Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 255: 119192, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777299

RESUMO

The present study evaluates the adsorption efficiency of low-cost carbonaceous adsorbents as fly ash (FA), saw dust biochar (SDB) (untreated and alkali - treated), live/dead pulverized white rot fungus Hypocrea lixii biomass encapsulated in sodium alginate (SA) against the commercially available activated carbon (AC) and graphene oxide (GO) SA beads for removal of benzene phenol derivatives - Bisphenol A (BPA)/triclosan (TCS). Amongst bi - and tri - composites SA beads, tri-composite beads comprising of untreated flyash - dead fungal biomass - sodium alginate (UFA - DB - SA) showed at par results with commercial composite beads. The tri - composite beads with point zero charge (Ppzc) of 6.2 was characterized using FTIR, XRD, surface area BET and SEM-EDX. The batch adsorption using tri - composite beads revealed removal of 93% BPA with adsorption capacity of 16.6 mg/g (pH 6) and 83.72% TCS with adsorption capacity of 14.23 mg/g (pH 5), respectively at 50 ppm initial concentration with 6 % adsorbent dose in 5 h. Freundlich isotherm favoring multilayered adsorption provided a better fit with r2 of 0.9674 for BPA and 0.9605 for TCS respectively. Intraparticle diffusion model showed adsorption of BPA/TCS molecules to follow pseudo - second order kinetics with boundary layer diffusion governed by first step of fast adsorption and intraparticle diffusion within pores by second slow adsorption step. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) revealed adsorption process as exothermic, orderly and spontaneous. Methanol showed better desorbing efficiency leading to five cycles reusability. The phytotoxicity assay revealed increased germination rate of mung bean (Vigna radiata) seeds, sprinkled with post adsorbed treated water (0 h, 5 h and 7 h) initially spiked with 50 ppm BPA/TCS. Overall, UFA - DB - SA tri - composite beads provides a cost effective and eco - friendly matrix for effective removal of hydrophobic recalcitrant compounds.


Assuntos
Alginatos , Compostos Benzidrílicos , Fenóis , Adsorção , Fenóis/química , Alginatos/química , Compostos Benzidrílicos/química , Grafite/química , Poluentes Químicos da Água/química , Carvão Vegetal/química , Hypocrea/química , Cinza de Carvão/química
2.
Biometals ; 36(6): 1307-1329, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37428423

RESUMO

The present work investigated the utilization of dead biomass of the highly multi-heavy metals tolerant indigenous fungal strain NRCA8 isolated from the mycobiome of fertilizer industry effluents that containing multiple heavy metal ions at high levels to remove Pb2+, Ni2+, Zn2+, and Mn2+ as multiple solutes from multi-metals aqueous solutions for the first time. Based on morphotype, lipotype and genotype characteristics, NRCA8 was identified as Cladosporium sp. NRCA8. The optimal conditions for the bioremoval procedure in the batch system were pH 5.5 for maximum removal (91.30%, 43.25%, and 41.50%) of Pb2+, Zn2+ and Mn2+ but pH 6.0 supported the maximum bioremoval and uptake of Ni2+ (51.60% and 2.42 mg/g) by NRCA8 dead biomass from the multi-metals aqueous solution, respectively. The 30 min run time supported the highest removal efficiency and uptake capacity of all heavy metals under study. Moreover, the equilibrium between the sorbent NRCA8 fungal biomass and sorbates Ni2+, Pb2+ and Zn2+ was attained after increasing the dead biomass dose to 5.0 g/L. Dead NRCA8 biomass was described by scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectrometer before and after biosorption of Pb2+, Ni2+, Zn2+ and Mn2+ under multiple metals system. The Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich isotherms were applied to characterize the adsorption equilibrium between Pb2+, Ni2+, Mn2+ and Zn2+ and the adsorbent NRCA8. By comparing the obtained coefficient of regression (R2) by Freundlich (0.997, 0.723, 0.999, and 0.917), Langmiur (0.974, 0.999, 0.974, and 0.911) and Dubinin-Radushkevich (0.9995, 0.756, 0.9996 and 0.900) isotherms values for Pb2+, Zn2+, Ni2+ and Mn2+ adsorption, respectively, it was found that the isotherms are proper in their own merits in characterization the possible of NRCA8 for removal of Pb2+, Zn2+, Ni2+ and Mn2+. DKR isotherm is the best for Pb2+ and Ni2+ (0.9995 and 0.9996) while Langmiur isotherm giving a good fit to the Zn2+ sorption (0.9990) as well as Freundlich isotherm giving a good fit to the Mn2+ sorption (0.9170). The efficiencies of Cladosporium sp. NRCA8 dead biomass for bioremoval of heavy metals from real wastewater under the optimized conditions were Pb2+, Ag+, Mn2+, Zn2+ and Al3+ ˃ Ni2+ ˃ Cr6+ ˃ Co2+ ˃ Fe3+ ˃ Cu2+ ˃ Cd2+. Dead NRCA8 biomass showed efficient ability to adsorb and reduce harmful components in the industrial effluents to a level acceptable for discharge into the environment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Fertilizantes , Biomassa , Chumbo , Metais Pesados/química , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética
3.
Int J Phytoremediation ; 25(2): 125-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35594381

RESUMO

Acid modification of orange peels (OPAC); an agro-waste, using ortho-phosphoric acid was carried out. OPAC was characterized using FTIR and SEM, BET and elemental Analysis techniques respectively. It was then used for the adsorption of metformin (MET) from aqueous solutions. OPAC has different functional groups and prominent pore sizes suitable for the sorption of MET. Experimental parameters such as effects of contact time, MET initial concentrations, solution temperature and solution pH were investigated. Optimum MET adsorption onto OPAC was obtained at a contact time: of 240 minutes, Initial MET concentration: 5 mg/L, Temperature: 323 K, and pH 7. The highest percentage of MET removal using OPAC was 97.23%. Sorption data were fitted into four different isotherm models; Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. Freundlich isotherm model best explained the sorption data with the high affinity of adsorption (R2 value) observed at 303 K. Langmuir isotherm gives an optimum monolayer sorption capacity of 50.99 mg/g at 323 K. Kinetic studies of the sorption process were investigated using pseudo-first-order, pseudo-second-order, Elovich, and Intraparticle diffusion kinetic models, and the data fitted best the pseudo-second-order kinetic model. Thermodynamic studies revealed that the sorption process is spontaneous, feasible, and endothermic. The energy of activation, Ea suggests a physisorption mechanism of MET sorption onto OPAC. Conclusively, OPAC was an efficient adsorbent for the sorption of MET from aqueous solutions. NOVELTY STATEMENT Orange peel activated carbon (OPAC) adsorbent gave a higher qo value for metformin removal from aqueous solution than other adsorbents previously reported in the literature.The highest percentage of removal of metformin drug-using OPAC was 97.23%. This is highly commendable.


Assuntos
Citrus sinensis , Poluentes Químicos da Água , Carvão Vegetal/química , Adsorção , Cinética , Biodegradação Ambiental , Termodinâmica , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
4.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762092

RESUMO

Microporous sodium titanosilicate, Na2TiSiO5, has been successfully prepared using the sol-gel method. The structural and morphological characterization of synthesized product has been made via thermal analyses (TG-DTG), X-ray diffraction (XRD), and electron microscopy (SEM and TEM). Adsorption properties of the synthesized Na2TiSiO5 nanopowder for Pb(II) removal of aqueous media was investigated in different experimental conditions such as the contact time, the initial metal concentration, the pH, and the temperature. The Pb(II) adsorption on Na2TiSiO5 was discussed according to the kinetics and thermodynamics models. The adsorption kinetics of Pb(II) have been better described by the PS-order kinetic model which has the highest fitting correlation coefficients (R2: 0.996-0.999) out of all the other models. The adsorption results have been successfully fitted with the Langmuir and Redlich-Paterson models (R2: 0.9936-0.9996). The calculated thermodynamic parameters indicate that the Pb(II) adsorption is an endothermic process, with increased entropy, having a spontaneous reaction. The results have revealed a maximum adsorption capacity of 155.71 mg/g at 298 K and a very high adsorption rate at the beginning, more than 85% of the total amount of Pb(II) being removed within the first 120 min, depending on the initial concentration.


Assuntos
Chumbo , Sódio , Termodinâmica , Entropia , Temperatura
5.
Artigo em Inglês | MEDLINE | ID: mdl-36840367

RESUMO

In recent times, ground water contamination by toxic elements is of great concern and it is to be addressed for consumption of human, animal, and plant growth. In this context, we have synthesized an adsorbent by modifying commercially available activated carbon with aluminum and tested for de-fluoridation studies. The activity results suggested that the optimized adsorbent is highly efficient in removing the fluoride from ground water. Adsorption maxima are obtained over a wide pH range from 4 to 9, with a contact time of 15 minutes at a dosage of 4 g/L. The results also revealed that the synthesized adsorbent is suitable for application in ground water without any pH adjustment and has exhibited 85%-95% tolerance for common anions in the range of 100-500 mg/L. Equilibrium adsorption isotherm models as well as kinetics of adsorption were applied for the system. An adsorption capacity of 20.4 mg/g and fast kinetics observed are most favorable for defluoridation. Reuse of adsorbent over repeated cycles was investigated. Residual amount of aluminum in treated water is found to be negligible. The removal of toxic elements like Pb, Cd, Cr, Cu, Ni, Zn, As, and Se under the optimized experimental conditions has also been investigated. Al-AC found to be a highly promising material for removal of fluoride and toxic metals from drinking water.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Humanos , Fluoretos/química , Alumínio/química , Carvão Vegetal , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-37272070

RESUMO

As the carrier of various inorganics and organics from various media, micro(nano)plastics have an impact on the environment and human health. Recently, many studies have examined the sorption of various organics including antibiotics. However, while vitamins have critical roles in the environment and microsystems from humans to plant life, the sorption of vitamins onto micro(nano)plastics are still uninvestigated. Therefore, the aim of this study was to examine the sorption of vitamin B1 onto various micro(nano)plastics from food packages under different pHs using batch technique; sorption kinetics and isotherms models were investigated as well. The results indicated that higher capacities were obtained between 360 min to 1440 min in polypropylene and polyethylene micro(nano)plastics, and similar kinetic behaviors observed in different pHs. However, the sorption responses (sorption capacity, equilibrium time) of polyethylene terephthalate and polystyrene were varied. The sorption kinetics between vitamin B1 and micro(nano)plastics showed that the pseudo-first-order model was better to fit for polyethylene terephthalate and polystyrene compared to the pseudo-second-order kinetics, however it was changed for polypropylene and polyethylene. Moreover, the obtained results suggest a complex nature of vitamin B1 sorption, including both chemical and physical sorption occur under various pHs and polymer types.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/química , Poliestirenos , Polipropilenos/química , Polietilenotereftalatos , Tiamina , Polietileno/química , Vitaminas , Adsorção , Poluentes Químicos da Água/análise , Cinética
7.
J Appl Microbiol ; 132(3): 2080-2092, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837317

RESUMO

AIMS: The adsorption of lead ions from aqueous solution by macroporous Ca-alginate-lignin (MCAL) beads immobilized with Clostridium tyrobutyricum and free strains was evaluated. METHODS AND RESULTS: The effects of different factors including pH, adsorption time, adsorbent dosage and initial concentration of lead ions were explored. Different characterization methods were used to evaluate the adsorption process of lead ions. Meanwhile, the adsorption kinetics models and adsorption isotherm models were applied. The fitting results showed that the adsorption behaviour of C. tyrobutyricum immobilized in MCAL beads and free strains was better described by the pseudo-second-order kinetic model and the adsorption process followed the Langmuir isotherm model. The maximum biosorption of lead ions by C. tyrobutyricum immobilized in MCAL beads and free strains was 144.9 and 106.4 mg/g respectively. CONCLUSIONS: The C. tyrobutyricum immobilized in MCAL beads proved to be practicable and had better adsorption effects on lead ions compared with the free strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The paper demonstrated a new insight and strategy for the effective treatment of lead ions from aqueous solutions by the novel function of C. tyrobutyricum.


Assuntos
Clostridium tyrobutyricum , Poluentes Químicos da Água , Adsorção , Alginatos/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Lignina , Poluentes Químicos da Água/análise
8.
Ecotoxicology ; 31(4): 615-625, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34498220

RESUMO

In the present study, the natural biosorption capacity of Acacia nilotica sawdust (wood biomass) was studied for the removal of copper (Cu) and zinc (Zn) heavy metal ions. The process was optimized for several important factors such as pH, contact time, biomass amount, and metal ion concentration. The maximum biosorption of Zn onto Acacia nilotica sawdust was 66.092% at pH 7.0, contact time 20 min, biomass concentration 0.4 g, and initial Zn concentration 8.4 mg/L. The maximum Cu biosorption to Acacia nilotica sawdust was 66.097% at pH 4, contact time 45 min, biomass 0.8 g, initial metal ion concentration 27 mg/L. The experimental data were analyzed by two different adsorption isotherms i.e. Langmuir and Freundlich models. Based on the regression coefficient the Freundlich isotherm model showed the best fit for Zn whereas Cu metal ion adsorption gave a favorable fit for Langmuir isotherm. Both metal ions followed pseudo-second-order kinetics in the adsorption process using sawdust of Acacia nilotica.


Assuntos
Acacia , Metais Pesados , Poluentes Químicos da Água , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Sulfatos , Água , Poluentes Químicos da Água/análise , Madeira/química , Zinco
9.
Int J Phytoremediation ; 24(1): 88-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34024213

RESUMO

Herein, mesoporous activated carbon (AC) was prepared through potassium hydroxide (KOH) activation of hydrochar derived from the hydrothermal carbonization (HTC) of chickpea stem (CS), and successfully applied to remove methylene blue (MB) dye from aqueous solutions in a batch system. The HTC-CSAC was prepared depending on different impregnation ratios (hydrochar:KOH, 50-150%), impregnation times (12-48 h), activation temperatures (400-600°C) and activation times (30-60 min). To define HTC-CSAC, various analytical techniques such as iodine adsorption number (IAN), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) were used. In the removal process of MB by the best HTC-CSAC with a high IAN of 887 mg g-1 obtained under conditions including impregnation ratio of 70%, activation time of 45 min, activation temperature of 600°C and impregnation time of 24 h, the effects of adsorption parameters such as pH factor (2-10), adsorbent dosage (50-100 mg), initial MB concentration (40-80 mg/L) and contact time (90-180 min) were studied. Besides, a detailed evaluation of the adsorption mechanism for the removal of MB by HTC-CSAC was performed. The Langmuir model indicated the best isotherm data correlation, with a maximum monolayer adsorption capacity (Qmax) of 96.15 mg g-1. The adsorption isotherm findings demonstrated that the MB removal process is feasible, and that this process takes place through the physical interaction mechanism. Additionally, the HTC-CSAC adsorbent exhibited a high regeneration and reuse performance in MB removal. After five consecutive adsorption-desorption cycles, HTC-CSAC maintained the reuse efficiency of 77.86%. As a result, the prepared HTC-CSAC with a high BET surface area of 455 m2 g-1 and an average pore diameter of 105 Å could be recommended as a promising and reusable adsorbent in the treatment of synthetic dyes in wastewaters.


Assuntos
Cicer , Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Carvão Vegetal , Cinética , Azul de Metileno/análise , Poluentes Químicos da Água/análise
10.
J Environ Manage ; 318: 115593, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772272

RESUMO

The focus of this study is the characterization of unconventional sand-based substrates used in our previous project EmiSûre, (Interreg Greater Region (German federal states Rhineland-Palatinate and Saarland, the Grand Duchy of Luxembourg, regions Wallonia and Lorraine from Belgium and France, respectively), 2017-2021). The project aimed to develop and test alternative, nature-based technologies for the elimination of micropollutants (MPs) from municipal wastewater. For the characterization, two approaches were chosen. In the first approach, adsorption kinetics with a single compound allowed a perception of the adsorption capacity of the studied substrates compared to conventional substrates (granular activated carbons). This knowledge was completed by the second approach: an implementation of the studied substrates in packed-bed columns, which treated a mixture of 27 MPs in tap water for 10 months. Additionally, all three substrates (bentonite sand, sand with 15% activated biochar and sand with 15% zeolite) were characterized for physical and chemical properties, and the microbial potential of the activated and non-activated biochar was examined. From the studies, it is clear that the sand with an admixture of activated biochar is the most efficient sorbent in terms of single compound adsorption in batch (dye) and adsorption of 27 MPs on packed-bed columns. In contrast to the two other substrates, it shows long-term stable removal efficiencies. In the packed-bed columns, 18 out of 27 compounds were removed on average with high efficiency (80-99%), which is impressive, if we consider the variety of the compounds examined (pharmaceuticals, herbicides, pesticides, etc.) and their removal in conventional treatments. Additionally, adsorption models were created for the experimental data of all compounds adsorbed on the substrate with an admixture of activated biochar resulting in the best fit with the combined Langmuir-Freundlich model. These satisfying results suggest the application of the sand-based substrate with an admixture of activated biochar for further research and possibly upscale installations with the aim to offer and prove a reasonable and efficient alternative for MPs elimination from municipal wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Cinética , Areia , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
11.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360943

RESUMO

Good sorption properties and simple synthesis route make schwertmannite an increasingly popular adsorbent. In this work, the adsorption properties of synthetic schwertmannite towards Cr(VI) were investigated. This study aimed to compare the properties and sorption performance of adsorbents obtained by two methods: Fe3+ hydrolysis (SCHA) and Fe2+ oxidation (SCHB). To characterise the sorbents before and after Cr(VI) adsorption, specific surface area, particle size distribution, density, and zeta potential were determined. Additionally, optical micrographs, SEM, and FTIR analyses were performed. Adsorption experiments were performed in varying process conditions: pH, adsorbent dosage, contact time, and initial concentration. Adsorption isotherms were fitted by Freundlich, Langmuir, and Temkin models. Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and liquid film diffusion models were used to fit the kinetics data. Linear regression was used to estimate the parameters of isotherm and kinetic models. The maximum adsorption capacity resulting from the fitted Langmuir isotherm is 42.97 and 17.54 mg·g-1 for SCHA and SCHB. Results show that the adsorption kinetics follows the pseudo-second-order kinetic model. Both iron-based adsorbents are suitable for removing Cr(VI) ions from aqueous solutions. Characterisation of the adsorbents after adsorption suggests that Cr(VI) adsorption can be mainly attributed to ion exchange with SO42- groups.


Assuntos
Compostos Férricos/química , Compostos de Ferro/química , Dicromato de Potássio/química , Adsorção , Hidrólise , Oxirredução
12.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467391

RESUMO

Prussian blue (PB) and PB analogues (PBA) are coordination network materials that present important similarities with zeolites concretely with their ability of adsorbing cations. Depending on the conditions of preparation, which is cheap and easy, PB can be classified into soluble PB and insoluble PB. The zeolitic-like properties are mainly inherent to insoluble form. This form presents some defects in its cubic lattice resulting in an open structure. The vacancies make PB capable of taking up and trapping ions or molecules into the lattice. Important adsorption characteristics of PB are a high specific area (370 m2 g-1 determined according the BET theory), uniform pore diameter, and large pore width. PB has numerous applications in many scientific and technological fields. PB are assembled into nanoparticles that, due to their biosafety and biocompatibility, can be used for biomedical applications. PB and PBA have been shown to be excellent sorbents of radioactive cesium and radioactive and nonradioactive thallium. Other cations adsorbed by PB are K+, Na+, NH4+, and some divalent cations. PB can also capture gaseous molecules, hydrocarbons, and even luminescent molecules such as 2-aminoanthracene. As the main adsorptive application of PB is the selective removal of cations from the environment, it is important to easily separate the sorbent of the purified solution. To facilitate this, PB is encapsulated into a polymer or coats a support, sometimes magnetic particles. Finally, is remarkable to point out that PB can be recycled and the adsorbed material can be recovered.


Assuntos
Césio/química , Corantes/química , Ferrocianetos/química , Poluentes Químicos da Água/química , Zeolitas/química , Adsorção , Materiais Biocompatíveis/química , Íons , Cinética , Solubilidade
13.
J Environ Manage ; 288: 112455, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33780815

RESUMO

The growing consumption of anxiolytic drugs like diazepam (DZP) has aggravated the problem of persistent organic pollutants in water. Due to its characteristics, the removal of DZP from water and wastewater is a challenging task. As an effort to deals with this issue, in this study, we report the development of a hydrogel based on Gum Arabic (GA) grafted with poly(acrylic acid) (GA-g-PAAc) to be used in the adsorptive removal of DZP from water. The hydrogel formation was confirmed by Fourier-transform infrared (FTIR) spectroscopy and thermal analysis (TGA/DTG) analyses. Images obtained by scanning electron microscopy (SEM) revealed that GA-g-PAAc hydrogel exhibits a porous morphology while swelling experiments suggest a superabsorbent characteristic (degree of swelling> 600%). From batch experiments, it was found that the removal of DZP reached remarkable percentages (>80%) before 300 min in moderate experimental conditions (pH 7, 25 °C, 150 mg of adsorbent). The adsorption of DZP on GA-g-PAAc followed the pseudo-first order kinetics, and the mechanism was described by the linear Langmuir isotherm. The maximum adsorption capacity (qmax) was calculated to be 15.16 mg g-1 (at 25 °C), which is comparable or superior to other adsorbent materials used in DZP removal. Reuse experiments showed that GA-g-PAAc keeps appreciable adsorption ability even after five reuse cycles. The results reported here suggest this superabsorbent hydrogel could be a promising adsorbent material to treat water contaminated by anxiolytic drugs, like DZP.


Assuntos
Ansiolíticos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Goma Arábica , Hidrogéis , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Água
14.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802008

RESUMO

The finite pore volume Guggenheim-Anderson-de Boer (fpv-GAB) adsorption isotherm model has been considered as a simple tool which not only enables us to analyze the shape of isotherms theoretically, but also provides information about pore diameter. The proposed methodology is based on the geometrical considerations and the division of the adsorption space into two parts: the monolayer and the multilayer space. The ratio of the volumes of these two spaces is unambiguously related to the pore diameter. This ratio can be simply determined from the N2 adsorption isotherm by its fitting with the use of fpv-GAB model. The volume ratio is equal to the ratio of the adsorption capacities in the monolayer and the multilayer-two of the best-fit parameters. The suggested approach has been verified using a series of isotherms simulated inside ideal carbon nanotubes. The adsorption data for some real adsorbents has also been used during tests. The studies performed have proven that diameters estimated with the use of the proposed method are comparable with the geometrical sizes or diameters published by others and based on the application of more sophisticated methods. For pores wider than 3 nm, the relative error does not exceed a few percent. The approach based on the fpv-GAB model reflects well the differences in pore sizes for the series of materials. Therefore, it can be treated as a convenient tool to compare various samples.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34558387

RESUMO

The objective of this research was to study an effective adsorbent for removing azithromycin (AZT) from industrial wastewater. AZT is an antibiotic used for many diseases remedy, but it is a pollutant to our environment; therefore, its residual should be removed from wastewater. The mesoporous SBA-15 silica as an efficient adsorbent was prepared by the hydrothermal method. The surface of mesoporous SBA-15 plays a significant role in the removal process; therefore, the characterization of the adsorbent was accomplished by several techniques. The batch system has been used, and the effect of four essential variables: pH (3-10), drug concentration (20-200 mg L-1), sorbent weight (0.2-2 g L-1), and temperature (20-40 °C) were investigated on the AZT removal efficiency by response surface methodology (RSM). The isotherm results were found to be in proper compliance with the isotherm model of Freundlich. In the kinetics part of this study, the experimental outcomes were fitted to the equation model of pseudo-second-order. The calculation of thermodynamic parameters shows that the removal process is spontaneous and endothermic. Upon the results, the vast surface area, the active functional groups, reusability, stability, and inexpensively make the mesoporous SBA-15 a suitable candidate for removal of AZT and similar antibiotics.


Assuntos
Azitromicina , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Dióxido de Silício , Termodinâmica , Poluentes Químicos da Água/análise
16.
Environ Res ; 173: 1-11, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884433

RESUMO

Covalent-organic polymers (COPs) are recognized for their great potential for treating diverse pollutants via adsorption. In this study, the sorption behavior of benzene and toluene was investigated both individually and in a binary mixture against two types of COPs possessing different -NH2 functionalities. Namely, the potential of COPs was tested against benzene and toluene in a low inlet partial pressure range (0.5-20 Pa) using carbonyl-incorporated aromatic polymer (CBAP)-1-based diethylenediamine (EDA) [CD] and ethylenetriamine (DETA) [CE]. The maximum adsorption capacity and breakthrough values of both COPs showed dynamic changes with increases in the partial pressures of benzene and toluene. The maximum adsorption capacities (Amax) of benzene (as the sole component in N2 under atmospheric conditions) on CD and CE were in the range of 24-36 and 33-75 mg g-1, respectively. In contrast, with benzene and toluene in a binary mixture, the benzene Amax decreased more than two-fold (range of 2.7-15 and 6-39 mg g-1, respectively) due to competition with toluene for sorption sites. In contrast, the toluene Amax values remained consistent, reflecting its competitive dominance over benzene. The adsorption behavior of the targeted compounds (i.e., benzene and toluene) was explained by fitting the adsorption data by diverse isotherm models (e.g., Langmuir, Freundlich, Elovich, and Dubinin-Radushkevich). The current research would be helpful for acquiring a better understanding of the factors affecting competitive adsorption between different VOCs in relation to a given sorbent and across varying partial pressures.


Assuntos
Gases , Hidrocarbonetos/química , Nanoporos , Polímeros , Adsorção , Benzeno , Pressão Parcial , Tolueno
17.
Ecotoxicol Environ Saf ; 172: 144-151, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30708225

RESUMO

The use of organic fertilization increases the availability of phosphorus (P) in calcareous soils by affecting the colloidal properties of soils. Accordingly, it was hypothesized that chemical and organic fertilizers affect P availability in calcareous soils by influencing P sorption and buffering capacity. The objective was to investigate the quantity/intensity (Q/I) relation in calcareous soils as affected by chemical and organic P fertilization. Three different soil types with different Olsen-P values including Qazvin1 (very low P, VLP), Qazvin2 (low P, LP) and Dizan (medium P, MP) were fertilized with 50 mg P kg-1 soil using triple superphosphate (TSP), sheep manure (SM), and municipal solid waste compost (MSWC). The treated experimental soils were incubated for 90 days, and P sorption and buffering capacity indexes were determined using calcium chloride solutions in a range of 0-100 mg P L-1. A greenhouse experiment was conducted to determine wheat (Triticum aestivum L.) response to the experimental treatments. Wheat P content at tillering (60 days after planting) was determined. The SM and TSP treatments were the most efficient sources of P for plant use in the greenhouse, as they resulted in the highest wheat growth and P content. The incubation data were fitted to Langmuir, Freundlich, Temkin and surface sorption isotherm models. Langmuir model, as the best fitted one, indicated the highest P sorption (A) was resulted by the SM treatment for VLP and LP soils, compared to the other treatments. According to the model, the SM and MSWC treatments resulted in the least (0.04) and the highest (1.11) sorption energy (K) by the VLP soil, respectively. In the VLP soil the SM and MSWC treatments, and in the LP soil the MSWC treatment decreased P sorption, at the final concentration of P (100 mg L-1), compared to the control treatment. Organic fertilizers decreased buffering index, phosphorous buffering capacity, and K1 indexes in the VLP soil, compared to the control treatment. The corresponding reductions for SM were equal to 35.99, 2.7, 1.19 mL P g-1 and for MSWC were equal to 12.33, 36.2 and 1.19 mL P g-1. In the VLP and MP soils, (compared with control), the SM treatment decreased the rates of maximum buffering capacity at 0.38 and 0.52 mL P g-1, respectively. There were high and significant correlations among the soil P buffering indexes with soil and wheat P content. Fertilization affected soil P availability by affecting the Q/I relation and the buffering capacity indexes. It is possible to predict plant response to available P using the tested fitting models.


Assuntos
Fertilizantes/análise , Fósforo/análise , Solo/química , Animais , Esterco/análise , Ovinos , Resíduos Sólidos , Triticum/crescimento & desenvolvimento
18.
Mikrochim Acta ; 186(8): 571, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31342177

RESUMO

This article describes the synthesis and application of a novel sorbent for Cr(III) and Cr(VI) speciation prior to their quantitation by inductively coupled plasma mass spectrometry. The sorbent consists of polystyrene-divinyl benzene microbeads that were graft-coated with poly(oligo (ethylene glycol) methacrylate)-block-poly(glycidyl methacrylate). The particles were finally modified with phosphomethylated triethylene tetramine. The resulting microbeads are shown to be a viable sorbent for Cr(VI). The total concentration of chromium was determined after oxidation of Cr(III) to Cr(VI) with KMnO4 using the novel sorbent. The Cr(III) amount was then calculated by subtracting the concentration of Cr(VI) from that of total chromium. The optimum conditions for batch type sorption were established. Under optimal conditions, the limit of detection and quantification are 0.015 µg L-1 and 0.050 µg L-1, respectively. The kinetics and isotherms of the sorption of Cr(VI) were investigated. Following desorption with 0.1 M hydroxylamine hydrochloride, the method was successfully applied to spiked real water samples and a certified reference material. Graphical abstract Schematic presentation of a method for the sorption and speciation of chromium using amino methyl phosphonic acid functional brushes on polystyrene-divinyl benzene microspheres.

19.
Molecules ; 24(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823358

RESUMO

Nanocomposites of natural bone that show some benefits in terms of both composition and microstructure were synthesized by an in situ precipitation method. Hydroxyapatite (Hap) was prepared from cost-effective precursors within chitosan (CS) dissolved in aqueous acetic acid solution. The nanocomposite was synthesized for the removal of brilliant green dye (BG) from a contaminated water solution. The compositional and morphological properties of the nanocomposite were studied by means of FTIR spectroscopy, X-ray diffraction (XRD), SEM, and TEM analysis. Batch experiments were carried out to investigate the effects of pH, contact time, and initial concentration, as well as the adsorbent dosage and zero point charge for the sorbent to determine a suitable medium for the adsorption process. The sorption models using Mories-Weber, Lagrange, and Bangham equations were used to identify the mechanism and reaction order. The isotherm model was carried out using Langmuir, Freundlich, and Dubinin-Radusekevisch-Kanager equations to calculate the adsorption capacity and type of adsorption. Thermodynamic parameters, enthalpy change (∆Ho), entropy change (∆So), and Gibbs free energy (∆Go) were evaluated. All of the results suggest the feasibility of using nanocomposites as a sorbent for brilliant green dye removal.


Assuntos
Quitosana/química , Durapatita/química , Nanocompostos/química , Compostos de Amônio Quaternário/química , Poluentes Químicos da Água/química , Purificação da Água , Adsorção
20.
Molecules ; 24(3)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764473

RESUMO

The contamination of water surfaces by mercury is a dangerous environmental problem due to its toxicity, which leads kidney damage. Activated carbon from mixed recyclable waste modified by phosphonium-based ionic liquid (IL-ACMRW) was therefore prepared and evaluated for Hg(II) remediation. The activated carbon used in this study was prepared from mixed waste, including cardboard, papers and palm wastes as cheap raw materials. The mixed Recyclable Waste Activated Carbon was combined with trihexyl(tetradecyl)phosphonium Bis2,4,4-(trimethylpentyl)phosphinate (Cyphos® IL 104) ionic liquid to form an adsorbent with organic-inorganic content, in order to improve the Hg(II) uptake from aqueous solutions. FTIR confirms the presence of P, C=O and OH after this modification. The adsorption process was investigated and the evaluated results showed that the capacity was 124 mg/g at pH 4, with a contact time of 90 min, an adsorbent dose of 0.4 g/L, and a Hg(II) concentration of 50 mg/L. This Hg(II) adsorption capacity is superior than that reported in the literature for modified multiwall carbon nanotubes. The adsorption of Hg(II) on the modified activated carbon from mixed recyclable waste was found to follow the pseudo second-order kinetics model. Isotherms of adsorption were analyzed via Freundlich and Langmuir models. The results indicated that Freundlich is the best model to describe the process, suggesting multilayer adsorption.


Assuntos
Carvão Vegetal/química , Líquidos Iônicos/química , Mercúrio/química , Compostos Organofosforados/química , Adsorção , Poluentes Químicos da Água , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA