Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 733: 150700, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39293332

RESUMO

Parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) control serum phosphate levels by downregulating the renal Na-phosphate transporter NPT2A, thereby decreasing phosphate absorption and augmenting urinary excretion. This mechanism requires NHERF1, a PDZ scaffold protein, and is governed by the regulator of G protein signaling-14 (RGS14), which harbors a carboxy-terminal PDZ ligand that binds NHERF1. RGS14 is part of a triad of structurally related RGS proteins that includes RGS12 and RGS10. Like RGS14, RGS12 contains a class 1 PDZ ligand. However, unlike RGS14, the larger RGS12 contains an upstream PDZ-binding domain. The studies outlined here examined and characterized the binding of RGS12 with NHERF1 and NPT2A and its function on hormone-regulated phosphate transport. Immunoblotting experiments revealed RGS12 C-terminal PDZ ligand binding to NHERF1. Further structural analysis disclosed that NPT2A engaged full-length RGS12 and the upstream fragment containing the PDZ domain. Neither the downstream RGS12 portion nor RGS14 interacted with NPT2A. PTH and FGF23 profoundly inhibited phosphate uptake in opossum kidney proximal tubule cells. Transfection with human RGS14, or human RGS12, abolished hormone-sensitive phosphate transport as reported for human proximal tubule cells. RGS12 inhibitory activity resides in the downstream region and is comparable to RGS14. The carboxy-terminal RGS12(667-1447) splice variant is prominently expressed in the kidney and may contribute to regulating hormone-sensitive phosphate transport.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Fosfatos , Proteínas RGS , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Humanos , Proteínas RGS/metabolismo , Proteínas RGS/genética , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Fator de Crescimento de Fibroblastos 23/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Ligação Proteica , Animais , Domínios PDZ , Transporte de Íons
2.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791379

RESUMO

Manganese (Mn) is a heavy metal that can cause excessive Mn poisoning in plants, disrupting microstructural homeostasis and impairing growth and development. However, the specific response mechanisms of leaves to Mn poisoning have not been fully elucidated. This study revealed that Mn poisoning of soybean plants resulted in yellowing of old leaves. Physiological assessments of these old leaves revealed significant increases in the antioxidant enzymes activities (peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) and elevated levels of malondialdehyde (MDA), proline, indoleacetic acid (IAA), and salicylic acid (SA), under 100 µM Mn toxicity. Conversely, the levels of abscisic acid (ABA), gibberellin 3 (GA3), and jasmonic acid (JA) significantly decreased. The Mn content in the affected leaves significantly increased, while the levels of Ca, Na, K, and Cu decreased. Transcriptome analysis revealed 2258 differentially expressed genes in the Mn-stressed leaves, 744 of which were upregulated and 1514 were downregulated; these genes included genes associated with ion transporters, hormone synthesis, and various enzymes. Quantitative RT-PCR (qRT-PCR) verification of fifteen genes confirmed altered gene expression in the Mn-stressed leaves. These findings suggest a complex gene regulatory mechanism under Mn toxicity and stress, providing a foundation for further exploration of Mn tolerance-related gene regulatory mechanisms in soybean leaves. Using the methods described above, this study will investigate the molecular mechanism of old soybean leaves' response to Mn poisoning, identify key genes that play regulatory roles in Mn toxicity stress, and lay the groundwork for cultivating high-quality soybean varieties with Mn toxicity tolerance traits.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Manganês , Folhas de Planta , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Manganês/toxicidade , Manganês/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Malondialdeído/metabolismo , Perfilação da Expressão Gênica
3.
Semin Immunol ; 43: 101328, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31734130

RESUMO

Interferon epsilon (IFNε) is a type I IFN with unusual patterns of expression and therefore, function. It is constitutively expressed by reproductive tract epithelium and regulated by hormones during estrus cycle, reproduction, and menopause and by exogenous hormones. The IFNe protein is encoded by a gene in the type I IFN locus, binds to IFNAR1 and 2 which are required for signaling via the JAK STAT pathway. Its affinity for binding receptors and transducing signals is less potent than IFNα or ß subtypes in vitro. Nevertheless, in vivo experiments indicate its efficacy in regulating mucosal immune responses and protecting from bacterial and viral infections. These studies demonstrate a different mechanism of action to type I IFNs. In this organ system with dynamic fluxes in cellularity, requirement to tolerate an implanted fetus, and be protected from disease, there is co-option of a special IFN from a family of effective immunoregulators, with unique controls and modified potency to make it a safe and effective constitutive reproductive tract cytokine.


Assuntos
Imunidade nas Mucosas , Infecções/imunologia , Interferons/metabolismo , Animais , Implantação do Embrião , Feminino , Humanos , Imunomodulação , Interferon Tipo I/genética , Interferons/genética , Janus Quinases/metabolismo , Ciclo Menstrual , Gravidez , Reprodução , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
4.
J Sci Food Agric ; 103(7): 3569-3578, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36257928

RESUMO

BACKGROUND: Ratoon rice cropping has been introduced for increased rice production in southern China and, as a result, has been becoming increasingly popular. However, only a few studies have addressed the regulatory mechanism underlying grain quality improvement induced by rice ratooning. RESULTS: In this study, parameters of rice quality, including head rice yield, chalky grain percentage, grain chalkiness degree, hardness and taste value, were shown to be much improved in the ratooning season rice as compared to its counterparts main and late cropping season rice, indicating that such an improvement was irrespective of seasonal effects. In addition, the nutritional components of grains varied greatly between main-cropping season rice, ratooning season rice and late-cropping season rice and displayed a significant correlation with rice quality. Finally, the regulatory mechanism underlying rice quality improvement revealed that gibberellin-dominated regulation and plant hormone signal transduction jointly contributed to a decrease in formation of chalky grains. CONCLUSION: This work improves our knowledge on rice quality improvement under rice ratooning, particularly on the regulatory mechanism of plant hormones. © 2022 Society of Chemical Industry.


Assuntos
Oryza , Oryza/genética , Melhoria de Qualidade , Transcriptoma , Grão Comestível/genética , Estações do Ano
5.
Plant Cell Physiol ; 63(1): 120-134, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34665867

RESUMO

The bZIP transcription factor (TF) SlTGA2.2 was previously highlighted as a possible hub in a network regulating fruit growth and transition to ripening (maturation phase). It belongs to a clade of TFs well known for their involvement in the regulation of the salicylic acid-dependent systemic acquired resistance. To investigate if this TGA TF plays a role in tomato fruit growth and maturation, we took advantage of the fruit-specific SlPPC2 promoter (PPC2pro) to target the expression of a SlTGA2.2-SRDX chimeric repressor in a developmental window restricted to early fruit growth and maturation. Here, we show that this SlTGA2.2-SRDX repressor alters early fruit development and metabolism, including chloroplast number and structure, considerably extends the time necessary to reach the mature green stage and slows down fruit ripening. RNA sequencing and plant hormone analyses reveal that PPC2pro:SlTGA2.2-SRDX fruits are maintained in an immature stage as long as PPC2pro is active, through early modifications of plant hormonal signaling and down-regulation of MADS-RIN and NAC-NOR ripening regulators. Once PPC2pro becomes inactive and therefore SlTGA2.2-SRDX expression is reduced, ripening can proceed, albeit at a slower pace than normal. Altogether, this work emphasizes the developmental continuum between fruit growth, maturation and ripening and provides a useful tool to alter and study the molecular bases of tomato fruit transition to ripening.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Filogenia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
6.
Horm Behav ; 144: 105227, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780563

RESUMO

The endocrine system uses information about the environment and the individual's state to regulate circulating concentrations of hormones, and then those hormones, through receptor binding, cause changes in the phenotype. How quickly individuals can up- and down-regulate their hormones can affect baseline and elevated hormone levels and presumably affects how successfully individuals can cope with a varying environment. To respond to environmental change, individuals first need to perceive and process cues about the state of the environment. Individuals may receive imperfect cues about the environment due to perceptual errors, variation in cues, or inexperience with novel stressors. In this paper we use a mathematical model to ask how these imperfect cues should affect how individuals regulate their glucocorticoid concentrations. We find imperfect cues can lead to changes in hormone regulation with individuals generally having higher baseline and lower elevated hormone levels as environmental cues become less reliable. Informational constraints and physiological constraints appear to have generally additive effects, with informational constraints having less of an impact as physiological constraints increase. Our results highlight the different means by which imperfect information can affect hormone regulation. We find that mistakes caused by imperfect cues are commonly responsible for changes in average hormone levels, but imperfect cues also cause individuals to be slower and less certain in their updated estimates of the environmental state, which affects hormone regulation. We also demonstrate the separate effects of false positive and false negative cues and how these are shaped by the relative fitness consequences of baseline and stress-induced hormone levels. Our model shows how given our assumptions imperfect stressor cues should affect endocrine flexibility and regulation, and we hope provides a piece for future conversations and models of endocrine regulation.


Assuntos
Sinais (Psicologia) , Glucocorticoides , Sistema Endócrino , Fenótipo
7.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258612

RESUMO

There is growing interest in studying hormones beyond single 'snapshot' measurements, as recognition that individual variation in the endocrine response to environmental change may underlie many rapid, coordinated phenotypic changes. Repeated measures of hormone levels in individuals provide additional insight into individual variation in endocrine flexibility - that is, how individuals modulate hormone levels in response to the environment. The ability to quickly and appropriately modify phenotype is predicted to be favored by selection, especially in unpredictable environments. The need for repeated samples from individuals can make empirical studies of endocrine flexibility logistically challenging, but methods based in mathematical modeling can provide insights that circumvent these challenges. Our Review introduces and defines endocrine flexibility, reviews existing studies, makes suggestions for future empirical work, and recommends mathematical modeling approaches to complement empirical work and significantly advance our understanding. Mathematical modeling is not yet widely employed in endocrinology, but can be used to identify innovative areas for future research and generate novel predictions for empirical testing.


Assuntos
Sistema Endócrino , Hormônios , Sistema Endócrino/fisiologia , Fenótipo
8.
Bull Environ Contam Toxicol ; 109(5): 823-830, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36074130

RESUMO

Studying the bioaccumulation behavior and toxicity of triazole fungicides is a crucial part of comprehensively evaluating the environmental fate and aquatic toxicity.The current research aimed to reveal the toxic effects of propiconazole and difenoconazole on fish through acute toxicity test, bioaccumulation test and oxidase system activity determination. Here, the propiconazole and difenoconazole concentrations were 11.3 mg/L and 31.2 mg/L for LC50-96 h, both having low toxicity. LC-MS/MS was used to determine the propiconazole and difenoconazole concentrations in five organs (muscle, gill, liver, intestine, and kidney) of Procypris meru. The findings indicate that the bioconcentration coefficients of propiconazole and difenoconazole in grass flower carp were 0.66-27.08 and 2.43-22.72, which belonged to medium enrichment pesticides. The bioconcentration coefficients decreased with the increase of exposure concentration. The two fungicides could induce oxidative stress in fish liver, and the activities of three antioxidant enzymes were inhibited in varying degrees (p < 0.05). The results showed that the content of T3 increased, and T4 decreased when exposed to one-tenth LC50 for 7 days. This study shows that triazole pesticides have bioaccumulation risks on aquatic organisms and clear environmental hormonal effects.


Assuntos
Cyprinidae , Fungicidas Industriais , Praguicidas , Animais , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Bioacumulação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Triazóis/toxicidade , Hormônios
9.
Yi Chuan ; 44(12): 1103-1116, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36927556

RESUMO

Spermatogonial stem cells (SSCs) are germ cells (GCs) with long-term self-renewal and differentiation potential in testis, namely tissue stem cells located on the basement membrane, whose self-renewal and differentiation are regulated by the surrounding microenvironment. In recent years, the research of SSCs has made a series of important progress, which brings the hope for the clinical treatment of some male infertility patients. Among them, the microenvironment is particularly important in regulating SSCs. The microenvironment is responsible for integrating the effects of different types of cell components, extracellular matrix, extracellular regulatory molecules and hormones on SSCs, thus regulating the fate of SSCs. The research on SSCs microenvironment has gradually become one of the main contents of stem cell research. In this review, we mainly summarize the cell composition, regulatory factors and characteristics of mouse SSCs microenvironment, thereby providing background information for in-depth study on the structure and function of SSCs microenvironment, and opportunity to find more abundant cell phenotypes and microenvironmental factors through multiple research models in the future.


Assuntos
Infertilidade Masculina , Nicho de Células-Tronco , Humanos , Masculino , Animais , Camundongos , Espermatogônias , Testículo , Células-Tronco
10.
Plant Cell Environ ; 44(5): 1642-1662, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33464573

RESUMO

Adventitious roots (ARs) are produced from non-root tissues in response to different environmental signals, such as abiotic stresses, or after wounding, in a complex developmental process that requires hormonal crosstalk. Here, we characterized AR formation in young seedlings of Solanum lycopersicum cv. 'Micro-Tom' after whole root excision by means of physiological, genetic and molecular approaches. We found that a regulated basipetal auxin transport from the shoot and local auxin biosynthesis triggered by wounding are both required for the re-establishment of internal auxin gradients within the vasculature. This promotes cell proliferation at the distal cambium near the wound in well-defined positions of the basal hypocotyl and during a narrow developmental window. In addition, a pre-established pattern of differential auxin responses along the apical-basal axis of the hypocotyl and an as of yet unknown cell-autonomous inhibitory pathway contribute to the temporal and spatial patterning of the newly formed ARs on isolated hypocotyl explants. Our work provides an experimental outline for the dissection of wound-induced AR formation in tomato, a species that is suitable for molecular identification of gene regulatory networks via forward and reverse genetics approaches.


Assuntos
Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Solanum lycopersicum/fisiologia , Transporte Biológico , Meio Ambiente , Gravitropismo/fisiologia , Hipocótilo/fisiologia
11.
J Theor Biol ; 528: 110853, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358537

RESUMO

Current clinician practice for thyroid hormone regulation of patients is based upon guesswork and experience rather than quantified analysis, which exposes patients under longer risk and discomfort. To quantitatively analyze the thyroid regulation for patients of different thyroid states, we develop a two-dimensional mathematical model that can be applied to analyze the dynamic behaviors of thyroid hormones with or without drug intervention. The unified model can be employed to study the regulation of TSH (thyroid-stimulating hormone) and FT4 (free thyroxine) for euthyroid (normal thyroid) subjects, Hashimoto's thyroiditis, and Graves' disease patients, respectively. The results suggest that the level of TPOAb (thyroid peroxidase antibody) may be a factor determining whether the patient would progress from euthyroid state to subclinical or clinical hypothyroidism, and that increased TRAb (TSH receptor antibody) may lead Graves' disease to deteriorate from the early stage to overt hyperthyroidism. Given the early blood-test data, we demonstrate the feasibility for healthcare professionals to apply our model in choosing an appropriate dosage regimen for patients to achieve the desired TSH and FT4 levels within a specified time frame. This proposed model has the potential to optimize personalized treatment and shorten the therapeutic time for patients suffering from Hashimoto's thyroiditis and Graves' disease.


Assuntos
Doença de Graves , Medicina de Precisão , Autoanticorpos , Doença de Graves/tratamento farmacológico , Humanos , Modelos Teóricos , Hormônios Tireóideos
12.
Appetite ; 164: 105260, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848592

RESUMO

Nicotine has been shown to decrease appetite, food intake (FI) and body weight, but the mechanisms are unclear. The purpose of this review was to examine research on the effects of nicotine on energy balance by exploring physiological mechanisms and hormone regulation related to FI, subjective appetite and energy expenditure (EE). We searched PubMed and MEDLINE, and included articles investigating the effects of nicotine on central appetite regulation, FI, leptin, peptide-YY (PYY), ghrelin, glucagon-like peptide-1 (GLP-1), adiponectin, cholecystokinin (CCK), orexin, and EE. A total of 65 studies were included in the qualitative synthesis and review. Our findings suggest that the decrease in appetite and FI may be attributed to nicotinic alterations of neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) but the effect of nicotine on FI remains unclear. Furthermore, nicotine increases resting EE (REE) and physical activity EE (PAEE) in both smokers and non-smokers; and these increases may be a result of the catecholaminergic effect of nicotine. Decreases in body weight and appetite experienced by nicotine users results from increased EE and changes in the central hypothalamic regulation of appetite. There is not enough evidence to implicate a relationship between peripheral hormones and changes in appetite or FI after nicotine use. Although nicotine increases REE and PAEE, the effect of nicotine on other components of EE warrants further research. We conclude that further research evaluating the effect of nicotine on appetite hormones, FI and EE in humans is warranted.


Assuntos
Apetite , Metabolismo Energético , Nicotina , Regulação do Apetite , Ingestão de Energia , Grelina/metabolismo , Humanos , não Fumantes , Peptídeo YY/metabolismo , Fumantes
13.
Proc Natl Acad Sci U S A ; 115(26): 6864-6869, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29899148

RESUMO

Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Metiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hipocótilo/genética , Metilação , Metiltransferases/genética , Mutação
14.
Genomics ; 111(4): 700-709, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660475

RESUMO

Branching in woody plants affects their ecological benefits and impacts wood formation. To obtain genome-wide insights into the transcriptome changes and regulatory mechanisms associated with branching, we performed high-throughput RNA sequencing to characterize cDNA libraries generated from active buds of Populus deltoides CL. 'zhonglin2025' (BC) and Populus × zhaiguanheibaiyang (NC). NC has more branches than BC and rapid growth. We obtained a total of 198.2 million high-quality clean reads from the NC and BC libraries. We detected 3543 differentially expressed genes (DEGs) between the NC and BC libraries; 1418 were down-regulated and 2125 were up-regulated. Gene ontology functional classification of the DEGs indicated that they included 89 genes that encoded proteins related to hormone biosynthesis, 364 genes related to hormone signaling transduction, and 104 related to the auxin efflux transmembrane transporter. We validated the expression profiles of 16° by real-time quantitative PCR and found that their expression patterns were similar to those obtained from the high-throughput RNA sequencing data. We also measured the hormone content in young buds of BC and NC by high-pressure liquid chromatography. In this study, we identified global hormone regulatory patterns and differences in gene expression between NC and BC, and constructed a hormone regulatory network to explain branching in Populus buds. In addition, candidate genes that may be useful for molecular breeding of particular plant types were identified. Our results will provide a starting point for future investigations into the molecular mechanisms of branching in Populus.


Assuntos
Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Populus/genética , Transcriptoma , Flores/genética , Flores/crescimento & desenvolvimento , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012883

RESUMO

The goal of this review was to seek a better understanding of the function and differential expression of circadian clock genes during the reproductive process. Through a discussion of how the circadian clock is involved in these steps, the identification of new clinical targets for sleep disorder-related diseases, such as reproductive failure, will be elucidated. Here, we focus on recent research findings regarding circadian clock regulation within the reproductive system, shedding new light on circadian rhythm-related problems in women. Discussions on the roles that circadian clock plays in these reproductive processes will help identify new clinical targets for such sleep disorder-related diseases.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Jejum/fisiologia , Reprodução , Animais , Relógios Circadianos , Feminino , Regulação da Expressão Gênica , Humanos
16.
Genes Chromosomes Cancer ; 58(7): 484-499, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30873710

RESUMO

Cells establish and sustain structural and functional integrity of the genome to support cellular identity and prevent malignant transformation. In this review, we present a strategic overview of epigenetic regulatory mechanisms including histone modifications and higher order chromatin organization (HCO) that are perturbed in breast cancer onset and progression. Implications for dysfunctions that occur in hormone regulation, cell cycle control, and mitotic bookmarking in breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer stem cell activities. The architectural organization of regulatory machinery is addressed within the contexts of translating cancer-compromised genomic organization to advances in breast cancer risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high specificity and minimal off target effects.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/prevenção & controle , Cromatina/genética , Epigênese Genética/genética , Genoma/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas
17.
Dev Biol ; 443(1): 10-18, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30149007

RESUMO

CCR4-NOT is a highly conserved protein complex that regulates gene expression at multiple levels. In yeast, CCR4-NOT functions in transcriptional initiation, heterochromatin formation, mRNA deadenylation and other processes. The range of functions for Drosophila CCR4-NOT is less clear, except for a well-established role as a deadenylase for maternal mRNAs during early embryogenesis. We report here that CCR4-NOT has an essential function in the Drosophila prothoracic gland (PG), a tissue that predominantly produces the steroid hormone ecdysone. Interfering with the expression of the CCR4-NOT components twin, Pop2, Not1, and Not3 in a PG-specific manner resulted in larval arrest and a failure to initiate metamorphosis. Transcriptome analysis of PG-specific Pop2-RNAi samples revealed that Pop2 is required for the normal expression of ecdysone biosynthetic gene spookier (spok) as well as cholesterol homeostasis genes of the NPC2 family. Interestingly, dietary supplementation with ecdysone and its various sterol precursors showed that 7-dehydrocholesterol and cholesterol completely rescued the larval arrest phenotype, allowing Pop2-RNAi animals to reach pupal stage, and, to a low degree, even survival to adulthood, while the biologically active hormone, 20-Hydroxyecdysone (20E), was significantly less effective. Also, we present genetic evidence that CCR4-NOT has a nuclear function where CCR4-NOT-depleted cells exhibit aberrant chromatin and nucleoli structures. In summary, our findings indicate that the Drosophila CCR4-NOT complex has essential roles in the PG, where it is required for Drosophila steroid hormone production and cholesterol homeostasis, and likely has functions beyond a mere mRNA deadenylase in Drosophila.


Assuntos
Colesterol/metabolismo , Proteínas de Drosophila/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Ribonucleases/metabolismo , Animais , Proteínas de Transporte/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Ecdisona/biossíntese , Perfilação da Expressão Gênica/métodos , Homeostase/fisiologia , Proteínas de Ligação a RNA , Fatores de Transcrição/metabolismo
18.
Mol Plant Microbe Interact ; 32(10): 1291-1302, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31216220

RESUMO

The genomes of all eukaryotic organisms, from small unicellular yeasts to humans, include members of the protein arginine methyltransferase (PRMT) family. These enzymes affect gene transcription, cellular signaling, and function through the posttranslational methylation of arginine residues. Mis-regulation of PRMTs results in serious developmental defects, disease, or death, illustrating the importance of these enzymes to cellular processes. Plant genomes encode almost the full complement of PRMTs found in other higher organisms, plus an additional PRMT found uniquely in plants, PRMT10. Here, we investigate the role of these highly conserved PRMTs in a process that is unique to perennial plants-the development of symbiosis with ectomycorrhizal fungi. We show that PRMT expression and arginine methylation is altered in the roots of the model tree Eucalyptus grandis by the presence of its ectomycorrhizal fungal symbiont Pisolithus albus. Further, using transgenic modifications, we demonstrate that E. grandis-encoded PRMT1 and PRMT10 have important but opposing effects in promoting this symbiosis. In particular, the plant-specific EgPRMT10 has a potential role in the expression of plant hormone pathways during the colonization process and its overexpression reduces fungal colonization success.


Assuntos
Eucalyptus , Regulação da Expressão Gênica de Plantas , Micorrizas , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Simbiose , Basidiomycota/fisiologia , Humanos , Micorrizas/fisiologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Simbiose/fisiologia
19.
Proc Natl Acad Sci U S A ; 113(39): 11022-7, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27651495

RESUMO

The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1 Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Homeostase , Ácidos Indolacéticos/metabolismo , Oxirredutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Oxirredução , Epiderme Vegetal/metabolismo , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
20.
BMC Plant Biol ; 16: 105, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27121193

RESUMO

BACKGROUND: In natural environments, several adverse environmental conditions occur simultaneously constituting a unique stress factor. In this work, physiological parameters and the hormonal regulation of Carrizo citrange and Cleopatra mandarin, two citrus genotypes, in response to the combined action of high temperatures and water deprivation were studied. The objective was to characterize particular responses to the stress combination. RESULTS: Experiments indicated that Carrizo citrange is more tolerant to the stress combination than Cleopatra mandarin. Furthermore, an experimental design spanning 24 h stress duration, heat stress applied alone induced higher stomatal conductance and transpiration in both genotypes whereas combined water deprivation partially counteracted this response. Comparing both genotypes, Carrizo citrange showed higher phostosystem-II efficiency and lower oxidative damage than Cleopatra mandarin. Hormonal profiling in leaves revealed that salicylic acid (SA) accumulated in response to individual stresses but to a higher extent in samples subjected to the combination of heat and drought (showing an additive response). SA accumulation correlated with the up-regulation of pathogenesis-related gene 2 (CsPR2), as a downstream response. On the contrary, abscisic acid (ABA) accumulation was higher in water-stressed plants followed by that observed in plants under stress combination. ABA signaling in these plants was confirmed by the expression of responsive to ABA-related gene 18 (CsRAB18). Modulation of ABA levels was likely carried out by the induction of 9-neoxanthin cis-epoxicarotenoid dioxygenase (CsNCED) and ABA 8'-hydroxylase (CsCYP707A) while conversion to ABA-glycosyl ester (ABAGE) was a less prominent process despite the strong induction of ABA O-glycosyl transferase (CsAOG). CONCLUSIONS: Cleopatra mandarin is more susceptible to the combination of high temperatures and water deprivation than Carrizo citrange. This is likely a result of a higher transpiration rate in Carrizo that could allow a more efficient cooling of leaf surface ensuring optimal CO2 intake. Hence, SA induction in Cleopatra was not sufficient to protect PSII from photoinhibition, resulting in higher malondialdehyde (MDA) build-up. Inhibition of ABA accumulation during heat stress and combined stresses was achieved primarily through the up-regulation of CsCYP707A leading to phaseic acid (PA) and dehydrophaseic acid (DPA) production. To sum up, data indicate that specific physiological responses to the combination of heat and drought exist in citrus. In addition, these responses are differently modulated depending on the particular stress tolerance of citrus genotypes.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica/fisiologia , Citrus/fisiologia , Secas , Temperatura Alta , Transpiração Vegetal/fisiologia , Adaptação Fisiológica/genética , Dióxido de Carbono/metabolismo , Citrus/classificação , Citrus/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Malondialdeído/metabolismo , Fenótipo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Salicílico/metabolismo , Especificidade da Espécie , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA