Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.605
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(20): 4289-4309.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37683635

RESUMO

Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.


Assuntos
Formigas , Animais , Formigas/fisiologia , Barreira Hematoencefálica , Encéfalo/metabolismo , Drosophila , Comportamento Social , Comportamento Animal
2.
Annu Rev Neurosci ; 47(1): 167-185, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38603564

RESUMO

Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.


Assuntos
Formigas , Comportamento Animal , Comportamento Social , Animais , Formigas/fisiologia , Comportamento Animal/fisiologia , Neurociências , Encéfalo/fisiologia
3.
Mol Cell ; 77(2): 338-351.e6, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31732456

RESUMO

Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification. Reprogramming of Majors upregulates Minor-biased genes and downregulates Major-biased genes, engaging molecular pathways fundamental to foraging behavior. We discover the neuronal corepressor for element-1-silencing transcription factor (CoREST) is upregulated upon reprogramming and required for the epigenetic switch to foraging. Genome-wide profiling during reprogramming reveals CoREST represses expression of enzymes that degrade juvenile hormone (JH), a hormone elevated upon reprogramming. High CoREST, low JH-degrader expression, and high JH levels are mirrored in natural Minors, revealing parallel mechanisms of natural and reprogrammed foraging. These results unveil chromatin regulation via CoREST as central to programming of ant social behavior, with potential far-reaching implications for behavioral epigenetics.


Assuntos
Formigas/genética , Formigas/fisiologia , Comportamento Animal/fisiologia , Proteínas Correpressoras/genética , Epigênese Genética/genética , Proteínas de Insetos/genética , Animais , Cromatina/genética , Genoma/genética , Hormônios Juvenis/genética , Neurônios/fisiologia , Comportamento Social
4.
Trends Genet ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341686

RESUMO

In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.

5.
Development ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324209

RESUMO

The evolution of insects has been marked by the appearance of key body plan innovations that promoted the outstanding ability of this lineage to adapt to new habitats, boosting the most successful radiation in animals. To understand the evolution of these new structures, it is essential to investigate which are the genes and gene regulatory networks participating during the embryonic development of insects. Great efforts have been made to fully understand gene expression and gene regulation during the development of holometabolous insects, in particular Drosophila melanogaster. Conversely, functional genomics resources and databases in other insect lineages are scarce. To provide a new platform to study gene regulation in insects, we generated ATAC-seq (Assay for transposase-Accessible Chromatin) for the first time during the development of the mayfly Cloeon dipterum, which belongs to Paleoptera, the sister group to all other winged insects. With these comprehensive datasets along six developmental stages, we characterised pronounced changes in accessible chromatin between early and late embryogenesis. The application of ATAC-seq in mayflies provides a fundamental resource to understand the evolution of gene regulation in insects.

6.
Proc Natl Acad Sci U S A ; 121(25): e2401802121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865264

RESUMO

The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.


Assuntos
Peptídeos Antimicrobianos , Microbioma Gastrointestinal , Simbiose , Animais , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Trato Gastrointestinal/microbiologia
7.
Proc Natl Acad Sci U S A ; 121(5): e2315667121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252829

RESUMO

Water striders are abundant in areas with high humidity and rainfall. Raindrops can weigh more than 40 times the adult water strider and some pelagic species spend their entire lives at sea, never contacting ground. Until now, researchers have not systematically investigated the survival of water striders when impacted by raindrops. In this experimental study, we use high-speed videography to film drop impacts on water striders. Drops force the insects subsurface upon direct contact. As the ensuing crater rebounds upward, the water strider is propelled airborne by a Worthington jet, herein called the first jet. We show the water strider's locomotive responses, low density, resistance to wetting when briefly submerged, and ability to regain a super-surface rest state, rendering it impervious to the initial impact. When pulled subsurface during a second crater formation caused by the collapsing first jet, water striders face the possibility of ejection above the surface or submersion below the surface, a fate determined by their position in the second crater. We identify a critical crater collapse acceleration threshold ∼ 5.7 gravities for the collapsing second crater which determines the ejection and submersion of passive water striders. Entrapment by submersion makes the water strider poised to penetrate the air-water interface from below, which appears impossible without the aid of a plastron and proper locomotive techniques. Our study is likely the first to consider second crater dynamics and our results translate to the submersion dynamics of other passively floating particles such as millimetric microplastics atop the world's oceans.

8.
Proc Natl Acad Sci U S A ; 121(33): e2402179121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110731

RESUMO

Eusocial organisms typically live in colonies with one reproductive queen supported by thousands of sterile workers. It is widely believed that monogamous mating is a precondition for the evolution of eusociality. Here, we present a theoretical model that simulates a realistic scenario for the evolution of eusociality. In the model, mothers can evolve control over resource allocation to offspring, affecting offspring's body size. The offspring can evolve body-size-dependent dispersal, by which they disperse to breed or stay at the nest as helpers. We demonstrate that eusociality can evolve even if mothers are not strictly monogamous, provided that they can constrain their offspring's reproduction through manipulation. We also observe the evolution of social polymorphism with small individuals that help and larger individuals that disperse to breed. Our model unifies the traditional kin selection and maternal manipulation explanations for the evolution of eusociality and demonstrates that-contrary to current consensus belief-eusociality can evolve despite highly promiscuous mating.


Assuntos
Evolução Biológica , Tamanho Corporal , Reprodução , Comportamento Sexual Animal , Comportamento Social , Animais , Feminino , Comportamento Sexual Animal/fisiologia , Reprodução/fisiologia , Masculino , Modelos Biológicos , Comportamento Animal/fisiologia
9.
Proc Natl Acad Sci U S A ; 121(14): e2317254121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551840

RESUMO

Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.


Assuntos
Chironomidae , Dessecação , Animais , Trealose/metabolismo , Larva/metabolismo , Chironomidae/genética , Insetos/metabolismo , Linhagem Celular
10.
Trends Biochem Sci ; 47(4): 284-286, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34922796

RESUMO

In a landmark paper, del Mármol et al. describe cryo-electron microscopy (cryo-EM) structures of an insect olfactory receptor (OR) ion channel, detailing the mechanism by which odorants can directly gate ion flow and providing insights into how this incredibly diverse family of receptors have evolved to support insects navigating complex olfactory landscapes.


Assuntos
Receptores Odorantes , Olfato , Animais , Microscopia Crioeletrônica , Insetos , Odorantes , Receptores Odorantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA