Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.695
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220458

RESUMO

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Assuntos
Nefrite Intersticial/virologia , Parvovirus/isolamento & purificação , Parvovirus/patogenicidade , Animais , Austrália , Progressão da Doença , Feminino , Fibrose/patologia , Fibrose/virologia , Humanos , Rim/metabolismo , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Intersticial/fisiopatologia , América do Norte , Infecções por Parvoviridae/metabolismo
2.
Cell ; 171(1): 179-187.e10, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890085

RESUMO

Expression of many disease-related aggregation-prone proteins results in cytotoxicity and the formation of large intracellular inclusion bodies. To gain insight into the role of inclusions in pathology and the in situ structure of protein aggregates inside cells, we employ advanced cryo-electron tomography methods to analyze the structure of inclusions formed by polyglutamine (polyQ)-expanded huntingtin exon 1 within their intact cellular context. In primary mouse neurons and immortalized human cells, polyQ inclusions consist of amyloid-like fibrils that interact with cellular endomembranes, particularly of the endoplasmic reticulum (ER). Interactions with these fibrils lead to membrane deformation, the local impairment of ER organization, and profound alterations in ER membrane dynamics at the inclusion periphery. These results suggest that aberrant interactions between fibrils and endomembranes contribute to the deleterious cellular effects of protein aggregation. VIDEO ABSTRACT.


Assuntos
Doença de Huntington/patologia , Corpos de Inclusão/patologia , Neurônios/patologia , Neurônios/ultraestrutura , Peptídeos/metabolismo , Amiloide/química , Animais , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Corpos de Inclusão/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mutação , Agregação Patológica de Proteínas , Tomografia/métodos
3.
Trends Biochem Sci ; 48(4): 311-314, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754683

RESUMO

Recruitment of STEM faculty is biased against parents and caregivers. Specifically, women experience discrimination associated with childrearing and marriage. Underestimating the value of these candidates leads to a tremendous loss of talent. Here, we present a toolkit to facilitate the recruitment of talented women caregivers by providing guidelines for hiring.


Assuntos
Diversidade, Equidade, Inclusão , Docentes , Seleção de Pessoal , Feminino , Humanos
4.
Trends Immunol ; 45(7): 483-485, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862366

RESUMO

Despite prevalent diversity and inclusion programs in STEM, gender biases and stereotypes persist across educational and professional settings. Recognizing this enduring bias is crucial for achieving transformative change on gender equity and can help orient policy toward more effective strategies to address ongoing disparities.


Assuntos
Sexismo , Humanos , Feminino , Masculino , Estereotipagem , Ciência , Engenharia , Matemática
5.
Mol Cell ; 74(4): 742-757.e8, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30979586

RESUMO

Disturbances in autophagy and stress granule dynamics have been implicated as potential mechanisms underlying inclusion body myopathy (IBM) and related disorders. Yet the roles of core autophagy proteins in IBM and stress granule dynamics remain poorly characterized. Here, we demonstrate that disrupted expression of the core autophagy proteins ULK1 and ULK2 in mice causes a vacuolar myopathy with ubiquitin and TDP-43-positive inclusions; this myopathy is similar to that caused by VCP/p97 mutations, the most common cause of familial IBM. Mechanistically, we show that ULK1/2 localize to stress granules and phosphorylate VCP, thereby increasing VCP's activity and ability to disassemble stress granules. These data suggest that VCP dysregulation and defective stress granule disassembly contribute to IBM-like disease in Ulk1/2-deficient mice. In addition, stress granule disassembly is accelerated by an ULK1/2 agonist, suggesting ULK1/2 as targets for exploiting the higher-order regulation of stress granules for therapeutic intervention of IBM and related disorders.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças Musculares/genética , Proteínas Serina-Treonina Quinases/genética , Proteína com Valosina/genética , Adenosina Trifosfatases/genética , Animais , Autofagia/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Camundongos , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Fosforilação/genética , Estresse Fisiológico/genética , Ubiquitina/genética
6.
Proc Natl Acad Sci U S A ; 121(25): e2322872121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857405

RESUMO

Despite an abundance of support for culturally inclusive learning environments, there is little consensus regarding how to change educational contexts to effectively and sustainably foster cultural inclusion. To address this gap, we report findings from a research-practice partnership that leveraged the Culture Cycle Framework (CCF) to expand educators' praxis to include both independent and interdependent models of self. Most U.S. schools validate independent cultural models (i.e., those that prioritize individuality, uniqueness, and personal agency) and overlook interdependent models (i.e., those that prioritize connectedness, relationality, and collective well-being), which are more common among students from marginalized racial and socioeconomic backgrounds. Using a quasi-experimental longitudinal design, we trained school leadership to integrate ideas about cultural inclusion (i.e., validating the importance of both independent and interdependent cultural models) into school-wide flagship practices. We assessed downstream indicators of culture change by surveying teachers and students across the district and found that a) leadership-level training enhanced school-wide beliefs about cultural inclusion, b) teachers' endorsement of culturally inclusive beliefs predicted their use of culturally inclusive practices, and c) teachers' use of culturally inclusive practices predicted enhanced psychosocial and academic outcomes among students. This research represents a comprehensive culture change effort using the CCF and illustrates a means of fostering inclusion-focused educational culture change and assessing downstream consequences of culture change initiatives.


Assuntos
Liderança , Humanos , Instituições Acadêmicas , Professores Escolares/psicologia , Feminino , Masculino , Estudantes/psicologia , Diversidade Cultural , Cultura
7.
Proc Natl Acad Sci U S A ; 121(29): e2307726121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976735

RESUMO

Watching movies is among the most popular entertainment and cultural activities. How do viewers react when a movie sequel increases racial minority actors in the main cast ("minority increase")? On the one hand, such sequels may receive better evaluations if viewers appreciate racially inclusive casting for its novel elements (the value-in-diversity perspective) and moral appeal (the fairness perspective on diversity). On the other hand, discrimination research suggests that if viewers harbor biases against racial minorities, sequels with minority increase may receive worse evaluations. To examine these competing possibilities, we analyze a unique panel dataset of movie series released from 1998 to 2021 and conduct text analysis of 312,457 reviews of these movies. Consistent with discrimination research, we find that movies with minority increase receive lower ratings and more toxic reviews. Importantly, these effects weaken after the advent of the Black Lives Matter (BLM) movement, especially when the movement's intensity is high. These results are reliable across various robustness checks (e.g., propensity score matching, random implementation test). We conceptually replicate the bias mitigation effect of BLM in a preregistered experiment: Heightening the salience of BLM increases White individuals' acceptance of racial minority increase in a movie sequel. This research demonstrates the power of social movements in fostering diversity, equality, and inclusion.


Assuntos
Filmes Cinematográficos , Racismo , Humanos , Racismo/psicologia , Minorias Étnicas e Raciais , Negro ou Afro-Americano/psicologia , Diversidade Cultural , Grupos Minoritários/psicologia
8.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477372

RESUMO

Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.


Assuntos
Lâmina Nuclear , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Células HEK293 , Corpos de Inclusão/metabolismo , Lâmina Nuclear/metabolismo , Lâmina Nuclear/patologia
9.
Mol Cell ; 69(3): 465-479.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358076

RESUMO

hnRNPA2, a component of RNA-processing membraneless organelles, forms inclusions when mutated in a syndrome characterized by the degeneration of neurons (bearing features of amyotrophic lateral sclerosis [ALS] and frontotemporal dementia), muscle, and bone. Here we provide a unified structural view of hnRNPA2 self-assembly, aggregation, and interaction and the distinct effects of small chemical changes-disease mutations and arginine methylation-on these assemblies. The hnRNPA2 low-complexity (LC) domain is compact and intrinsically disordered as a monomer, retaining predominant disorder in a liquid-liquid phase-separated form. Disease mutations D290V and P298L induce aggregation by enhancing and extending, respectively, the aggregation-prone region. Co-aggregating in disease inclusions, hnRNPA2 LC directly interacts with and induces phase separation of TDP-43. Conversely, arginine methylation reduces hnRNPA2 phase separation, disrupting arginine-mediated contacts. These results highlight the mechanistic role of specific LC domain interactions and modifications conserved across many hnRNP family members but altered by aggregation-causing pathological mutations.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Arginina/genética , Arginina/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Imageamento por Ressonância Magnética/métodos , Metilação , Mutação , Neurônios/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional
10.
Proc Natl Acad Sci U S A ; 120(10): e2217564120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853942

RESUMO

The field of plant science has grown dramatically in the past two decades, but global disparities and systemic inequalities persist. Here, we analyzed ~300,000 papers published over the past two decades to quantify disparities across nations, genders, and taxonomy in the plant science literature. Our analyses reveal striking geographical biases-affluent nations dominate the publishing landscape and vast areas of the globe have virtually no footprint in the literature. Authors in Northern America are cited nearly twice as many times as authors based in Sub-Saharan Africa and Latin America, despite publishing in journals with similar impact factors. Gender imbalances are similarly stark and show remarkably little improvement over time. Some of the most affluent nations have extremely male biased publication records, despite supposed improvements in gender equality. In addition, we find that most studies focus on economically important crop and model species, and a wealth of biodiversity is underrepresented in the literature. Taken together, our analyses reveal a problematic system of publication, with persistent imbalances that poorly capture the global wealth of scientific knowledge and biological diversity. We conclude by highlighting disparities that can be addressed immediately and offer suggestions for long-term solutions to improve equity in the plant sciences.


Assuntos
Biodiversidade , Equidade de Gênero , Feminino , Masculino , Humanos , Geografia , Conhecimento , América do Norte
11.
J Biol Chem ; 300(6): 107398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777145

RESUMO

The unfolded protein response pathways (UPR), autophagy, and compartmentalization of misfolded proteins into inclusion bodies are critical components of the protein quality control network. Among inclusion bodies, aggresomes are particularly intriguing due to their association with cellular survival, drug resistance, and aggresive cancer behavior. Aggresomes are molecular condensates formed when collapsed vimentin cages encircle misfolded proteins before final removal by autophagy. Yet significant gaps persist in the mechanisms governing aggresome formation and elimination in cancer cells. Understanding these mechanisms is crucial, especially considering the involvement of LC3A, a member of the MAP1LC3 family, which plays a unique role in autophagy regulation and has been reported to be epigenetically silenced in many cancers. Herein, we utilized the tetracycline-inducible expression of LC3A to investigate its role in choroid plexus carcinoma cells, which inherently exhibit the presence of aggresomes. Live cell imaging was employed to demonstrate the effect of LC3A expression on aggresome-positive cells, while SILAC-based proteomics identified LC3A-induced protein and pathway alterations. Our findings demonstrated that extended expression of LC3A is associated with cellular senescence. However, the obstruction of lysosomal degradation in this context has a deleterious effect on cellular viability. In response to LC3A-induced autophagy, we observed significant alterations in mitochondrial morphology, reflected by mitochondrial dysfunction and increased ROS production. Furthermore, LC3A expression elicited the activation of the PERK-eIF2α-ATF4 axis of the UPR, underscoring a significant change in the protein quality control network. In conclusion, our results elucidate that LC3A-mediated autophagy alters the protein quality control network, exposing a vulnerability in aggresome-positive cancer cells.


Assuntos
Fator 4 Ativador da Transcrição , Autofagia , Fator de Iniciação 2 em Eucariotos , Proteínas Associadas aos Microtúbulos , Mitocôndrias , eIF-2 Quinase , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Linhagem Celular Tumoral , Resposta a Proteínas não Dobradas , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética
12.
Am J Hum Genet ; 109(3): 533-541, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148830

RESUMO

Recent studies indicate that CGG repeat expansions in LRP12, GIPC1, and NOTCH2NLC are associated with oculopharyngodistal myopathy (OPDM) types 1, 2, and 3, respectively. However, some clinicopathologically confirmed OPDM cases continue to have unknown genetic causes. Here, through a combination of long-read whole-genome sequencing (LRS), repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis PCR (AL-PCR), we found that a CGG repeat expansion in the 5' UTR of RILPL1 is associated with familial and simplex OPDM type 4 (OPDM4). The number of repeats ranged from 139 to 197. Methylation analysis indicates that the methylation levels in RILPL1 were unaltered in OPDM4 individuals. Analyses of muscle biopsies suggested that the expanded CGG repeat might be translated into a toxic poly-glycine protein that co-localizes with p62 in intranuclear inclusions. Moreover, analyses suggest that the toxic RNA gain-of-function effects also contributed to the pathogenesis of this disease. Intriguingly, all four types of OPDM have been found to be associated with the CGG repeat expansions located in 5' UTRs. This finding suggests that a common pathogenic mechanism, driven by the CGG repeat expansion, might underlie all cases of OPDM.


Assuntos
Distrofias Musculares , Expansão das Repetições de Trinucleotídeos , Regiões 5' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal , Humanos , Corpos de Inclusão Intranuclear/genética , Distrofias Musculares/genética , Expansão das Repetições de Trinucleotídeos/genética
13.
Am J Hum Genet ; 109(8): 1353-1365, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931048

RESUMO

Copy-number variants and structural variants (CNVs/SVs) drive many neurodevelopmental-related disorders. While many neurodevelopmental-related CNVs/SVs give rise to complex phenotypes, the overlap in phenotypic presentation between independent CNVs can be extensive and provides a motivation for shared approaches. This confluence at the level of clinical phenotype implies convergence in at least some aspects of the underlying genomic mechanisms. With this perspective, our Commission on Novel Technologies for Neurodevelopmental CNVs asserts that the time has arrived to approach neurodevelopmental-related CNVs/SVs as a class of disorders that can be identified, investigated, and treated on the basis of shared mechanisms and/or pathways (e.g., molecular, neurological, or developmental). To identify common etiologic mechanisms among uncommon neurodevelopmental-related disorders and to potentially identify common therapies, it is paramount for teams of scientists, clinicians, and patients to unite their efforts. We bring forward novel, collaborative, and integrative strategies to translational CNV/SV research that engages diverse stakeholders to help expedite therapeutic outcomes. We articulate a clear vision for piloted roadmap strategies to reduce patient/caregiver burden and redundancies, increase efficiency, avoid siloed data, and accelerate translational discovery across CNV/SV-based syndromes.


Assuntos
Transtornos do Neurodesenvolvimento , Defesa do Paciente , Variações do Número de Cópias de DNA/genética , Genoma , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/terapia , Fenótipo
14.
J Virol ; 98(3): e0015324, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421168

RESUMO

Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE: Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.


Assuntos
Condensados Biomoleculares , Vírus Sincicial Respiratório Humano , Humanos , Animais , Bovinos , Linhagem Celular , Hibridização in Situ Fluorescente , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribossomos/metabolismo , Replicação Viral
15.
Trends Immunol ; 43(11): 851-854, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182546

RESUMO

The criminalization of women's healthcare in many USA states has created uncertainty about women's access to evidence-based medical care and will affect the physical, mental, and emotional health and well-being of women. This article is intended to start a discussion on this complex topic in the immunology community.


Assuntos
Atenção à Saúde , Feminino , Humanos , Estados Unidos , Serviços de Saúde da Mulher , Equidade em Saúde , Equidade de Gênero
16.
Exp Cell Res ; 440(1): 114131, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876374

RESUMO

Firefly luciferase (Fluc) from Photinus pyralis is one of the most widely used reporter proteins in biomedical research. Despite its widespread use, Fluc's protein phase transition behaviors and phase separation characteristics have not received much attention. Current research uncovers Fluc's intrinsic property to phase separate in mammalian cells upon a simple cell culture temperature change. Specifically, Fluc spontaneously produced needle-shaped crystal-like inclusion bodies upon temperature shift to the hypothermic temperatures ranging from 25 °C to 31 °C. The crystal-like inclusion bodies were not associated with or surrounded by membranous organelles and were likely built from the cytosolic pool of Fluc. Furthermore, the crystal-like inclusion formation was suppressed when cells were cultured in the presence of D-luciferin and its synthetic analog, as well as the benzothiazole family of so-called stabilizing inhibitors. These two classes of compounds inhibited intracellular Fluc crystallization by different modes of action as they had contrasting effects on steady-state luciferase protein accumulation levels. This study suggests that, under substrate insufficient conditions, the excess Fluc phase separates into a crystal-like state that can modulate intracellular soluble enzyme availability and protein turnover rate.


Assuntos
Cristalização , Vaga-Lumes , Luciferases de Vaga-Lume , Temperatura , Luciferases de Vaga-Lume/metabolismo , Animais , Humanos , Benzotiazóis/farmacologia , Benzotiazóis/química , Corpos de Inclusão/metabolismo
17.
Annu Rev Psychol ; 75: 555-572, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236650

RESUMO

In this review we examine two classes of interventions designed to achieve workplace gender equality: (a) those designed to boost motivations and ambition, such as those that aim to attract more women into roles where they are underrepresented; and (b) those that try to provide women with needed abilities to achieve these positions. While such initiatives are generally well meaning, they tend to be based upon (and reinforce) stereotypes of what women lack. Such a deficit model leads to interventions that attempt to "fix" women rather than address the structural factors that are the root of gender inequalities. We provide a critical appraisal of the literature to establish an evidence base for why fixing women is unlikely to be successful. As an alternative, we focus on understanding how organizational context and culture maintain these inequalities by looking at how they shape and constrain (a) women's motivations and ambitions, and (b) the expression and interpretation of their skills and attributes. In doing so, we seek to shift the interventional focus from women themselves to the systems and structures in which they are embedded.


Assuntos
Escolha da Profissão , Equidade de Gênero , Recursos Humanos , Feminino , Humanos , Motivação
18.
Proc Natl Acad Sci U S A ; 119(34): e2122667119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35972961

RESUMO

Field biology is an area of research that involves working directly with living organisms in situ through a practice known as "fieldwork." Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: be collaborative, be respectful, be legal, and be safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussions and provide a baseline for training in proactive, equitable fieldwork practices.


Assuntos
Temas Bioéticos , Biologia , Biologia/ética , Humanos
19.
Proc Natl Acad Sci U S A ; 119(10)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35210356

RESUMO

The history of the scientific enterprise demonstrates that it has supported gender, identity, and racial inequity. Further, its institutions have allowed discrimination, harassment, and personal harm of racialized persons and women. This has resulted in a suboptimal and demographically narrow research and innovation system, a concomitant limited lens on research agendas, and less effective knowledge translation between science and society. We argue that, to reverse this situation, the scientific community must reexamine its values and then collectively embark upon a moonshot-level new agenda for equity. This new agenda should be based upon the foundational value that scientific research and technological innovation should be prefaced upon progress toward a better world for all of society and that the process of how we conduct research is just as important as the results of research. Such an agenda will attract individuals who have been historically excluded from participation in science, but we will need to engage in substantial work to overcome the longstanding obstacles to their full participation. We highlight the need to implement this new agenda via a coordinated systems approach, recognizing the mutually reinforcing feedback dynamics among all science system components and aligning our equity efforts across them.

20.
Proc Natl Acad Sci U S A ; 119(41): e2208649119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191230

RESUMO

Neuronal intranuclear inclusion disease (NIID) is a neuromuscular/neurodegenerative disease caused by the expansion of CGG repeats in the 5' untranslated region (UTR) of the NOTCH2NLC gene. These repeats can be translated into a polyglycine-containing protein, uN2CpolyG, which forms protein inclusions and is toxic in cell models, albeit through an unknown mechanism. Here, we established a transgenic Drosophila model expressing uN2CpolyG in multiple systems, which resulted in progressive neuronal cell loss, locomotor deficiency, and shortened lifespan. Interestingly, electron microscopy revealed mitochondrial swelling both in transgenic flies and in muscle biopsies of individuals with NIID. Immunofluorescence and immunoelectron microscopy showed colocalization of uN2CpolyG with mitochondria in cell and patient samples, while biochemical analysis revealed that uN2CpolyG interacted with a mitochondrial RNA binding protein, LRPPRC (leucine-rich pentatricopeptide repeat motif-containing protein). Furthermore, RNA sequencing (RNA-seq) analysis and functional assays showed down-regulated mitochondrial oxidative phosphorylation in uN2CpolyG-expressing flies and NIID muscle biopsies. Finally, idebenone treatment restored mitochondrial function and alleviated neurodegenerative phenotypes in transgenic flies. Overall, these results indicate that transgenic flies expressing uN2CpolyG recapitulate key features of NIID and that reversing mitochondrial dysfunction might provide a potential therapeutic approach for this disorder.


Assuntos
Drosophila , Doenças Neurodegenerativas , Regiões 5' não Traduzidas , Animais , Animais Geneticamente Modificados , Drosophila/genética , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Leucina/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas de Ligação a RNA/genética , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA