthesized by enveloping CsPbBr3 within a MoS2 shell for the first time. Significant stability of CS-NSs dispersed in polar solvents for extended periods is also demonstrated. Remarkably, the hybrid CS-NS exhibits an absorption of MoS2 and quenching of the HP's photoluminescence, implying potential charge or energy transfer from HPs to MoS2. Using finite difference time domain simulations, it is found that the CS-NSs can be utilized to produce efficient solar cells. The addition of a MoS2 shell enhances the performance of CS-NS-based solar cells by 220% compared to their CsPbBr3 counterparts. The innovative CS-NS represents important progress in harnessing HPs for photovoltaic and optoelectronic applications.
RESUMO
Ruddlesden-Popper (RP) interface with defined stacking structure will fundamentally influence the optoelectronic performances of lead-halide perovskite (LHP) materials and devices. However, it remains challenging to observe the atomic local structures in LHPs, especially for multi-dimensional RP interface hidden inside the nanocrystal. In this work, the advantages of two imaging modes in scanning transmission electron microscopy (STEM), including high-angle annular dark field (HAADF) and integrated differential phase contrast (iDPC) STEM, are successfully combined to study the bulk and local structures of inorganic and organic/inorganic hybrid LHP nanocrystals. Then, the multi-dimensional RP interfaces in these LHPs are atomically resolved with clear gap and blurred transition region, respectively. In particular, the complex interface by the RP stacking in 3D directions can be analyzed in 2D projected image. Finally, the phase transition, ion missing, and electronic structures related to this interface are investigated. These results provide real-space evidence for observing and analyzing atomic multi-dimensional RP interfaces, which may help to better understand the structure-property relation of LHPs, especially their complex local structures.
RESUMO
Tin-halide perovskites (THP) are emerging materials for photovoltaics with optoelectronic properties potentially rivaling lead-based analoges. Their efficiencies in solar cells are, however, severely limited by the high sensitivity of tin to oxygen and the heavy p-doping natively present in the material. While the effects of oxygen can be mitigated by using reducing agents upon the synthesis and by encapsulating the device, the native p-doping caused by the high density of acceptor defects remains a challenge to be further addressed for prolonging carrier lifetimes and, consequently, device efficiency. In this work, potential compositional engineering strategies aimed at reducing the p-doping of this class of materials and increasing their efficiency in solar cells are investigated. Based on density functional theory simulations it is demonstrated that THP doping with d1s2 trivalent ions effectively decreases the hole background density and the density of the deep defects responsible for the non-radiative recombination in these materials. This effect is enhanced by alloying iodide with small fractions of bromide, up to 33%. Higher bromide fractions, instead, are detrimental due to the increased non-radiative recombination. These results may provide useful guidelines to experimentalists for improving the optoelectronic quality of THPs and consequently of the ensuing devices.
RESUMO
Hybrid metal halide perovskite (MHP) materials, while being promising for photovoltaic technology, also encounter challenges related to material stability. Combining 2D MHPs with 3D MHPs offers a viable solution, yet there is a gap in the understanding of the stability among various 2D materials. The mechanical, ionic, and environmental stability of various 2D MHP ligands are reported, and an improvement with the use of a quater-thiophene-based organic cation (4TmI) that forms an organic-semiconductor incorporated MHP structure is demonstrated. It is shown that the best balance of mechanical robustness, environmental stability, ion activation energy, and reduced mobile ion concentration under accelerated aging is achieved with the usage of 4TmI. It is believed that by addressing mechanical and ion-based degradation modes using this built-in barrier concept with a material system that also shows improvements in charge extraction and device performance, MHP solar devices can be designed for both reliability and efficiency.
RESUMO
The optical properties of lead halide perovskite semiconductors in vicinity of the bandgap are controlled by excitons, so that investigation of their fundamental properties is of critical importance. The exciton Landé or g-factor gX is the key parameter, determining the exciton Zeeman spin splitting in magnetic fields. The exciton, electron, and hole carrier g-factors provide information on the band structure, including its anisotropy, and the parameters contributing to the electron and hole effective masses. Here, gX is measured by reflectivity in magnetic fields up to 60 T for lead halide perovskite crystals. The materials band gap energies at a liquid helium temperature vary widely across the visible spectral range from 1.520 up to 3.213 eV in hybrid organic-inorganic and fully inorganic perovskites with different cations and halogens: FA0.9Cs0.1PbI2.8Br0.2, MAPbI3, FAPbBr3, CsPbBr3, and MAPb(Br0.05Cl0.95)3. The exciton g-factors are found to be nearly constant, ranging from +2.3 to +2.7. Thus, the strong dependences of the electron and hole g-factors on the bandgap roughly compensate each other when combining to the exciton g-factor. The same is true for the anisotropies of the carrier g-factors, resulting in a nearly isotropic exciton g-factor. The experimental data are compared favorably with model calculation results.
RESUMO
Lead halide perovskites are structurally not stable due to their ionic bonds. Using sulfur agents in the crystal growth improves the stability and performance of the photovoltaic and light-emitting devices. In this theoretical work, we use a small toy S-radical in place of A cation in the bulk of lead iodide perovskite, and highlight the significance of the Pb-S covalent-double-bond formation for: the charge redistribution on the neighboring bonds that also turn to be covalent, phase transformation to a stable non-perovskite structure, and superior optoelectronic properties. The chemical analysis was performed with the Quantum Theory of Atoms In Molecules (QTAIM) and Non-Covalent Interactions (NCI) index. Excitonic properties were obtained from the solution of ab initio Bethe-Salpeter equation. Presence of the spin-orbit coupling triggers an interplay between the Frenkel and charge-transfer multiexcitons, switching between the photovoltaic and laser applications. Multiexcitons obey the exciton-fission preconditions.