Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 723
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(22): e2204418119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617434

RESUMO

Vectorial optical holography represents a solution to control the polarization and amplitude distribution of light in the Fourier space. While vectorial optical holography has been experimentally demonstrated in the linear optical regime, its nonlinear counterpart, which can provide extra degrees of freedom of light-field manipulation through the frequency conversion processes, remains unexplored. Here, we experimentally demonstrate the nonlinear vectorial holography through the second harmonic generation process on a quad-atom plasmonic metasurface. The quad-atom metasurface consists of gold meta-atoms with threefold rotational symmetry. Based on the concept of nonlinear geometric phase, we can simultaneously manipulate the phase and amplitude of the left and right circularly polarized second harmonic waves generated from the quad-atom metasurface. By superposing the two orthogonal polarization components, the quad-atom metasurface can produce nonlinear holographic images with vectorial polarization distributions. The proposed metasurface platform may have important applications in vectorial polarization nonlinear optical source, high-capacity optical information storage, and optical encryption.

2.
Nano Lett ; 24(22): 6761-6766, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775803

RESUMO

Orbital angular momentum (OAM) multiplexed holograms have attracted a great deal of attention recently due to their physically unbounded set of orthogonal helical modes. However, preserving the OAM property in each pixel hinders fine sampling of the target image in principle and requires a fundamental filtering aperture array in the detector plane. Here, we demonstrate the concept of metasurface-based vectorial holography with cylindrical vector beams (CVBs), whose unlimited polarization orders and unique polarization distributions can be used to boost information storage capacity. Although CVBs are composed of OAM modes, the holographic images do not preserve the OAM modes in our design, enabling fine sampling of the target image in a quasi-continuous way like traditional computer-generated holograms. Moreover, the images can be directly observed by passing them through a polarizer without the need for a fundamental mode filter array. We anticipate that our method may pave the way for high-capacity holographic devices.

3.
Nano Lett ; 24(6): 1874-1881, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295760

RESUMO

Traditional single-nanoparticle sizing using optical microscopy techniques assesses size via the diffusion constant, which requires suspended particles to be in a medium of known viscosity. However, these assumptions are typically not fulfilled in complex natural sample environments. Here, we introduce dual-angle interferometric scattering microscopy (DAISY), enabling optical quantification of both size and polarizability of individual nanoparticles (radius <170 nm) without requiring a priori information regarding the surrounding media or super-resolution imaging. DAISY achieves this by combining the information contained in concurrently measured forward and backward scattering images through twilight off-axis holography and interferometric scattering (iSCAT). Going beyond particle size and polarizability, single-particle morphology can be deduced from the fact that the hydrodynamic radius relates to the outer particle radius, while the scattering-based size estimate depends on the internal mass distribution of the particles. We demonstrate this by differentiating biomolecular fractal aggregates from spherical particles in fetal bovine serum at the single-particle level.

4.
Nano Lett ; 24(3): 844-851, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190513

RESUMO

Holography holds tremendous promise in applications such as immersive virtual reality and optical communications. With the emergence of optical metasurfaces, planar optical components that have the remarkable ability to precisely manipulate the amplitude, phase, and polarization of light on the subwavelength scale have expanded the potential applications of holography. However, the realization of metasurface-based full-color vectorial holography remains particularly challenging. Here, we report a general approach utilizing a modified Gerchberg-Saxton algorithm to achieve spatially aligned full-color display and incorporating wavelength information with an image compensation strategy. We combine the Pancharatnam-Berry phase and pairs of exceptional points to address the issue of redundant twin images that generally appear for the two orthogonal circular polarizations and to enable full polarization control of the vectorial field. Our results enable the realization of an asymmetric full-color vectorial meta-hologram, paving the way for the development of full-color display, complex beam generation, and secure data storage applications.

5.
Nano Lett ; 24(4): 1303-1308, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232135

RESUMO

A nonlinear holographic technique is capable of processing optical information in the newly generated optical frequencies, enabling fascinating functions in laser display, security storage, and image recognition. One popular nonlinear hologram is based on a periodically poled lithium niobate (LN) crystal. However, due to the limitations of traditional fabrication techniques, the pixel size of the LN hologram is typically several micrometers, resulting in a limited field-of-voew (FOV) of several degrees. Here, we experimentally demonstrate an ultra-high-resolution LN hologram by using the laser poling technique. The minimal pixel size reaches 200 nm, and the FOV is extended above 120° in our experiments. The image distortions at large view angles are effectively suppressed through the Fourier transform. The FOV is further improved by combining multiple diffraction orders of SH fields. The ultimate FOV under our configuration is decided by a Fresnel transmission. Our results pave the way for expanding the applications of nonlinear holography to wide-view imaging and display.

6.
Nano Lett ; 24(13): 3978-3985, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38451178

RESUMO

We investigated atomic site occupancy for the Si dopant in Si-doped κ-Ga2O3(001) using photoelectron spectroscopy (PES) and photoelectron holography (PEH). From PES and PEH, we found that the Si dopant had one chemical state, and three types of inequivalent Si substitutional sites (SiGa) were formed. The ratios for the inequivalent tetrahedral, pentahedral, and octahedral SiGa sites were estimated to be 55.0%, 28.1%, and 16.9%, respectively. Higher (lower) ratios for the three inequivalent SiGa sites may come from a lower (higher) formation energy. The Tetra (Octa) SiGa site has the highest (lowest) ratio of the three SiGa sites since it has the lowest (highest) formation energy. We suggest that the tetrahedral SiGa site is due to the active dopant site, whereas the pentahedral and octahedral SiGa sites can be attributed to the inactive dopant sites for Si-doped κ-Ga2O3(001).

7.
Nano Lett ; 24(19): 5913-5919, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710045

RESUMO

Electrical resistivity is the key parameter in the active regions of many current nanoscale devices, from memristors to resistive random-access memory and phase-change memories. The local resistivity of the materials is engineered on the nanoscale to fit the performance requirements. Phase-change memories, for example, rely on materials whose electrical resistance increases dramatically with a change from a crystalline to an amorphous phase. Electrical characterization methods have been developed to measure the response of individual devices, but they cannot map the local resistance across the active area. Here, we propose a method based on operando electron holography to determine the local resistance within working devices. Upon switching the device, we show that electrical resistance is inhomogeneous on the scale of only a few nanometers.

8.
Rep Prog Phys ; 87(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373355

RESUMO

HoloTile is a patented computer generated holography approach with the aim of reducing the speckle noise caused by the overlap of the non-trivial physical extent of the point spread function in Fourier holographic systems from adjacent frequency components. By combining tiling of phase-only of rapidly generated sub-holograms with a PSF-shaping phase profile, each frequency component-or output 'pixel'- in the Fourier domain is shaped to a desired non-overlapping profile. In this paper, we show the high-resolution, speckle-reduced reconstructions that can be achieved with HoloTile, as well as present new HoloTile modalities, including an expanded list of PSF options with new key properties. In addition, we discuss numerous applications for which HoloTile, its rapid hologram generation, and the new PSF options may be an ideal fit, including optical trapping and manipulation of particles, volumetric additive printing, information transfer and quantum communication.

9.
Rep Prog Phys ; 87(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433567

RESUMO

This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.


Assuntos
Citoesqueleto , Membrana Celular , Movimento Celular , Transporte Biológico , Difusão Dinâmica da Luz
10.
J Synchrotron Radiat ; 31(Pt 4): 916-922, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917016

RESUMO

Nanotomography with hard X-rays is a widely used technique for high-resolution imaging, providing insights into the structure and composition of various materials. In recent years, tomographic approaches based on simultaneous illuminations of the same sample region from different angles by multiple beams have been developed at micrometre image resolution. Transferring these techniques to the nanoscale is challenging due to the loss in photon flux by focusing the X-ray beam. We present an approach for multi-beam nanotomography using a dual-beam Fresnel zone plate (dFZP) in a near-field holography setup. The dFZP generates two nano-focused beams that overlap in the sample plane, enabling the simultaneous acquisition of two projections from slightly different angles. This first proof-of-principle implementation of the dual-beam setup allows for the efficient removal of ring artifacts and noise using machine-learning approaches. The results open new possibilities for full-field multi-beam nanotomography and pave the way for future advancements in fast holotomography and artifact-reduction techniques.

11.
Cytometry A ; 105(5): 323-331, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420869

RESUMO

Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.


Assuntos
Lisossomos , Lisossomos/metabolismo , Animais , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/diagnóstico , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Mucopolissacaridose III/genética , Imageamento Quantitativo de Fase
12.
Nanotechnology ; 35(43)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39079543

RESUMO

Here we use off-axis electron holography combined with advanced transmission electron microscopy techniques to understand the opto-electronic properties of AlGaN tunnel junction (TJ)-light-emitting diode (LED) devices for ultraviolet emission. Four identical AlGaN LED devices emitting at 290 nm have been grown by metal-organic chemical vapour deposition. Then Ge doped n-type regions with and without InGaN or GaN interlayers (IL) have been grown by molecular beam epitaxy onto the top Mg doped p-type layer to form a TJ and hence a high quality ohmic metal contact. Off-axis electron holography has then been used to demonstrate a reduction in the width of the TJ from 9.5 to 4.1 nm when an InGaN IL is used. As such we demonstrate that off-axis electron holography can be used to reproducibly measure nm-scale changes in electrostatic potential in highly defected and challenging materials such as AlGaN and that systematic studies of devices can be performed. The LED devices are then characterized using standard opto-electric techniques and the improvements in the performance of the LEDs are correlated with the electron holography results.

13.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911762

RESUMO

Imaging of proteins at the single-molecule level can reveal conformational variability, which is essential for the understanding of biomolecules. To this end, a biologically relevant state of the sample must be retained during both sample preparation and imaging. Native electrospray ionization (ESI) can transfer even the largest protein complexes into the gas phase while preserving their stoichiometry and overall shape. High-resolution imaging of protein structures following native ESI is thus of fundamental interest for establishing the relation between gas phase and solution structure. Taking advantage of low-energy electron holography's (LEEH) unique capability of imaging individual proteins with subnanometer resolution, we investigate the conformational flexibility of Herceptin, a monoclonal IgG antibody, deposited by native electrospray mass-selected ion beam deposition (ES-IBD) on graphene. Images reconstructed from holograms reveal a large variety of conformers. Some of these conformations can be mapped to the crystallographic structure of IgG, while others suggest that a compact, gas-phase-related conformation, adopted by the molecules during ES-IBD, is retained. We can steer the ratio of those two types of conformations by changing the landing energy of the protein on the single-layer graphene surface. Overall, we show that LEEH can elucidate the conformational heterogeneity of inherently flexible proteins, exemplified here by IgG antibodies, and thereby distinguish gas-phase collapse from rearrangement on surfaces.


Assuntos
Holografia/métodos , Imunoglobulina G/química , Imagem Individual de Molécula/métodos , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
14.
Sensors (Basel) ; 24(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339448

RESUMO

Digital holography (DH) is an important method for three-dimensional (3D) imaging since it allows for the recording and reconstruction of an object's amplitude and phase information. However, the field of view (FOV) of a DH system is typically restricted by the finite size of the pixel pitch of the digital image sensor. We proposed a new configuration of the DH system based on Fresnel's bi-mirror to achieve doubling the camera FOV of the existing off-axis DH system which leveraged single-shot acquisition and a common-path optical framework. The dual FOV was obtained by spatial frequency multiplexing corresponding to two different information-carrying beams from an object. Experimental evidence of the proposed dual FOV-DH system's viability was provided by imaging two different areas of the test object and an application to surface profilometry by measuring the step height of the resolution chart which showed excellent agreement with an optical profiler. Due to the simple configuration, the proposed system could find a wide range of applications, including in microscopy and optical metrology.

15.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475130

RESUMO

Optical microscopy techniques are among the most used methods in biomedical sample characterization. In their more advanced realization, optical microscopes demonstrate resolution down to the nanometric scale. These methods rely on the use of fluorescent sample labeling in order to break the diffraction limit. However, fluorescent molecules' phototoxicity or photobleaching is not always compatible with the investigated samples. To overcome this limitation, quantitative phase imaging techniques have been proposed. Among these, holographic imaging has demonstrated its ability to image living microscopic samples without staining. However, for a 3D assessment of samples, tomographic acquisitions are needed. Tomographic Diffraction Microscopy (TDM) combines holographic acquisitions with tomographic reconstructions. Relying on a 3D synthetic aperture process, TDM allows for 3D quantitative measurements of the complex refractive index of the investigated sample. Since its initial proposition by Emil Wolf in 1969, the concept of TDM has found a lot of applications and has become one of the hot topics in biomedical imaging. This review focuses on recent achievements in TDM development. Current trends and perspectives of the technique are also discussed.

16.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894283

RESUMO

Permanent engravings on contact lenses provide information about the manufacturing process and lens positioning when they are placed on the eye. The inspection of their morphological characteristics is important, since they can affect the user's comfort and deposit adhesion. Therefore, an inverted wavefront holoscope (a lensless microscope based on Gabor's principle of in-line digital holography) is explored for the characterization of the permanent marks of soft contact lenses. The device, based on an in-line transmission configuration, uses a partially coherent laser source to illuminate the soft contact lens placed in a cuvette filled with a saline solution for lens preservation. Holograms were recorded on a digital sensor and reconstructed by back propagation to the image plane based on the angular spectrum method. In addition, a phase-retrieval algorithm was used to enhance the quality of the recovered images. The instrument was experimentally validated through a calibration process in terms of spatial resolution and thickness estimation, showing values that perfectly agree with those that were theoretically expected. Finally, phase maps of different engravings for three commercial soft contact lenses were successfully reconstructed, validating the inverted wavefront holoscope as a potential instrument for the characterization of the permanent marks of soft contact lenses. To improve the final image quality of reconstructions, the geometry of lenses should be considered to avoid induced aberration effects.

17.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066049

RESUMO

In practical conditions, near-field acoustic holography (NAH) requires the measurement environment to be a free sound field. If vibrating objects are located above the reflective ground, the sound field becomes non-free in the presence of a reflecting surface, and conventional NAH may not identify the sound source. In this work, two types of half-space NAH techniques based on the Helmholtz equation least-squares (HELS) method are developed to reconstruct the sound field above a reflecting plane. The techniques are devised by introducing the concept of equivalent source in HELS-method-based NAH. Two equivalent sources are tested. In one technique, spherical waves are used as the equivalent source, and the sound reflected from the reflecting surface is regarded as a linear superposition of orthogonal spherical wave functions of different orders located below the reflecting surface. In the other technique, some monopoles are considered equivalent sources, and the reflected sound is considered a series of sounds generated by simple sources distributed under the reflecting surface. The sound field is reconstructed by matching the pressure measured on the holographic surface with the orthogonal spherical wave source in the vibrating object and replacing the reflected sound with an equivalent source. Therefore, neither technique is related to the surface impedance of the reflected plane. Compared with the HELS method, both methods show higher reconstruction accuracy for a half-space sound field and are expected to broaden the application range of HELS-method-based NAH techniques.

18.
Nano Lett ; 23(4): 1189-1194, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36763049

RESUMO

The insulator/semiconductor interface structure is the key to electric device performance, and much interest has been focused on understanding the origin of interfacial defects. However, with conventional techniques, it is difficult to analyze the interfacial atomic structure buried in the insulating film. Here, we reveal the atomic structure at the interface between an amorphous aluminum oxide and diamond using a developed electron energy analyzer for photoelectron holography. We find that the three-dimensional atomic structure of a C-O-Al-O-C bridge between two dimer rows of the hydrogen-terminated diamond surface. Our results demonstrate that photoelectron holography can be used to reveal the three-dimensional atomic structure of the interface between a crystal and an amorphous film. We also find that the photoelectron intensity originating from the C-O bonds is strongly related to the interfacial defect density. We anticipate significant progress in the study of amorphous/crystalline interfaces based on their three-dimensional atomic structures analysis.

19.
Nano Lett ; 23(3): 843-849, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36689622

RESUMO

The operation of nanoscale electronic devices is related intimately to the three-dimensional (3D) charge density distributions within them. Here, we demonstrate the quantitative 3D mapping of the charge density and long-range electric field associated with an electrically biased carbon fiber nanotip with a spatial resolution of approximately 5 nm using electron holographic tomography in the transmission electron microscope combined with model-based iterative reconstruction. The approach presented here can be applied to a wide range of other nanoscale materials and devices.

20.
Nano Lett ; 23(23): 11112-11119, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037916

RESUMO

Quantitative phase imaging (QPI) enables nondestructive, real-time, label-free imaging of transparent specimens and can reveal information about their fundamental properties such as cell size and morphology, mass density, particle dynamics, and cellular fluctuations. Development of high-performance and low-cost quantitative phase imaging systems is thus required in many fields, including on-site biomedical imaging and industrial inspection. Here, we propose an ultracompact, highly stable interferometer based on a single-layer dielectric metasurface for common path off-axis digital holography and experimentally demonstrate quantitative phase imaging. The interferometric imaging system leveraging an ultrathin multifunctional metasurface captures image plane holograms in a single shot and provides quantitative phase information on the test samples for extraction of its physical properties. With the benefits of planar engineering and high integrability, the proposed metasurface-based method establishes a stable miniaturized QPI system for reliable and cost-effective point-of-care devices, live cell imaging, 3D topography, and edge detection for optical computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA