Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Appl Physiol ; 124(8): 2285-2301, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38446190

RESUMO

PURPOSE: Sweat glands and cutaneous vessels possess growth hormone (GH) and insulin-like growth factor 1 (IGF-1) receptors. Here, we assessed if exercise increases GH and IGF-1 in skin interstitial fluid, and whether baseline and exercise-induced increases in GH and IGF-1 concentrations in skin interstitial fluid/blood are associated with heat loss responses of sweating and cutaneous vasodilation. METHODS: Sixteen young adults (7 women) performed a 50-min moderate-intensity exercise bout (50% VO2peak) during which skin dialysate and blood samples were collected. In a sub-study (n = 7, 4 women), we administered varying concentrations of GH (0.025-4000 ng/mL) and IGF-1 (0.000256-100 µg/mL) into skin interstitial fluid via intradermal microdialysis. Sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC) were measured continuously for both studies. RESULTS: Exercise increased sweating and CVC (both P < 0.001), paralleled by increases of serum GH and skin dialysate GH and IGF-1 (all P ≤ 0.041) without changes in serum IGF-1. Sweating was positively correlated with baseline dialysate and serum GH levels, as well as exercise-induced increases in serum GH and IGF-1 (all P ≤ 0.044). Increases in CVC were not correlated with any GH and IGF-1 variables. Exogenous administration of GH and IGF-1 did not modulate resting sweat rate and CVC. CONCLUSION: (1) Exercise increases GH and IGF-1 levels in the skin interstitial fluid, (2) exercise-induced sweating is associated with baseline GH in skin interstitial fluid and blood, as well as exercise-induced increases in blood GH and IGF-1, and (3) cutaneous vasodilation during exercise is not associated with GH and IGF-1 in skin interstitial fluid and blood.


Assuntos
Exercício Físico , Líquido Extracelular , Hormônio do Crescimento Humano , Fator de Crescimento Insulin-Like I , Pele , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Feminino , Exercício Físico/fisiologia , Pele/metabolismo , Pele/irrigação sanguínea , Líquido Extracelular/metabolismo , Hormônio do Crescimento Humano/sangue , Hormônio do Crescimento Humano/metabolismo , Adulto , Adulto Jovem , Sudorese/fisiologia , Regulação da Temperatura Corporal/fisiologia , Hormônio do Crescimento/sangue , Hormônio do Crescimento/metabolismo
2.
Nitric Oxide ; 134-135: 10-16, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889537

RESUMO

Acute dietary nitrate (NO3-) supplementation can increase [NO3-], but not nitrite ([NO2-]), in human skeletal muscle, though its effect on [NO3-] and [NO2-] in skin remains unknown. In an independent group design, 11 young adults ingested 140 mL of NO3--rich beetroot juice (BR; 9.6 mmol NO3-), and 6 young adults ingested 140 mL of a NO3--depleted placebo (PL). Skin dialysate, acquired through intradermal microdialysis, and venous blood samples were collected at baseline and every hour post-ingestion up to 4 h to assess dialysate and plasma [NO3-] and [NO2-]. The relative recovery rate of NO3- and NO2- through the microdialysis probe (73.1% and 62.8%), determined in a separate experiment, was used to estimate skin interstitial [NO3-] and [NO2-]. Baseline [NO3-] was lower, whereas baseline [NO2-] was higher in the skin interstitial fluid relative to plasma (both P < 0.001). Acute BR ingestion increased [NO3-] and [NO2-] in the skin interstitial fluid and plasma (all P < 0.001), with the magnitude being smaller in the skin interstitial fluid (e.g., 183 ± 54 vs. 491 ± 62 µM for Δ[NO3-] from baseline and 155 ± 190 vs. 217 ± 204 nM for Δ[NO2-] from baseline at 3 h post BR ingestion, both P ≤ 0.037). However, due to the aforementioned baseline differences, skin interstitial fluid [NO2-] post BR ingestion was higher, whereas [NO3-] was lower relative to plasma (all P < 0.001). These findings extend our understanding of NO3- and NO2- distribution at rest and indicate that acute BR supplementation increases [NO3-] and [NO2-] in human skin interstitial fluid.


Assuntos
Beta vulgaris , Nitratos , Adulto Jovem , Humanos , Líquido Extracelular , Dióxido de Nitrogênio , Pressão Sanguínea , Nitritos , Suplementos Nutricionais , Soluções para Diálise/farmacologia , Estudos Cross-Over , Método Duplo-Cego
3.
Am J Physiol Heart Circ Physiol ; 322(2): H319-H327, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995164

RESUMO

Vascular dysfunction has been reported in adults who have recovered from COVID-19. To date, no studies have investigated the underlying mechanisms of persistent COVID-19-associated vascular dysfunction. Our purpose was to quantify nitric oxide (NO)-mediated vasodilation in healthy adults who have recovered from SARS-CoV-2 infection. We hypothesized that COVID-19-recovered adults would have impaired NO-mediated vasodilation compared with adults who have not had COVID-19. In methods, we performed a cross-sectional study including 10 (5 men/5 women, 24 ± 4 yr) healthy control (HC) adults who were unvaccinated for COVID-19, 11 (4 men/7 women, 25 ± 6 yr) healthy vaccinated (HV) adults, and 12 (5 men/7 women, 22 ± 3 yr) post-COVID-19 (PC, 19 ± 14 wk) adults. COVID-19 symptoms severity (survey) was assessed. A standardized 39°C local heating protocol was used to assess NO-dependent vasodilation via perfusion (intradermal microdialysis) of 15 mM NG-nitro-l-arginine methyl ester during the plateau of the heating response. Red blood cell flux was measured (laser-Doppler flowmetry) and cutaneous vascular conductance (CVC = flux/mmHg) was expressed as a percentage of maximum (28 mM sodium nitroprusside + 43°C). In results, the local heating plateau (HC: 61 ± 20%, HV: 60 ± 19%, PC: 67 ± 19%, P = 0.80) and NO-dependent vasodilation (HC: 77 ± 9%, HV: 71 ± 7%, PC: 70 ± 10%, P = 0.36) were not different among groups. Neither symptom severity (25 ± 12 AU) nor time since diagnosis correlated with the NO-dependent vasodilation (r = 0.46, P = 0.13; r = 0.41, P = 0.19, respectively). In conclusion, healthy adults who have had mild-to-moderate COVID-19 do not have altered NO-mediated cutaneous microvascular function.NEW & NOTEWORTHY Healthy young adults who have had mild-to-moderate COVID-19 do not display alterations in nitric oxide-mediated cutaneous microvascular function. In addition, healthy young adults who have COVID-19 antibodies from the COVID-19 vaccinations do not display alterations in nitric oxide-mediated cutaneous microvascular function.


Assuntos
COVID-19/fisiopatologia , Microcirculação/fisiologia , Pele/irrigação sanguínea , Vasodilatação/fisiologia , Adulto , COVID-19/metabolismo , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Estudos de Casos e Controles , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Fluxometria por Laser-Doppler , Masculino , Microcirculação/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , SARS-CoV-2 , Índice de Gravidade de Doença , Vasodilatação/efeitos dos fármacos , Adulto Jovem
4.
Am J Physiol Heart Circ Physiol ; 321(4): H728-H734, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34477463

RESUMO

Hypertension is characterized by systemic microvascular endothelial dysfunction, in part due to a functional absence of hydrogen sulfide (H2S)-mediated endothelium-dependent dilation. Treatment with a sulfhydryl-donating ACE inhibitor (SH-ACE inhibitor) improves endothelial function in preclinical models of hypertension. To date, no studies have directly assessed the effects of SH-ACE-inhibitor treatment on H2S-dependent vasodilation in humans with hypertension. We hypothesized that SH-ACE-inhibitor treatment would improve H2S-mediated endothelium-dependent vasodilation. Ten adults with hypertension [1 woman and 9 men; 56 ± 9 yr; systolic blood pressure (SBP): 141 ± 8.5 mmHg; diastolic blood pressure (DBP): 90.3 ± 6 mmHg] were treated (16 wk) with the SH-ACE-inhibitor captopril. Red blood cell flux (laser-Doppler flowmetry) was measured continuously during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine (ACh; 10-10 to 10-1 M) alone (control) and in combination with an inhibitor of enzymatic H2S production [10-3 M aminooxyacetate (AOAA)] preintervention and postintervention. Cutaneous vascular conductance (CVC; flux/mmHg) was calculated and normalized to the site-specific maximal CVC (0.028 M sodium nitroprusside and local heat to 43°C). Area under the curve was calculated using the trapezoid method. The 16-wk SH-ACE-inhibitor treatment resulted in a reduction of blood pressure (systolic BP: 129 ± 10 mmHg; diastolic BP: 81 ± 9 mmHg, both P < 0.05). Preintervention, inhibition of H2S production had no effect on ACh-induced vasodilation (316 ± 40 control vs. 322 ± 35 AU AOAA; P = 0.82). Captopril treatment improved ACh-induced vasodilation (316 ± 40 pre vs. 399 ± 55 AU post; P = 0.04) and increased the H2S-dependent component of ACh-induced vasodilation (pre: -6.6 ± 65.1 vs. post: 90.2 ± 148.3 AU, P = 0.04). These data suggest that SH-ACE-inhibitor antihypertensive treatment improves cutaneous microvascular endothelium-dependent vasodilation in adults with hypertension, in part via H2S-dependent mechanisms.NEW & NOTEWORTHY This is the first study to prospectively assess the effects of sulfhydryl antihypertensive treatment on microvascular endothelial function in adults with hypertension. Our data suggest that 16 wk of SH-ACE-inhibitor antihypertensive treatment improves cutaneous microvascular endothelium-dependent vasodilation in middle-aged adults with hypertension, in part via H2S-dependent mechanisms.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Captopril/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Hipertensão/tratamento farmacológico , Microcirculação/efeitos dos fármacos , Pele/irrigação sanguínea , Vasodilatação/efeitos dos fármacos , Idoso , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Anti-Hipertensivos/metabolismo , Captopril/metabolismo , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Estudo de Prova de Conceito , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
5.
Skin Pharmacol Physiol ; 34(3): 162-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33794540

RESUMO

Bradykinin increases skin blood flow via a cGMP mechanism but its role in sweating in vivo is unclear. There is a current need to translate cell culture and nonhuman paw pad studies into in vivo human preparations to test for therapeutic viability for disorders affecting sweat glands. Protocol 1: physiological sweating was induced in 10 healthy subjects via perfusing warm (46-48°C) water through a tube-lined suit while bradykinin type 2 receptor (B2R) antagonist (HOE-140; 40 µM) and only the vehicle (lactated Ringer's) were perfused intradermally via microdialysis. Heat stress increased sweat rate (HOE-140 = +0.79 ± 0.12 and vehicle = +0.64 ± 0.10 mg/cm2/min), but no differences were noted with B2R antagonism. Protocol 2: pharmacological sweating was induced in 6 healthy subjects via intradermally perfusing pilocarpine (1.67 mg/mL) followed by the same B2R antagonist approach. Pilocarpine increased sweating (HOE-140 = +0.38 ± 0.16 and vehicle = +0.32 ± 0.12 mg/cm2/min); again no differences were observed with B2R antagonism. Last, 5 additional subjects were recruited for various control experiments which identified that a functional dose of HOE-140 was utilized and it was not sudorific during normothermic conditions. These data indicate B2R antagonists do not modulate physiologically or pharmacologically induced eccrine secretion volumes. Thus, B2R agonist/antagonist development as a potential therapeutic target for hypo- and hyperhidrosis appears unwarranted.


Assuntos
Antagonistas de Receptor B2 da Bradicinina/farmacologia , Bradicinina/análogos & derivados , Sudorese/efeitos dos fármacos , Bradicinina/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/fisiologia , Humanos , Pilocarpina/farmacologia , Receptor B2 da Bradicinina/metabolismo , Pele/metabolismo , Sudorese/fisiologia
6.
Am J Physiol Heart Circ Physiol ; 319(3): H539-H546, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734817

RESUMO

In 2017, the American Heart Association (AHA) and American College of Cardiology (ACC) redefined stage 1 hypertension to systolic blood pressure (BP) 130-139 mmHg or diastolic BP 80-89 mmHg; however, the degree to which microvascular endothelial dysfunction is evident in adults with stage 1 hypertension remains equivocal. We tested the hypotheses that cutaneous microvascular endothelial dysfunction would be present in adults with stage 1 hypertension (HTN1) compared with normotensive adults (NTN; BP <120/<80 mmHg) but would be less severe compared with adults with stage 2 hypertension (HTN2; systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg) and that this graded impairment would be mediated by reductions in nitric oxide (NO)-dependent dilation. This retrospective analysis included 20 NTN (5 men; 45-64 yr; BP 94-114/60-70 mmHg), 22 HTN1 (11 men; 40-74 yr; BP 110-134/70-88 mmHg), and 44 HTN2 (27 men; 40-74 yr; BP 128-180/80-110 mmHg). BP and nocturnal dipping status were also assessed using 24-h ambulatory BP monitoring. Red cell flux (laser Doppler flowmetry) was measured during intradermal microdialysis perfusion of acetylcholine (ACh; 10-10 to 10-1M) alone and concurrently with the nonspecific nitric oxide (NO) synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 15 mM). ACh-induced dilation was impaired in HTN2 (P < 0.01), but not in HTN1 (P = 0.85), compared with NTN. Furthermore, reductions in NO-dependent dilation were evident in HTN2 (P < 0.01) but not in HTN1 (P = 0.76). Regardless of BP, endothelium-dependent dilation was impaired in nondippers (nighttime drop in systolic BP <10%) compared with dippers (nighttime drop in systolic BP ≥10%, P < 0.05). In conclusion, functional impairments in NO-mediated endothelium-dependent dilation were not evident in HTN1. However, regardless of BP classification, the lack of a nocturnal dip in BP was associated with blunted endothelium-dependent dilation.NEW & NOTEWORTHY This is the first study to pharmacologically assess the mechanistic regulation of endothelial function in adults with hypertension, classified according to the 2017 clinical guidelines set for by the American Heart Association (AHA) and American College of Cardiology (ACC). Compared with that in normotensive adults, nitric oxide-mediated endothelium-dependent dilation is impaired in adults with stage 2, but not stage 1, hypertension. Adults lacking a nighttime dip in blood pressure demonstrated reductions in endothelium-dependent dilation.


Assuntos
Pressão Sanguínea , Endotélio Vascular/fisiopatologia , Hipertensão/fisiopatologia , Microvasos/fisiopatologia , Pele/irrigação sanguínea , Vasodilatação , Adulto , Idoso , Ritmo Circadiano , Endotélio Vascular/metabolismo , Feminino , Humanos , Hipertensão/classificação , Hipertensão/diagnóstico , Masculino , Microvasos/metabolismo , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Estudos Retrospectivos , Índice de Gravidade de Doença , Fatores de Tempo
7.
J Physiol ; 597(18): 4743-4755, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31397898

RESUMO

KEY POINTS: Impairments in both central sympathetic and peripheral microvascular function contribute to blunted reflex cutaneous vasodilatation during heat stress in healthy older adults. Hypercholesterolaemia is associated with decrements in neurovascular function; however, little is known about the impact of hypercholesterolaemia on the integrated responses to heat stress. Further, whether chronic statin therapy alters skin sympathetic outflow or its relation to cutaneous vascular conductance during heat stress is unknown. We demonstrate that reflex cutaneous vasodilatation is impaired in older hypercholesterolaemic adults but not in formerly hypercholesterolaemic adults currently treated with a statin compared to age-matched controls. Additionally, chronic statin treatment-induced improvements in reflex vasodilatation are mediated, in part, by increases in end-organ responsiveness to efferent sympathetic outflow during whole-body heating. These data add to the growing body of literature substantiating the beneficial pleiotropic neurovascular effects of chronic statin treatment and provide further support for the use of statins to confer additional cardioprotective benefits in older adults. ABSTRACT: Attenuated reflex cutaneous vasodilatation in healthy human ageing is mediated by alterations in both central (sympathetic outflow) and peripheral (microvascular endothelial) function. Hypercholesterolaemia is associated with further impairments in neurovascular function. HMG-CoA reductase inhibitors (statins) improve cutaneous endothelium-dependent dilatation; however, whether statin therapy alters skin sympathetic nervous system activity (SSNA) or its relation to cutaneous vascular conductance (CVC) during passive heat stress is unknown. We hypothesized that (1) hypercholesterolaemic older adults would demonstrate blunted increases in both SSNA and CVC during passive heating and (2) chronic statin treatment would improve the response range and sensitivity of the SSNA:CVC relation. Reflex vasodilatation in response to a 1.0°C rise in oral temperature (Tor ; water perfused suit) was induced in 13 healthy normocholesterolaemic adults (62 ± 2 years; LDL = 113 ± 7 mg/dl), 10 hypercholesterolaemic adults (60 ± 1 years; LDL = 183 ± 2 mg/dl), and 10 previously hypercholesterolaemic adults (64 ± 1 years; LDL = 102 ± 2 mg/dl) treated with lipophilic statin (10-40 mg daily). SSNA (peroneal microneurography) and red cell flux (laser-Doppler flowmetry) in the innervated dermatome (dorsum of foot) were continuously measured. Reflex vasodilatation was blunted in hypercholesterolaemic adults, but not in statin-treated adults, compared to normocholesterolaemic adults (at ∆Tor  = 1.0°C: normal = 36 ± 1%CVCmax , high = 32 ± 1%CVCmax , statin = 38 ± 1%CVCmax ; P < 0.01). ∆SSNA was not different (at ∆Tor  = 1.0°C: normal: ∆ = 393 ± 96%, high: ∆ = 311 ± 120%, statin: ∆ = 256 ± 90%; P = 0.11). The slope of the SSNA:CVC relation was blunted in hypercholesterolaemic adults (0.02 ± 0.03%CVCmax /%baseline ) compared to both normocholesterolaemic (0.09 ± 0.02%CVCmax /%baseline ; P = 0.024) and statin-treated (0.12 ± 0.05%CVCmax /%baseline ; P = 0.03) adults. Chronic statin treatment improves reflex cutaneous vasodilatation in formerly hypercholesterolaemic older adults by increasing end-organ responsiveness to sympathetic outflow during passive heat stress.


Assuntos
Transtornos de Estresse por Calor/tratamento farmacológico , Resposta ao Choque Térmico/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Administração Cutânea , Envelhecimento/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reflexo/efeitos dos fármacos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
8.
Exp Physiol ; 102(2): 245-254, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859779

RESUMO

NEW FINDINGS: What is the central question of this study? Acetylcholine released from cholinergic nerves can activate both muscarinic and nicotinic receptors. Although each receptor can independently induce cutaneous vasodilatation and eccrine sweating, it remains to be elucidated whether the two receptors interact in order to mediate these responses. What is the main finding and its importance? We show that although nicotinic receptor activation does not modulate muscarinic cutaneous vasodilatation, it lowers the muscarinic receptor agonist threshold at which onset for eccrine sweating (augmentation of muscarinic eccrine sweating) occurs in young men in normothermic resting conditions. These results provide new insights into the physiological significance of nicotinic receptors in the regulation of cutaneous perfusion and eccrine sweating. Acetylcholine released from cholinergic nerves can activate both muscarinic and nicotinic receptors; each is known independently to induce cutaneous vasodilatation and eccrine sweating in humans. However, it is not known whether the two receptors interact in order to mediate cutaneous vasodilatation and eccrine sweating. In 10 young men (27 ± 6 years old), cutaneous vascular conductance and sweat rate were evaluated at intradermal microdialysis sites that were continuously perfused with either lactated Ringer's solution (control) or three different concentrations of nicotine (0.1, 1 and 10 mm), a nicotinic receptor agonist. Co-administration of methacholine, a muscarinic receptor agonist, was performed at all skin sites in a dose-proportional fashion (0.0125, 0.25, 5, 100 and 2000 mm, each for 25 min). Administration of nicotine alone caused dose-dependent transient increases in cutaneous vascular conductance and sweat rate (all P ≤ 0.05), which thereafter returned to pre-nicotine levels, except that a portion of transient responses remained with continuous administration of 10 mm nicotine (both P ≤ 0.05). Cutaneous vascular conductance was increased by administration of ≥0.25 mm methacholine at the control site, and this response was likewise observed in the presence of co-administration of all doses of nicotine used (all P ≤ 0.05). Sweat rate at the control site was increased by administration of ≥0.25 mm methacholine, but the lowest dose of methacholine (0.0125 mm) was able to increase sweat rate in the presence of 10 mm nicotine (P ≤ 0.05). We conclude that nicotinic receptor activation lowers the muscarinic receptor agonist threshold for eccrine sweating (augmentation of muscarinic sweating) but does not affect muscarinic cutaneous vasodilatation in young men in normothermic resting conditions.


Assuntos
Glândulas Écrinas/fisiologia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Pele/irrigação sanguínea , Sudorese/fisiologia , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Adulto , Glândulas Écrinas/efeitos dos fármacos , Glândulas Écrinas/metabolismo , Humanos , Masculino , Cloreto de Metacolina/farmacologia , Microdiálise/métodos , Agonistas Muscarínicos/farmacologia , Nicotina/farmacologia , Descanso/fisiologia , Pele/efeitos dos fármacos , Pele/metabolismo , Suor/efeitos dos fármacos , Suor/metabolismo , Suor/fisiologia , Sudorese/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
9.
Free Radic Biol Med ; 172: 451-458, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34129928

RESUMO

We tested the hypotheses that 1) cutaneous microvascular function is impaired by acute normobaric and chronic hypobaric hypoxia and 2) that the superoxide free radical (via NADPH oxidase or xanthine oxidase) contributes to this impairment via nitric oxide (NO) scavenging. Local heating-induced cutaneous hyperemia (39 °C) was measured in the forearm of 11 male lowlanders at sea level (SL) and following 14-18 days at high altitude (HA; 4340 m in Cerro de Pasco, Peru), and compared to 11 highlanders residing permanently at this elevation. Cutaneous vascular conductance (CVC; laser-Doppler flux/mean arterial pressure) was not different during 39 °C [control site: 73 (19) vs. 71 (18)%max; P = 0.68] between normoxia and acute normobaric hypoxia (FIO2 = 0.125; equivalent to HA), respectively. At HA, CVC was reduced during 39 °C in lowlanders compared to SL [control site: 54 (14) vs. 73 (19)%max; P < 0.01] and was lower in Andean highlanders compared to lowlanders at HA [control site: 50 (24) vs. 54 (14)%max; P = 0.02]. The NO contribution to vasodilation during 39 °C (i.e., effect of NO synthase inhibition) was reduced in lowlanders at HA compared to SL [control site: 41 (11) vs 49 (10)%max; P = 0.04] and in Andean highlanders compared to lowlanders at HA [control site: 32 (21) vs. 41 (11)%max; P = 0.01]. Intradermal administration (cutaneous microdialysis) of the superoxide mimetic Tempol, inhibition of xanthine oxidase (via allopurinol), or NADPH oxidase (via apocynin) had no influence on cutaneous endothelium-dependent dilation during any of the conditions (all main effects of drug P > 0.05). These results suggest that time at HA impairs NO-mediated cutaneous vasodilation independent of enzymatic superoxide formation.


Assuntos
Óxido Nítrico , Vasodilatação , Humanos , Hipóxia , Masculino , Fluxo Sanguíneo Regional , Pele , Superóxidos
10.
Auton Autacoid Pharmacol ; 33(3-4): 25-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23663206

RESUMO

(1) The effects of local sensory blockade (topical anaesthesia) on eccrine sweat glands and cutaneous circulation are not well understood. This study aimed to determine whether topical lidocaine/prilocaine alters eccrine sweat gland and cutaneous blood vessel responses. (2) Sweating (capacitance hygrometry) was induced via forearm intradermal microdialysis of five acetylcholine (ACh) doses (1 × 10(-4) to 1 × 10(0) m, 10-fold increments) in control and treated forearm sites in six healthy subjects. Nitric oxide-mediated vasodilatory (sodium nitroprusside) and adrenergic vasoconstrictor (noradrenaline) agonists were iontophoresed in lidocaine/prilocaine-treated and control forearm skin in nine healthy subjects during blood flow assessment (laser Doppler flowmetry, expressed as% from baseline cutaneous vascular conductance; CVC; flux/mean arterial pressure). (3) Non-linear regression curve fitting identified no change in the ED50 of ACh-induced sweating after sensory blockade (-1.42 ± 0.23 logM) compared to control (-1.27 ± 0.23 logM; P > .05) or in Emax (0.43 ± 0.08 with, 0.53 ± 0.16 mg cm(-2) min(-1) without lidocaine/prilocaine; P > .05). Sensory blockade did not alter the vasodilator response to sodium nitroprusside (1280 ± 548% change from baseline CVC with, 1204 ± 247% without lidocaine/prilocaine) or vasoconstrictor response to noradrenaline (-14 ± 4% change from baseline CVC with, -22 ± 14% without lidocaine/prilocaine; P > 0.05). (4) Cutaneous sensory blockade does not appear to alter nitric oxide-mediated vasodilation, adrenergic vasoconstriction, or cholinergic eccrine sweating dose-response sensitivity or responsiveness to maximal dose. Thus, lidocaine/prilocaine treatment should not affect sweat gland function or have blood flow implications for subsequent research protocols or clinical procedures.


Assuntos
Anestésicos Locais/administração & dosagem , Anestésicos Locais/farmacologia , Lidocaína/farmacologia , Prilocaína/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Pele/efeitos dos fármacos , Glândulas Sudoríparas/efeitos dos fármacos , Sudorese/efeitos dos fármacos , Acetilcolina/farmacologia , Administração Cutânea , Agonistas Adrenérgicos/farmacologia , Adulto , Agonistas Colinérgicos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Antebraço/fisiologia , Humanos , Lidocaína/administração & dosagem , Combinação Lidocaína e Prilocaína , Masculino , Nitroprussiato/farmacologia , Prilocaína/administração & dosagem , Fluxo Sanguíneo Regional/fisiologia , Pele/irrigação sanguínea , Glândulas Sudoríparas/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA