Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pain ; 20: 17448069241258110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38744422

RESUMO

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Assuntos
Adenilil Ciclases , Colforsina , Giro do Cíngulo , Potenciação de Longa Duração , Animais , Camundongos , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Colforsina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Masculino , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cálcio/metabolismo
2.
Chemistry ; : e202402696, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190899

RESUMO

Electrochemical transformations are considered a green alternative to classical redox chemistry as it eliminates the necessity for toxic and waste producing redox reagents. Typical electrochemical reactions require the addition of a so-called supporting electrolyte - a salt bridge - and other additives, such as hexafluorisopropanol, to enhance conductivity and reaction outcomes, respectively. However, this is often accompanied by an increase in the amount of produced waste. Here, we report an "in-situ electrolyte" concept for facile, transition-metal-free, additive-free one-pot electrochemical preparation of isoxazol(in)es, important scaffolds for biologically active natural and synthetic molecules, from the respective aldehydes. The protocol utilizes no halogenated solvents and no external oxidants, while salt side-products provide the ionic conductivity necessary for the electrosynthesis. The electrolysis is performed in an undivided cell, using the state-of-the-art electrodes for the chlor-alkali industry dimensionally stable and scalable mixed metal oxide anode and platinized titanium anode of high durability. The cascade transformation comprises the condensation of aldehyde to oxime followed by its anodic oxidation and subsequent intra- and/or intermolecular [3+2] cycloadditions with an appropriate dipolarophile. Chemical yields up to 97%, and good Faradaic efficiency, scalability, and stability are observed for most substrates in a broad scope.

3.
Cereb Cortex ; 33(20): 10504-10513, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566915

RESUMO

Previous evidence has suggested a vital role of glycogen synthase kinase 3ß-mediated α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors trafficking in depression. Considering the antidepressant effect of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors activation in the prefrontal cortex, we hypothesized that glycogen synthase kinase 3ß-induced alterations in α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors function in the prefrontal cortex participate in depression. Herein, we confirmed that the levels of phosphorylated glycogen synthase kinase 3ß and GluA1, the latter being a subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, were decreased in the prefrontal cortex of the chronic social defeat stress model mice presenting with depressive-like behaviors. We then found that a glycogen synthase kinase 3ß (p.S9A) point mutation downregulated GluA1 and induced depressive-like behaviors in mice, whereas an agonist of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, PF-4778574 (2 mg/kg) did not reversed the molecular changes. On the other hand, the antidepressant effect of PF-4778574 was dose dependent, and the single administration of PF-4778574 at a lower dose (0.5 mg/kg) or of the glycogen synthase kinase 3ß inhibitor SB216763 (5 and 10 mg/kg) did not evoke an antidepressant effect. In contrast, co-treatment with PF-4778574 (0.5 mg/kg) and SB216763 (10 mg/kg) led to antidepressant effects similar to those of PF-4778574 (2 mg/kg). Our results suggest that glycogen synthase kinase 3ß-induced α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors dysfunction in the prefrontal cortex is one of the key mechanisms of depression, and the combination of a lower dose of PF-4778574 with SB216763 shows potential as a novel synergistic treatment for depression.

4.
Molecules ; 29(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38893386

RESUMO

Novel isoxazole-triazole conjugates have been efficiently synthesized using 3-formylchromone as starting material according to a multi-step synthetic approach. The structures of the target conjugates and intermediate products were characterized by standard spectroscopic techniques (1H NMR and 13C NMR) and confirmed by mass spectrometry (MS). The all-synthesized compounds were screened for their antibacterial activity against three ATCC reference strains, namely Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC BAA-44, and Escherichia coli ATCC 25922 as well as one strain isolated from the hospital environment Pseudomonas aeruginosa. The findings indicate that conjugate 7b exhibits a stronger antibacterial response against the tested Escherichia coli ATCC 25922 and Pseudomonas aeruginosa pathogenic strains compared to the standard antibiotics. Furthermore, hybrid compound 7b proved to have a bactericidal action on the Escherichia coli ATCC 25922 strain, as evidenced by the results of the MBC determination. Moreover, the ADMET pharmacokinetic characteristics revealed a favorable profile for the examined compound, as well as a good level of oral bioavailability. Molecular docking and molecular dynamics simulations were performed to explore the inhibition mechanism and binding energies of conjugate 7b with the proteins of Escherichia coli and Pseudomonas aeruginosa bacterial strains. The in silico results corroborated the data observed in the in vitro evaluation for compound 7b.


Assuntos
Antibacterianos , Escherichia coli , Isoxazóis , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Triazóis , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Isoxazóis/química , Isoxazóis/farmacologia , Isoxazóis/síntese química , Staphylococcus aureus/efeitos dos fármacos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Simulação por Computador
5.
Molecules ; 29(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39064944

RESUMO

This work describes the synthesis, characterization, and in vitro and in silico evaluation of the biological activity of new functionalized isoxazole derivatives. The structures of all new compounds were analyzed by IR and NMR spectroscopy. The structures of 4c and 4f were further confirmed by single crystal X-ray and their compositions unambiguously determined by mass spectrometry (MS). The antibacterial effect of the isoxazoles was assessed in vitro against Escherichia coli, Bacillus subtilis, and Staphylococcusaureus bacterial strains. Isoxazole 4a showed significant activity against E. coli and B. subtilis compared to the reference antibiotic drugs while 4d and 4f also exhibited some antibacterial effects. The molecular docking results indicate that the synthesized compounds exhibit strong interactions with the target proteins. Specifically, 4a displayed a better affinity for E. coli, S. aureus, and B. subtilis in comparison to the reference drugs. The molecular dynamics simulations performed on 4a strongly support the stability of the ligand-receptor complex when interacting with the active sites of proteins from E. coli, S. aureus, and B. subtilis. Lastly, the results of the Absorption, Distribution, Metabolism, Excretion and Toxicity Analysis (ADME-Tox) reveal that the molecules have promising pharmacokinetic properties, suggesting favorable druglike properties and potential therapeutic agents.


Assuntos
Antibacterianos , Isoxazóis , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , Bacillus subtilis/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542839

RESUMO

A practical metal-free and additive-free approach for the synthesis of 6/7/8-membered oxacyclic ketone-fused isoxazoles/isoxazolines tetracyclic or tricyclic structures is reported through Csp3-H bond radical nitrile oxidation and the intramolecular cycloaddition of alkenyl/alkynyl-substituted aryl methyl ketones. This convenient approach enables the simultaneous formation of isoxazole/isoxazoline and 6/7/8-membered oxacyclic ketones to form polycyclic architectures by using tert-butyl nitrite (TBN) as a non-metallic radical initiator and N-O fragment donor.

7.
Molecules ; 29(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064825

RESUMO

Alkaloid-based urea derivatives were produced with high yield through the reaction of anabasine and cytisine with isoxazolylphenylcarbamates in boiling benzene. Their antitumor activity, in combination with the commonly used five anticancer drugs, namely cyclophosphane, fluorouracil, etoposide, cisplatin, ribomustine with different mechanisms of action, was investigated. Based on the quantum chemical calculations data and molecular docking, hypotheses have been put forward to explain their mutual influence when affecting C6 rat glioma model cells.


Assuntos
Alcaloides , Antineoplásicos , Glioma , Simulação de Acoplamento Molecular , Animais , Glioma/tratamento farmacológico , Glioma/patologia , Ratos , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/síntese química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ureia/química , Ureia/farmacologia , Ureia/análogos & derivados , Proliferação de Células/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 96: 129517, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838341

RESUMO

The search for new classes of antibiotics is a real concern of public health due to the emergence of multi-resistant bacteria strains. We report herein the synthesis and characterization of a new series of 13 molecules combining isoxazoline/isoxazole sulfonamides and hydrazides motives. These molecules were obtained according to a costless eco-friendly procedure, and a one-pot three-step cascade synthesis under ultrasonic cavitation. All the synthesized compounds were fully characterized by HRMS, 1H NMR, 13C NMR spectroscopy and HPLC analysis. These new molecules have been evaluated against the major human opportunistic pathogen Pseudomonas aeruginosa to determine their potential to affect its growth and biofilm formation or dispersion. Two derivatives (5a and 6a) demonstrated their ability to destabilize a mature biofilm by about 50 % within 24 h. This may pave the way to the development of a new class of compounds affecting biofilm, which are easy to synthesize according to green chemistry processes.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Sulfanilamida , Sulfonamidas/farmacologia
9.
Bioorg Chem ; 137: 106572, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156136

RESUMO

As a continuation study, 29 novel triazoles containing benzyloxy phenyl isoxazole side chain were designed and synthesized based on our previous work. The majority of the compounds exhibited high potency in vitro antifungal activities against eight pathogenic fungi. The most active compounds 13, 20 and 27 displayed outstanding antifungal activity with MIC values ranging from <0.008 µg/mL to 1 µg/mL, and showed potent activity against six drug-resistant Candida auris isolates. Growth curve assays further confirmed the high potency of these compounds. Moreover, compounds 13, 20 and 27 showed a potent inhibitory activity on biofilm formation of C. albicans SC5314 and C. neoformans H99. Notably, compound 13 showed no inhibition of human CYP1A2 and low inhibitory activity against CYP2D6 and CYP3A4, suggesting a low risk of drug-drug interactions. With high potency in vitro and in vivo and good safety profiles, compound 13 will be further investigated as a promising candidate.


Assuntos
Antifúngicos , Cryptococcus neoformans , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Triazóis/farmacologia , Triazóis/química , Isoxazóis , Relação Estrutura-Atividade , Candida albicans , Testes de Sensibilidade Microbiana
10.
Mol Divers ; 27(5): 2037-2052, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36282413

RESUMO

In our continued efforts to find potential chemotherapeutics active against drug-resistant (DR) Mycobacterium tuberculosis (Mtb), causative agent of Tuberculosis (TB) and to curb the current burdensome treatment regimen, herein we describe the synthesis and biological evaluation of urea and thiourea variants of 5-phenyl-3-isoxazolecarboxylic acid methyl esters as promising anti-TB agent. Majority of the tested compounds displayed potent in vitro activity not only against drug-susceptible (DS) Mtb H37Rv but also against drug-resistant (DR) Mtb. Cell viability test against Vero cells deemed these compounds devoid of significant toxicity. 3,4-Dichlorophenyl derivative (MIC 0.25 µg/mL) and 4-chlorophenyl congener (MIC 1 µg/mL) among urea and thiourea libraries respectively exhibited optimum potency. Lead optimization resulted in the identification of 1,4-linked analogue of 3,4-dichlorophenyl urea derivative demonstrating improved selectivity. Further, in silico study complemented with previously proposed prodrug like attributes of isoxazole esters. Taken together, this molecular hybridization approach presents a new chemotype having potential to be translated into an alternate anti-Mtb agent.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Animais , Chlorocebus aethiops , Antituberculosos/farmacologia , Ureia/farmacologia , Células Vero , Relação Estrutura-Atividade , Ácidos Carboxílicos/farmacologia , Ésteres/farmacologia , Tioureia/farmacologia , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana
11.
Arch Pharm (Weinheim) ; 356(4): e2200472, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534890

RESUMO

Chagas disease (CD) is a neglected disease caused by the protozoan Trypanosoma cruzi. The two drugs used in the treatment schedules exhibit adverse effects and severe toxicity. Thus, searching for new antitrypanosomal agents is urgent to provide improved treatments to those affected by this disease. 5-Nitrofuran-isoxazole analogs were synthesized by cycloaddition reactions [3+2] between chloro-oximes and acetylenes in satisfactory yields. We analyzed the structure-activity relationship of the analogs based on Hammett's and Hansch's parameters. The 5-nitrofuran-isoxazole analogs exhibited relevant in vitro antitrypanosomal activity against the amastigote forms of T. cruzi. Analog 7s was the trending hit of the series, showing an IC50 value of 40 nM and a selectivity index of 132.50. A possible explanation for this result may be the presence of an electrophile near the isoxazole core. Moreover, the most active analogs proved to act as an in vitro substrate of type I nitroreductase rather than the cruzain, enzymes commonly investigated in molecular target studies of CD drug discovery. These findings suggest that 5-nitrofuran-isoxazole analogs are promising in the studies of agents for CD treatment.


Assuntos
Nitrofuranos , Tripanossomicidas , Trypanosoma cruzi , Relação Estrutura-Atividade , Isoxazóis/farmacologia , Isoxazóis/química , Reposicionamento de Medicamentos , Nitrofuranos/farmacologia , Nitrofuranos/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química
12.
J Mol Struct ; 1285: 135461, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37041803

RESUMO

The respiratory infection tuberculosis is caused by the bacteria Mycobacterium tuberculosis and its unrelenting spread caused millions of deaths around the world. Hence, it is needed to explore potential and less toxic anti-tubercular drugs. In the present work, we report the synthesis and antitubercular activity of four different (hydrazones 7-12, O-ethynyl oximes 19-24, triazoles 25-30, and isoxazoles 31-36) hybrids. Among these hybrids 9, 10, 33, and 34, displayed high antitubercular activity at 3.12 g/mL with >90% of inhibitions. The hybrids also showed good docking energies between -6.8 and -7.8 kcal/mol. Further, most active molecules were assayed for their DNA gyrase reduction ability towards M. tuberculosis and E.coli DNA gyrase by the DNA supercoiling and ATPase gyrase assay methods. All four hybrids showed good IC50 values comparable to that of the reference drug. In addition, the targets were also predicted as a potential binder for papain-like protease (SARS CoV-2 PLpro) by molecular docking and a good interaction result was observed. Besides, all targets were predicted for their absorption, distribution, metabolism, and excretion - toxicity (ADMET) profile and found a significant amount of ADMET and bioavailability.

13.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769319

RESUMO

The microbial, biofilm-based infections of chronic wounds are one of the major challenges of contemporary medicine. The use of topically administered antiseptic agents is essential to treat wound-infecting microorganisms. Due to observed microbial tolerance/resistance against specific clinically-used antiseptics, the search for new, efficient agents is of pivotal meaning. Therefore, in this work, 15 isoxazole derivatives were scrutinized against leading biofilm wound pathogens Staphylococcus aureus and Pseudomonas aeruginosa, and against Candida albicans fungus. For this purpose, the minimal inhibitory concentration, biofilm reduction in microtitrate plates, modified disk diffusion methods and antibiofilm dressing activity measurement methods were applied. Moreover, the cytotoxicity and cytocompatibility of derivatives was tested toward wound bed-forming cells, referred to as fibroblasts, using normative methods. Obtained results revealed that all isoxazole derivatives displayed antimicrobial activity and low cytotoxic effect, but antimicrobial activity of two derivatives, 2-(cyclohexylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB9) and 2-(benzylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB10), was noticeably higher compared to the other compounds analyzed, especially PUB9 with regard to Staphylococcus aureus, with a minimal inhibitory concentration more than x1000 lower compared to the remaining derivatives. The PUB9 and PUB10 derivatives were able to reduce more than 90% of biofilm-forming cells, regardless of the species, displaying at the same time none (PUB9) or moderate (PUB10) cytotoxicity against fibroblasts and high (PUB9) or moderate (PUB10) cytocompatibility against these wound cells. Therefore, taking into consideration the clinical demand for new antiseptic agents for non-healing wound treatment, PUB9 seems to be a promising candidate to be further tested in advanced animal models and later, if satisfactory results are obtained, in the clinical setting.


Assuntos
Anti-Infecciosos Locais , Isoxazóis , Animais , Isoxazóis/farmacologia , Biofilmes , Anti-Infecciosos Locais/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Linhagem Celular , Fibroblastos , Oxazóis/farmacologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa
14.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003327

RESUMO

An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5'-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10-12-10-6 M) with maximum potentiation of 77% at 10-10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs.


Assuntos
Ácido Caínico , Receptores de AMPA , Receptores de AMPA/química , Isoxazóis/farmacologia , Ligantes , Simulação de Acoplamento Molecular
15.
Molecules ; 28(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836643

RESUMO

Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) were previously shown to have selective positive modulation at the metabotropic glutamate receptor (mGluR) Subtypes 2 and 4, with no functional cross-reactivity at mGluR1a, mGluR5, or mGluR8. Additional analogs were prepared to access more of the allosteric pocket and achieve higher binding affinity, as suggested by homology modeling. Two different sets of analogs were generated. One uses the fully formed [3,4-d] with an N6-aryl with and without halogens. These underwent successful selective lateral metalation and electrophilic quenching (LM&EQ) at the C3 of the isoxazole. In a second set of analogs, a phenyl group was introduced at the C4 position of the [3,4-d] ring via a condensation of 4-phenylacetyl-3-ethoxcarbonyl-5-methyl isoxazole with the corresponding hydrazine to generate the 3,4-ds 2b and 2j to 2n.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Regulação Alostérica , Benzamidas , Isoxazóis/farmacologia
16.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903567

RESUMO

In search of synthetically accessible open-ring analogs of PD144418 or 5-(1-propyl-1,2,5,6-tetrahydropyridin-3-yl)-3-(p-tolyl)isoxazole, a highly potent sigma-1 receptor (σ1R) ligand, we herein report the design and synthesis of sixteen arylated acyl urea derivatives. Design aspects included modeling the target compounds for drug-likeness, docking at σ1R crystal structure 5HK1, and contrasting the lower energy molecular conformers with that of the receptor-embedded PD144418-a molecule we opined that our compounds could mimic pharmacologically. Synthesis of our acyl urea target compounds was achieved in two facile steps which involved first generating the N-(phenoxycarbonyl) benzamide intermediate and then coupling it with the appropriate amines weakly to strongly nucleophilic amines. Two potential leads (compounds 10 and 12, with respective in vitro σ1R binding affinities of 2.18 and 9.54 µM) emerged from this series. These leads will undergo further structure optimization with the ultimate goal of developing novel σ1R ligands for testing in neurodegeneration models of Alzheimer's disease (AD).


Assuntos
Receptores sigma , Ligantes , Receptores sigma/metabolismo , Aminas , Receptor Sigma-1
17.
Molecules ; 28(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241960

RESUMO

The biological significance of benzopyran-4-ones as cytotoxic agents against multi-drug resistant cancer cell lines and isoxazoles as anti-inflammatory agents in cellular assays prompted us to design and synthesize their hybrid compounds and explore their antiproliferative activity against a panel of six cancer cell lines and two normal cell lines. Compounds 5a-d displayed significant antiproliferative activities against all the cancer cell lines tested, and IC50 values were in the range of 5.2-22.2 µM against MDA-MB-231 cancer cells, while they were minimally cytotoxic to the HEK-293 and LLC-PK1 normal cell lines. The IC50 values of 5a-d against normal HEK-293 cells were in the range of 102.4-293.2 µM. Compound 5a was screened for kinase inhibitory activity, proteolytic human serum stability, and apoptotic activity. The compound was found inactive towards different kinases, while it completely degraded after 2 h of incubation with human serum. At 5 µM concentration, it induced apoptosis in MDA-MB-231 by 50.8%. Overall, these findings suggest that new benzopyran-4-one-isoxazole hybrid compounds, particularly 5a-d, are selective anticancer agents, potentially safe for human cells, and could be synthesized at low cost. Additionally, Compound 5a exhibits potential anticancer activity mediated via inhibition of cancer cell proliferation and induction of apoptosis.


Assuntos
Antineoplásicos , Resistência a Múltiplos Medicamentos , Humanos , Células HEK293 , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Benzopiranos/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga
18.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446915

RESUMO

Histone deacetylases (HDACs) are an attractive drug target for the treatment of human breast cancer (BC), and therefore, HDAC inhibitors (HDACis) are being used in preclinical and clinical studies. The need to understand the scope of the mode of action of HDACis, as well as the report of the co-crystal structure of HDAC6/SS-208 at the catalytic site, provoked us to develop an isoxazole-based lead structure called 4-(2-(((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio) pyrimidin-4-yl) morpholine (5h) and 1-(2-(((3-(p-tolyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-one (6l) that targets HDACs in human BC cells. We found that the compound 5h or 6l could inhibit the proliferation of BC cells with an IC50 value of 8.754 and 11.71 µM, respectively. Our detailed in silico analysis showed that 5h or 6l compounds could target HDAC in MCF-7 cells. In conclusion, we identified a new structure bearing triazole, isoxazole, and thiouracil moiety, which could target HDAC in MCF-7 cells and serve as a base to make new drugs against cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Histona Desacetilases/metabolismo , Triazóis/química , Linhagem Celular Tumoral , Isoxazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores de Histona Desacetilases/química , Proliferação de Células , Antineoplásicos/química , Relação Estrutura-Atividade
19.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985760

RESUMO

A practical method was developed for the convenient synthesis of isoxazole-fused tricyclic quinazoline alkaloids. This procedure accesses diverse isoxazole-fused tricyclic quinazoline alkaloids and their derivatives via intramolecular cycloaddition of methyl azaarenes with tert-butyl nitrite (TBN). In this method, TBN acts as the radical initiator and the source of N-O. Moreover, this protocol forms new C-N, C-C, and C-O bonds via sequence nitration and annulation in a one-pot process with broad substrate scope and functionalization of natural products.

20.
Molecules ; 28(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049955

RESUMO

New fluorescent dyes containing an assembled 1,4-dihydroazolo[5,1-c][1,2,4]triazine (DAT) core and an isoxazole ring were synthesized through a reaction between diazopyrazole or diazoimidazoles and isoxazolyl-derived enamines in mild conditions. The photophysical characteristics (maxima absorption and emission, Stokes shifts, fluorescent quantum yields, and fluorescence lifetimes) of the new fluorophores were obtained. The prepared DATs demonstrated emission maxima ranging within 433-487 nm, quantum yields within 6.1-33.3%, and a large Stokes shift. The photophysical characteristics of representative DAT examples were studied in ten different solvents. Specific (hydrogen bonds) and non-specific (dipole-dipole) intermolecular and intramolecular interactions were analyzed using XRD data and spectral experiments. Solvatochromism was analyzed using Lippert-Mataga and Dimroth-Reichardt plots, revealing the relationship between the DAT structure and the nature of solute-solvent interactions. The significant advantages of DATs are the fluorescence of their powders (QY up to 98.7%). DAT-NMe210 expressed bright aggregation-induced emission (AIE) behavior in DMSO and THF as the water content increased. The numerous possible variations of the structures of the heterocycles included in the DATs, as well as substituents, create excellent prospects for adjusting their photophysical and physicochemical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA