Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(34): e2403852, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38984469

RESUMO

Chiral spin textures, as exotic phases in magnetic materials, hold immense promise for revolutionizing logic, and memory applications. Recently, chiral spin textures have been observed in centrosymmetric magnetic insulators (FMI), due to an interfacial Dzyaloshinskii-Moriya interaction (iDMI). However, the source and origin of this iDMI remain enigmatic in magnetic insulator systems. Here, the source and origin of the iDMI in Pt/Y3Fe5O12 (YIG)/substrate structures are deeply delved by examining the spin-Hall topological Hall effect (SH-THE), an indication of chiral spin textures formed due to an iDMI. Through carefully modifying the interfacial chemical composition of Pt/YIG/substrate with a nonmagnetic Al3+ doping, the obvious dependence of SH-THE on the interfacial chemical composition for both the heavy metal (HM)/FMI and FMI/substrate interfaces is observed. The results reveal that both interfaces contribute to the strength of the iDMI, and the iDMI arises due to strong spin-orbit coupling and inversion symmetry breaking at both interfaces in HM/FMI/substrate. Importantly, it is shown that nonmagnetic substitution and interface engineering can significantly tune the SH-THE and iDMI in ferrimagnetic iron garnets. The approach offers a viable route to tailor the iDMI and associated chiral spin textures in low-damping insulating magnetic oxides, thus advancing the field of spintronics.

2.
Materials (Basel) ; 16(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837017

RESUMO

Spin-pumping-induced damping and interfacial Dzyaloshinskii-Moriya interaction (iDMI) have been studied in Pt/Co2FeAl/MgO systems grown on Si or MgO substrates as a function of Pt and Co2FeAl (CFA) thicknesses. For this, we combined vibrating sample magnetometry (VSM), microstrip ferromagnetic resonance (MS-FMR), and Brillouin light scattering (BLS). VSM measurements of the magnetic moment at saturation per unit area revealed the absence of a magnetic dead layer in both systems, with a higher magnetization at saturation obtained for CFA grown on MgO. The key parameters governing the spin-dependent transport through the Pt/CFA interface, including the spin mixing conductance and the spin diffusion length, have been determined from the CFA and the Pt thickness dependence of the damping. BLS has been used to measure the spin wave non-reciprocity via the frequency mismatch between the Stokes and anti-Stokes lines. iDMI has been separated from the contribution of the interface perpendicular anisotropy difference between Pt/CFA and CFA/MgO. Our investigation revealed that both iDMI strength and spin pumping efficiency are higher for CFA-based systems grown on MgO due to its epitaxial growth confirmed by MS-FMR measurements of the in-plane magnetic anisotropy. This suggests that CFA grown on MgO could be a promising material candidate as a spin injection source via spin pumping and for other spintronic applications.

3.
Adv Mater ; 32(14): e1904415, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32090416

RESUMO

Topologically protected magnetic states have a variety of potential applications in future spintronics owing to their nanoscale size (<100 nm) and unique dynamics. These fascinating states, however, usually are located at the interfaces or surfaces of ultrathin systems due to the short interaction range of the Dzyaloshinskii-Moriya interaction (DMI). Here, magnetic topological states in a 40-unit cells (16 nm) SrRuO3 layer are successfully created via an interlayer exchange coupling mechanism and the interfacial DMI. By controlling the thickness of an antiferromagnetic and ferromagnetic layer, interfacial ionic polarization, as well as the transformation between ferromagnetic and magnetic topological states, can be modulated. Using micromagnetic simulations, the formation and stability of robust magnetic skyrmions in SrRuO3 /BiFeO3 heterostructures are elucidated. Magnetic skyrmions in thick multiferroic heterostructures are promising for the development of topological electronics as well as rendering a practical approach to extend the interfacial topological phenomena to bulk via antiferromagnetic order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA